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Abstract

A complete grid Gm 0 is a graph having m x n vertices which are
!
connected to form a rectangular lattice in the plane, i.e. all edges of
Gm n connect vertices along horizontal or vertical lines. A grid is a
I

subgraph of a complete grid. We study the existence of Hamiltonian cycles

in complete grids and complete grids with one or two vertices removed.
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1. Introduction

A camplete grid Gm,n 1s a graph having m ¥ n vertices which are con-
nected to form & rectangular lattice in the plene, i.e,, 211 edges of Gm,n
connect vertices along horizontal or vertical lines. A grid is a subgraph
of & complete grid.

Complete grids describe the basic pettern of streets in sections of
virtually every city and town. Most street systems, however, correspond
more closely to grids than complete grids since lerge hospitsl complexes
or city parks block some of the streets,. as if a vertex or two have been
removed from a complete (sub-) grid. The French Quarter of New Orleans
(Pigure 1) provides a typical example of a grid.

[

RAMPART

Oopnoooonn

_1_ Dluucunoil j j D D
DD 0O0
l.

[ ]

o000

NN

CANAL

10000 Ck

SEE000I000D0oo0
=0 00000100 0

DLCATUR

Yigure 1, The French Quarter of New Orleans.
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In this paper we are interested in the existence of Hamiltonian
eycles in comlete grids and complete grids with cne or two vertices re-
moved. As such this work relates to that of Thampson [3], who determined
which complete grids are Hemiltonian; Simmons [2], who studied which n-
dimensional lattices are Hamilton-laceable; and Cull [17, who studied
which complete grids (checkxerboards) have xnight's tours.

We determine for most values of m,n » 1, which grids Gm,n - {u} and
qm,n - {u,v}, are Hamiltonian.

2. Preliminary results

LetG bea.cumpletegridwhereV(G n)z[ij l1gsi<m,
l1gsi< n) Let Sc V(G), with S = § a possibility, and consider when
Gm,n - 8 wi.l be Hamiltonian,

Let v, = {YLJ: i+ J is even}, and v, = [vi,J: i+ J 1s odd). If we
essoclate the vertices of Gm n with the squares of an m y n checkxerboard,

?

* then the set of vertices Vl will correspond to the red squares and V2 will
correspond to the black sguares of the checkxerboard. The upper left red
squere is Vv 1 1 and there ere m rows and n columns.

Lemma 1. If G - 8 is Hamiltonien, then [V, - §] = |V

m,n 1 2 " SI'

Proof. Gm 0 1 a bipartite graph, Bs is any subgraph Gm n " S, where the
» ]
vertices form a bipartition Vl -5, V2 = B, Bince the vertices in any
(Hamiltonlan) cycle must alternste between Vy, - Sand V, - §, if G, -5 is
J
Hamiltonian, then |vl - 8| = ]V2 - 8].
Stated in terms of checkerboards, Lemma 1 simply says that if G -5

]
is Hamiltonian, then the number of red squares must equal the number of

bleck squeres,

Theorem 2 [Thompsen]. For m,n 22, G, , is Hamiltonien if and only if m
r
‘times n is even.

Proof. The necessity follows immediately from Lemma l; the sufficiency
Tollows by the simple construction of & Hamiltonian cycle as indicated in
Figure 2 where it is assumed that n is even, n = 2.
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Figure 2, Hamiltonien cycles in complete grids Gm Pp
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3, Complete grids with one vertex (square) removed

. We now consider which grids of the form Gm n " [v] are Hamiltonlan.
= 3

The following result is immediate fram Lemmsa 1,

Proposition 3. If Gm n " {v] is Hamiltonian, then m times n is odg,
b

Theorem 4. For m,n > 1, G2m+l,2n+1 - {v] is Hamiltonien, if and only if

v e Vl.
Proof, 1In G2m+1,2n+1’ the cerdinelity of Vl is one grester than the car-
dinality of VE' Therefore, by Lemme 1, v must be in Vl.

The sufficiency can be shown by the constructions of Hamiltonien
eycles indi_sted in Figure 3. If v ¢ V,, then there are two cases to con-
gsider: (a) v lies in an even numbered row and column (in which case there
are an odd mmber of rows and columns in each direction from v (cf, Figure
3a)) or (b) v lies in an odd mumbered row and column (cf, Figure 3b).

Consider for exasmple Figure 3a. First, locete in Gm,n the small-
est 3 x 3 grid G containing v such that there are an odd number (> 1)
of rows snd colums ebove and below, to the left end right of the square
for v. We first construct the simple Hamiltonian cyele for G-v, This
cycle can then be augmented, as indicated ip Figure 3a, for every eddition-
al two columns {3 rows high) on either side, It can then be augmented in
the same way for every two additionsl rows sbove and below,

This manner of augmentation can also be applied in Figure 3b.
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4, Camplete grids with two vertices (squares) removed

We next comsider grids H = Gm,n - {u,v} with 2 vertices removed.
Clearly such m grid H is not Hamiltonien if H is not 2-conmected. From
Lemma 1 and the previous stetement the following necessary conditions for

H to be Haemiltonian are obvious,

Lemma 5. If G _ - {u,v] is Hamiltoniaen, then
2

(1) m times n is even
(41) veV, andueV,, and

(1ii) Gm’n - {u,v} is 2-connected.

The pext result is irmediate by construction and Lemma 5.

Theorem 6. Iet S = {u,v}. Then the grid G
only If n > 3 and S = {vl,n’va,n} or 8 = {

> - 5 is Hamiltonian if and
,0

Y1,10%2,1)

We have two general cases to consider, either both m end n are even, or

one of m or n is odd. We begin witk the case where both m and n are even,
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and we first consider Hamlltonian paths in grids of the form G211 L° The
»
following result can easily be shown,

Lemme 7. Iet Gm,h be En even by four grid. If v ¢ Vl, i.e., v = vi,;j
guch that 1 + J is even, then Gm Y - (v] bhas a Hamiltonian path fram Yo
3

fr t .
to vl,li and s Hamiltonian path from vm,l o] vm’3

We use this result to prove the following.

»1

Theoren 8, ILet Gm n be 8 grid such that m,n > 4 are both even. Consider

3
Gm,n - {v] where v ¢ vl and v is not vl,n-l or va’n. Then in Gm,n - V]
there is a Hamiltonian path from vm,l to vm,n—l‘

Proof. Iet v be located in column Jj where 1< j . n-1. Partition Gm

into three blocks of columns such that blocx 2 contains four colum.ms,’one

of which is J. TFurthermore, j is even mmbered or odd numbered in the
-block according to whether § i even numbered or odd numbered in G

.
>

This jmplies that both blocks 1 and 3 have an even number of columns. Con-

struct three paths in Gm,n - {v}: (&) from ,1 to o,k where x is the

X to vl,k+l+; and (c) from vl,x+l+

tov, ;- Fath (b) can be constructed by Lemma 7., Paths (&) and (c) cen
)
be constructed as in Figure 4.

leftmost column in bloex 2; (b) from v

} - A -

/ :
Il L) | bo-d3

Figure 4. Paths for the solution of Theorem 8 with J < -1,

Finally, let v be in column n-1 or in column n. Then Gm,n can be parti-
tioned into two blocks of columns, Bloex 1 will consist of the Pirst n-2
columns and hence will have an even number of columns. Block 2 will be the
last two columns, Create two paths - oné from Vo to v, | end a path

F] 2!1"

from v2n—l to vm,n-—l‘ The constructions will be as in Figures 5a or 5b if

v is in column n-l or in column n, respectively (note the excepted vertices,



vertices vi,n-l and v2,n)‘
AL O h - L
(a) : (b] ;

-8 IR

Figure 5, Paths for Theorem 8 with j = n-1 or n.

Theorem 9. Let G be an even by even grid vhere m,n > 4, § = [vi,v

2}

b

where V¢ Vi and vy, € Vs Then Gm,n - S is Haemiltonien if and only if

Gm - S 15 2-connected, That is, we exclude the case where a vertex is
]

removed which is adjacent to a "corner" vertex without removing the "corner"
vertex itself.

Proof, Gh,h -8, Gé,h - 8 and G6,6 - S can be shown to satisfy the theorem
by exhaustively considering all possibilities for S. The cases for m,n > 8
will be handled by induction using Theorem 8.

Assume m > 8. If the top four rows or the bottom four rows do not con-
tain an element of 5, then we can assume that the bottom four rows do not.
Easily handled special cases are v, = Vool 2 and/or Vo =V | ,_y+ Other-
wise, by induction, Gm-h,n - S hes a Hamiltonian cyele thet must contmin
edge (v h ,1° m-h,z)' Replace this edge in the cycle and the edge
(Vﬁ -3,1° v 3, 2) in 2 Hemiltonian cycle in the last four rows obtained by
using the pattern in Figure 2 with the edges (v EAEY v -3, l) and
(vﬁ-h » Vg3, 2) We then have a Hamiltonian cycle for G . 5.

Assume therefore that both the top four rows and the bottcm four
rows contain a member of 5, By symmetry, it can be assumeg- That
four rows contain the element v, ¢ V.. Apply Theorem 8 4b G yon - M) 4 m“'{
to get a Hamiltonian path Pl from vh,l to vh,n-l' :
can also be applied to the bottom four rows minpus Vo to get 2 Hamiltonian

path P2 from Vo -3,1 to V- -3,n-1° For the even number of intermediate rows
’
between the top end bottom four rows, paths from Vo 3,1 to vy, 1 and from

m-3,n-1 to Vi n-1 €8 easily be constructed, as 1nd1cated in Figure 6 to

produce a Hamlltonlan cycle in Gm n " S.
2



Figure 6. Completion of the Hamiltonien paths in Theorem 9.

The next generslization follows eesily from the proof of Theorem 9;
it can be proved by induction in much the same way heving verified ihe

 result for Gh,h’ Gh,S and Gh,6 by exhaustion. In the interest of brevity,

we will ocmit the details.

Theorem 10. ILet m > 4 be any integer (including odds) and S = {vi5v,]

with vy € Vl and v2 £ Vz.

G - 5 is 2-connected.
m,l

Then Gm L - S is Hamiltonien if and only if
L .

Our second generel case ls grids Gm . S where m is odd and n is even;
3

v, is a red square and v, is

S = [vl,'\rzj, where v, € Vl and v, ¢ V,, 1.e., 1 o

2
a blacx square on & checkerboard.

Theorem 11. Any 2-connected grid of the form G3 on " {u,v}, where u is

?
bleck and v is red is Hemiltonian if end only if it does not begin (or end)
with one of the following three forbidden petterns:

with v to the right of u,



(11) e | Vheesr V=V opg
with u to the right of v, or
\-——-—-\/;"-‘—';-—/
(iii) ann ses, U= v3’2h
Y with v to the right of u
‘-——-—-v;-d—d—-—-f

Proof, Clearly none of the forbidden patterns could result in = Hamil-
tonian graph since the cycle would cover sll of the squares in the pattern
by entering end leaving through the two squares in the column containing
the removed squere. But this is impossible since, in cases (1) end (iii)
there are an odd mmber of sguares in the pattern, and the only way the
peth could cover all of them would be to enter and leave on the seme pari-
ty. In cese (41}, the opposite is true, there are sn even mumber of
sqguares in the forbidden pattern, but the two squares by which the Hamil-
tonian cycle must enter and leave have the same perity.

It only remains to show how to construct & Hemiltonian eycle if none
of the forbidden patterns sre present,

We will only present this construction in the cese where u occurs in
the first row and v occurs in some qolumn to the right of u. Since none
of the forbidden patterns occur we can as that an even mmber of col-
unens occur to the left of the col contining u

If v occurs in row 1 or 3 (resp. 2), then by the same reasoning an
even (resp. odd) mmber of columns must appear to the right of v, Figure
7 1llustrates the construction of & Hemiltonien cycle in each of the
three possible cases.
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Patterns for cases in Theorem 11,

In the interest of brevity we wili only sxetch the proof of the next

Theorem 12. Any 2-connected grid of the form G5 = G5 op - (W,V], where u
?

is red and v is blacx is Hamiltonien if and only if it does not begin

(or end) with one of the following five forbidden patterns:

(a)

(b)

Y =
"1,211' v3’2h or v5,2h, and

u = vi,j with § = 2n+2

us= v2,2h+l or Vh,2h+l’ and

with v to the right of u.
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Froof. It is essy to show, using a simple parity argument, that any grid
of the form G5, which begins or ends with ocne of the five forbidden pat-
terns, is not Hemiltonian. For exsmple, in pattern (a) above, there are
an odd pumber of squares to the left of the column containing v. Any
Hemiltonian cycle would therefore have to enter and leave this pettern
(through the column containing v) on rows 2 and L. (See, for example,
Figures 8f, h and j.) But then a1l of the squares in the column to the
right of v cannot be covered. Similerly, in pattern (b), any Hemiltoniasn
cycle would have to enter and leave the columns to the left of u in rows
1 end 4 (or rows 2 and 5), in which case 211 of the gquares in the column
conteining u cannot be covered,

If none of the forbidden patterns exist, then it remains to show how
to construet a Hemiltonien cycle., We do this by Partitioning the even
number of columns into blocks of 2. We. then determine the leftmost (L)
and rightmost (R) blocks conteining a deleted square (possib:ly these are
the same (I=R)). Using the disgrems in Figure 8, and observing the cbvious
symmetries between left and right, we cen then construct a Hamiltonian
cycle for the pert of the grid between (and including)} blocks L and R. It
is then a simple matter to augment this cycle by adding on the remeining
columns, two et a time, until s Hemiltonian cycle for the entire grid is
constructed (ef. Figure 9),

In Figure 8 we indicate beneath esch block that all the squares can
be covered by entering snd leaving verious rows.

Furthermore, since we are essuming that 65 is 2-connected, and pos-
5ibly these are the 2 leftmost columns in G5’ in cases b, d, £ and j in
Figure 8 we can assume that there are two additionel columns to the left.
However, in cases b and d this produces a forbidden pattern.

We leave the remaining details to the reader, including the cases
vhere L = R,

It is somewhat surprising that for 2-connected grids of the form
67 = GT,En = {u,v} there are no forbidden patterns,

Theorem 13. Every 2-comnected grid of the form G. = Gy op = {u,v] where
L)

7
u 18 red end v 45 blecx, is Hamiltonian,

Proof. Again we will only eketch the Proof. As in the proof of Theorem
12, we partition the columns in blocks of two, and determine the leftmost
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(L) and rightmost (R) blocx containing a deleted vertex, Figure 10 illus-
trates ‘this partitioning, where possibly eny of the blocks labeled I, II,
or III are empty.

even aven aven

Figure 10, Partitions of G7.

Figure 11 illustrates all possible cases for block L, along with
paths which traverse every square in these blocks.

The corresponding rightmost blocxs R can easily be constructed by
symmetry. It is then en easy matter to construct & Hemiltonian cycle con-
teining sl1 the squares in blocks 1, II and R. Finally, by sugmenting
this cycle two blocks et a time to include all the columns in blocks 1
and TII, one can construct a Hamiltonian cycle for G7. We again leave the
detasls to the reader, including the cases where L = R, i.e., both u and
v belong to the seme block of two columns,

Although we have not to date been sble to generalize the proof of
Theorem 13 in eny simple manner, we strongly conjecture that the obvious
generalization is true.

Conjecture: FEvery 2-connected grid of the form sz+l on "~ fu,v}, where u
3
45 red end v is blecx, end m > 3, is Hamiltonian,

Finally, Figure 12 provides an example of a grid H = Gm " S where
H
Is| =8,
(1) |V(H)| i& even,
(i1) |vl - 5| = |v2 - 8|, end
(iii) H - S is 2-connected,
yet H is pot Hemiltonien.
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It would be interesting to xnow if there are smaller examples, i.e,,
[S] < 7, where conditions (1), (41) end (ii1i) do not imply that H is
Hemiltonian,
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