CIS-TR-80-11

A LINEAR ALGORITHM TO DETERMINE
ISOMORPHSIM OF UNICYCLIC GRAPHS

by

*
Sandra Mitchell Hedetniemi

Terry Beyer

Departmenc of Computer and Information Science
University of Oregon
Eugene, OR 97403

*
Research sponsored in part by the National Science Foundation under
Grant MCS-79-03913

ABSTRACT
A linear algorithm is presented for determining the isomocrphism of
two unicyclic graphs (graphs which are connected and have exactly one cycle).
This algorithm is simpler than the general algorithm for planar graphs [9]
which could also be applied since it uses the properties of the class of
unicyclic graphs. It therefore is easily generalized to the class of
functional digraphs. The algorithm uses as a subalgorithm a linear aigorithm

to uniquely encode a tree as a sequence of integers.

CR Cactegories 5.32

Keywords: graph isomorphism, tree encoding, unicyclic graphs, functional digraphs

[]

1. Introduction

Two graphs Gl = (Vl’El) and G2 = (VZ,EZ) are isomorphic if there exists
al -1 function £: Vl - V2 from Vl onto V2 such that 1if (ul,vl) £ El, then
(f(ul),f(vl)) e EZ' The graph isomorphism problem has been studied in the
literature { 3] and [12]. Although it is not known whether the general iso-
morphism problem is NP-complete, it has been shown that the related subgraph
isomorphism problem is NP-complete { 7]. One of the better known algorithms,
due to Corneil and Gotlieb [6], has an exponential time complexity in the
worst case.

The general isomorphism problem has been shown by Booth and Leuker {4}
to be polynomial reducible to the isomorphism problem for chordal graphs.
Linear time solutions exist for two special classes of chordal graphs: trees
(Hopcroft and Tarjan [8}) and maximal outerplanar graphs (Beyer, Jones and
Micchell [2]).

A linear algorithm also exists for the class of planar graphs (Hopcroft
and Wong [9]). In chis paper, a simple linear algorithm is presented for the
class of unicyclic graphs, a subclass of planar graphs. This solution uses a

subalgotrithm which finds a canonical encoding for a rooted tree in linear time.

2. Unicyclic graphs

A unicyclic graph G = (V,E) is a connected graph with exactly one cycle C;

the vertices of this cycle C = {vl,vz, ceey vk} are called cycle vertices.

The branch of cycle vertex v, denoted Tv’ is the subtree rooted at v containing
no other cycle vertices than v.

The isomorphism problem on two unicyclic graphs is equivalent to finding
a 1-1 mapping between their respective sets of branches which preserve
adjacencies between the cycle vertices and under which corresponding branches

are isomorphic.

The equivalent problem immediately suggests application of an existing
linear algorithm for trees by Hoperoft and Tarjan [8]. This algorithm requires
as input two rooted, unlabeled trees and answers the question of isomorphism
by processing the trees by levels of vertices beginning at the level farchest
from the root. The level li of vertex i is defined to be the distance of vertex
i from the root plus 1, where the root is considered to be at distance 0 from
itself. Unfortunately, Hopcroft and Tarjan's algorithm requires intermediace
verification of isomorphism after processing each level in the trees. This
process would be an O(NZ) process for two unicyclic graphs with ¥ vertices
since it is equivalent to comparing each branch in one graph to every branch
in the other.

A more suitable approach for determining the 1-1 mapping between isomorphic
branches is to associate with each branch a canonical sequence of integers
such that branches have identical sequences if and only if they are isomorphic.
in the following section we present a linear time algorithm to construct an
integer "level" sequence for the branches. This sequence has the desired

canonical property.

3. Linear time coding of rooted trees

We associate with each ordered rooted tree T' a level sequence, L(T'),

which is obtained by traversing T in preorder {cf. Knuth {10]) and recording
the level of each vertex as it is visited (cf. Figure 1). We claim without
proof that any two ordered, rooted trees having the same level sequence are
isomorphic.

A given unordered, rooced tree T may correspond to many non-isomorphic,
ordered trees and hence, might be represented by any one of the corresponding

level sequences. The canonical representation of T is that unique corresponding

ordered tree, T', whose level sequence, L(T'), is greater than the others in the

I~

lexicographic ordering of integer sequences. The canonical level sequence of
T is L(T)" = L(T").

In Figure 1 the two ordered trees T' and T" correspond to the same
underlying rooted tree T (not shown). Since these are the only distinct
ordered trees corresponding to T and since L(T') > L(T"), we have that T' is
the canonical representative of T and the canonical level sequence of T is

M = (233 2.

L(T") = (12233) L(T") = (]2332)

*
L(T) = L(T")

Figure 1

The canonical represenative of a rooted tree has a distinguishing pro-
perty which we now define. Let T' be an ordered tree. Let Ti and Tj be
subtrees rooted at vertices i and j respectively. We say Ti is the immediate
predecessor of Tj if i and j are consecutive children of the same parent with
i to the left of j. An ordered tree is regular if L(Ti) Z.L(Tj) whenever Ti
is the immediate predecessor of Tj.

The proof of the following result can be found in (2].

Lemma 1. An ordered tree is the canonical represenative of its underlying

rooted tree if and only if it is regular.

Lemma 2. A subtree of a regular tree is regular.
Proof. This follows immediately from the transitivity of the relation subtree

and the definition of regular.

To solve our problem we need to create an ordering on the rocoted tree
which is regular. We will do this, by virtue of Lemma 2, by creating ordered
subtrees, working upward from the deepest levels. Each subtree will be ordered
based on the level sequence representing the vertices in that subtree.

We next present Algoricthm ENCODE which produces a canonical level sequence
of a given unordered rooted tree. This algorithm uses a linear list of elements
which are of the following types:

(i) hard boundaries (denoted B in Figure 2),

(ii) soft boundaries (denoted 0 in Figure 2), and

(iii) subtree descriptors ceonsisting of a vertex v and a subsequence S

of the canonical level sequence (denoted v(S5) in Figure 2).

The boundary elements (hard and soft) serve to partition the subtree
descriptors into blocks according to their subsequences. Boundaries are created
as soft boundaries as a result of processing some other block B (except during
initialization). Upon completion of the processing of block B, the newly
created sofc boundaries become hard.

The initialization of the list of elements for a tree T invelves the fol-
lowing steps. Associate with each vertex v it's subtree descriptor Sv consisting
solely of v's level in the tree. Create the list by inserting depth(T)+l, i.e.
the maximum number of levels plus one, soft boundaries. Insert each vertex v,
having level k, between the k-th and the (k+l)-st soft boundary.

Processing is performed on the list of elements from right to left. Let
B, the curreant block being processed, contain vertices Vis Vo tees vj with

their respective subsequences Sv 9 =

L A acon Sv . Let pl, pz, 500 [pj be the

Vz J

¥ Levelg

4
2
3
4

Algorithm

Step State of Sequence
Level 1 Level 2 Level 3 Level 4

1 | BEGY: B202) 32 B 4(3) 5(3) 6(3) n7u)§§§;

2.2 | BEEY B2(2) 3(2) lao)eu)nﬂyoﬂigj:

2.2 g1 §2(2) 3(2) $4(3) 6(3‘)_0$B_5(344)'l.‘

7.8 | BEEN i:200 3 §403) 6(31!5(344)-

2.2 Y1) 1:5553344) §i03) 6(31"

2.8,2.8 R1(1) l3(2)z(2344) 63! e<3)‘;

2.2 fiq1) g03¢23) §2(2344) 54(3)

2.2 JL Iﬂa(za) 102(234431 I

2.8 | pYed) |3(23) Il2(23£43)‘

2.2 101223443) ||3(23)]] ”

2.8,2.8 li1(123443) llﬁ(zs)J

2.2 IlEl(12344323) Iﬂ

2.8,2.8 JWH122344323)

LTy = (12364323)

[}

Figure 2. An application of Algorithm ENCODE

parents of Vis Vo eees vj, repsectively. Then for each i, 1 < i < j,
processing of vertex v, causes:
(1) pi's subsequence to be updated by concatenating SVi to its end;
(2) Py to be placed in a different block (to maintain the equivalence
partition), with the possible creation of a soft boundary (if a
new block is required);
(3} vertex Vi to be removed from the list of elements.

Figure 2 contains an example of the processing of Algorithm ENCODE on a tree

with four levels.

*
Algorithm ENCODE. To find the canonical level sequence L(T) for an unordered,

rooted tree T having N vertices and M levels, using a list of elements which are
either boundaries (hard and soft) or subtree descriptors.
1. [Initialize the list of elements]

1.1. Construct a sequence of M+l soft boundaries.

1.2. For each vertex v in T, construct a subtree descriptor v(k),.where
kis the level number of v in T. Insert this descriptor between the
k-th and (k+l)-st boundary.

2. [Process the list of elements]
2.1. While the rightmost element is not the descriptor for the root do
2.2, while the rightmost element is a descriptor do
2.3. 1let v(s) be the rightmost descriptor
2.4. let p(t) be the descriptor such that p is the parent of w
2.5. let b the first boundary (hard or soft) to the right of
p(t)
2.6. remove p(t) from the sequence

2.7. concatenate s to t, forming p(ts)

2.8. if b is a soft boundary
2.9. then insert p(ts) immediately to the right of b
2.10. else [b is a hard boundary]
2.11. insert a new soft boundary immediately to
the left of b
2.12, insert p(ts) immediately to the left of b
fi
2.13. remove v from the list of elements
od.

2.14. while the rightmost element is a boundary do

2.15. remove the rightmost element
2.16. convert all soft boundaries in the sequence to hard

boundaries

[Recover results]

3.1. let the rightmost element be r(u)

*
3.2. r is the root and L(T) = (u). »

Lemma 3. Let u(Su) and v(Sv) be subtree descriptors in the list of elements

with u(Su) to the lefr of v(Sv). Then the following are true:

(1) if act least 1 boundary exists between u(Su) and v(Sv), then Su < Sv;

(2) 1if no boundary exists between u(Su) and v(Sv), then Su = Sv.

Proof. Properties (1) and (2) are initially true by the definition of the

partition. We now prove the properties are invariant during the processing of

the algoritchm.

Steps 2.13 and 2.15 do not affect these properties since they only remove

and

the rightmost elemenc. Furthermore, since we do not distinguish between hard
and soft boundaries, Step 2.16 does not affect these properties (directly).
It only remains to show the effect of Steps 2.6 through 2.12 since Steps 2.3
through 2.5 are designational. Therefore assume the rightmost elemet w is a
deseriptor and its parent is one of u or v.

Case 1. Su = Sv’ and without loss of generality, the parent of w is u.

The concatenation of S to S , i.e. 8 ' = § S creates the inequality S ' > S_.
W u u v u

v

But either Step 2.9 or Steps 2.11 and 2.12 will cause Su' to be placed to the
right of Sv with a boundary between them.

Case 2. Su < S and the parent of w is u.

uj; Sv = 5.1 Sy2 vk’ and i be the rightmost

position such that s = s for allm < i. If i < j, then 5 and § will
um v - u v

Let S ' =5 5 ; S -1 5 ve. S8
u

uw’ Sul w2
have a hard boundary between them since they cannot have become distcinguishable
during the processing of the block in which w resides. Hence, Su' < Sv and
the hard boundary will remain between them.
If i = j+l, i.e. Su is a proper initial segment of Sv’ then two possibilities

exist: either Sw is equal to sv(i+l) eet S OT it is not. If they

Sy (i+2)
are equal, then there exists exactly one soft boundary between u(Su) and v(Sv).
There cannot be more than one soft boundary since that would imply Sv(i+l)"‘svk
was not appended to s, ... S, @S a "unit" subsequence. This would violate
Property (1) since Sw would be in the same block as a "legsser" subtree descriptor.
There cannot be one or more hard boundaries since Property (2) would be violated
by having S to the left of a "lesser" subtree descriptor.

If they are not equal, then S must be less than the designated subsequence.
Otherwise, S is greater than this subsequence and earlier in the processing

either there was one boundary between the two subsequences, violating Property(l),

or there was none, viclating Property (2).

10

Case 3. Su < Sv and the parent of w is v.
Clearly Su < Sv' = SVSW. Since the algorithm only moves elements further to
the right, Property (1) is preserved.

Hence, in all cases, Properties (1) and (2) have been shown to he

invariant with respect to the algorithm. -

Theorem 4. Let v(Sv) be a subtree descriptor in the list of elements where
v(Sv) lies in the rightmost, non-empty block. Let Sv* denote the sequence
obtained by subtraccing (1 ~ level of v in T) from each element in Sv. Then
the subtree rooted at v is canonically represented by Sv*.

Proof. 1Initially, this is true since the rightmost block contains only end-
vertices. Lemma 3 guarantees that the property of dominance between subtree
descriptors is initially true and invariant during the operation of the algo-
rithm. When a vertex lies in the rightmost non-empty block, its subtree is
completely processed. Because the blocks are processed right-to-left, that
vertex's descriptor is regular. Subtracting a constant from every element in
the descriptor does not change the property of being regular (che level of the
vertex is only raisad). By Lemma 1, this regular representation is therefore

a canonical representation. o

Corollary 5. Algorithm ENCODE finds a canonical representation of a tree.
Proof. When Algorithm ENCODE terminates, only one vertex remains in the tree,
the root. By Theorem 4, the sequence obtained by subtracting O from the
subtree descriptor is a canonical representation of the subtree rooted at the

root of T, i.e. the entire tree. Y

The linearity of Algorithm ENCODE is demonstrated by the following.
Initially, the list of elements contains N subtree descriptors and M = N+1

soft boundaries, The processing of each subtree descriptor creates no more

11

than one soft boundary. Hence, the total number of iterations of the loop
in Step 2.1 is < 3N+l. It only remains to show that each of the steps can
be performed in constant time.
The tree will be stored as a parent array (cf. Knuth [10]). The list
will be maintained as a doubly linked list where each subtree descriptor
has an additional pointer to the nearest boundary to the right. Hence, all
accesses are made in constant time. However, it is important that each
subtree descriptor always have a pointer to the correct nearest right boundary.
Assume u and Vi Vs eees vk are in the same block, their nearest right
boundary b i1s a hard boundary, u is the parent of w, and w is the rightmost
element. Execution of Step 2.11 will cause a new soft boundary to intervene
between the vi's and b. If the algorithm is to execute in linear time, it
is essential that all k right boundary pointers not be updated. A simple
trick solves this problem. Rewrite Steps 2.11 and 2.12 as follows:
2.10. else {b is a hard boundary]
2.11 insert a new soft boundary immediated to the right of b
2.12a insert p(ts) immediately to the right of b
2.12b change the new boundary te be hard and make b a soft
boundary.

This insures that all updates can be made in constant time as well, guaranteeing

the linearity of the algorithm.

4, Isomorphism of unicyclic graphs

Algorithm ENCODE can be used to uniquely encode the branch of each cycle
vertex v in a unicyeclic graph. These level sequences, each beginning with a
1, can be concatenated in a eyclic fashion to represent the unicyclic graph
canonically upto clockwise and counterclockwise permutations of the cycle.

The next result follows immediately from the canonical representations

12

of the branches.

Theorem 6. Let Gl and G be unicyclic graphs and lec L (Gl) be the string
obtained by concatenating the level sequences of the branches of Gl in
clockwise order and lat LCC(Gl) be the string obtained using counterclockwise
order, where the first branch has been chosen arbitrarily. Let L (G2) be
described equivalently for GZ' Then Gl is isomorphic to 62 if and only if
LC(Gl) is a subsequence of LC(GZ)LC(GZ) or LCC(Gl) is a subsequence of

LC(G JL (Gz)

The linearity of the algorithm to determine isomorphism of unicyclic
graphs 1is therefore dependent upon the linearity of Algorithm ENCODE and the
efficiency of executing the proof of Theorem 6. But Morris and Pratt's {11]
substring pattern matching algorithm which is presented in (1] is linear in
the length of the two strings. In this case this length is linear in the

number of vertices in the unicyclic graphs.

5. Concluding remarks

Although the algorithm is presented in this paper does not actually solve
isomorphism for a new class of graphs, it greatly simplifies the more general
planar algorithm that previously would have been used for unicyclic graphs.
It should be noted that recognition of unicyclic graphs is alse a linear
process. The algorithm presented in this paper relies upon a very useful
algorithm to uniquely encode a tree in linear time. This has particular
relevance to the encoding of tree-like chemical compounds. Furthermore, it
provides a mechanism for determining isomorphsim of directed trees and hence

functional digraphs.

13

6. Bibliography-

{11 aho, A., Hopcroft, J. and Ullman, J., The Design and Analysis of
Computer Algorithms, (Addison-Wesley: Readin, Mass.), 1974.

(2] Beyer, T. and Hedetniemi, S. M., Constant time generation of trees,
SIAM J. Comput., to appear.

(3] Beyer, T., Jones, W. and Mitchell, §S., Linear algorithms for isomorphism

of maximal outerplanar graphs, J. Assoc. Comput. Mach., 26(1979), 603-610.

[4] Booth, K. and Leuker, G., Linear algorithms to recognize interval graphs

and test for consecutive ones property, J. Comput. and Sys. Sci.,

13(1976), 335-379.

{5] Colburm, C., A bibliography of the graph isomorphism problem, Univ. of
Toronto Tech. Rept. 123/78, 1978,

[6] Corneil, D. and Gotlieb, C., An efficient algorithm for graph isomerphism,

J. Assoc. Comput. Mach., 17(1970), 51-64.

[7] Garey, M. and Johnson, S., Computers and Intractability: a guide ro the
theory of NP-completeness, (W. H. Freeman and Co.: San Francisco), 1979.

{8} Hoperoftr, J. and Tarjan, R., Isomorphism of plamar graphs, in Complexity
of Computations (R. Miller and J. Thatcher, eds.) (Plenum Press: New York),
1972, 143-150.

[9] Hopcroft, J. and Wong, J., Linear time algorithm for isomorphsim of planar

graphs, Proc. Sixth ACM Svmposium on Theory of Computing, 1974, 172-184.

(10] Knuth, D., Fundamental Algorithms, (Addison-Wesley: Reading, Mass.), 1969.

[11] Morris, J. and Pract, V., A linear pattern matching algorithm, Univ. of
California Tech. Rept. 40, Computing Center, University of California,
Berkeley, 1970.

{12] Read, R. and Corneil, D., The graph isomorphism disease, J. Graph Theory,

1(1977), 239-263.

