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Abstract

A unicyclic graph G = (V,E) with N vertices is a connected graph
which has exactly one cycle (or egquivalently, is connected and has N edges).
These graphs occur frequently as the topology of computer or switching
networks with ring structures. In this paper an O(N) algorithm is presented
for finding the center of any unicyclic graph with N vertices. This
algorithm uses a divide-and-conquer strategy, along with a bucket (or radix)
sort and a system of pointers to avoid the O(Nz) to O(NB) computations

normally required to find the center of an arbitrary graph.
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1. Introductiomn

The notion of centrality in a graph G = (V,E)} has numerous real world
applications. These typically invelve problems of finding optimum locations
for such things as medical centers, warehouses, stores, police stations or
schools. In general, a "center" is a vertex (or set of vertices) which
minimizes some function inveolving the distance between an arbitrary vertex
and a vertex in the center.

For example, one may want to find a vertex x which minimizes a sum such as

f(x) = zd(v,x) ve G

or a weighted sum such as

g(x) ta(v)d(v,x) v e G, or

h(x) t(a(v) + d(v,x} ) veG,
where a(v) is a non-negative, real-valued weight associated with a vercex
v and d(v,x) is the shortest distance in G from v to x.
Alternately, one may want to find a minimax, i.e. a vertex (or set of
vertices) which minimizes a maximum such as
max {d{v,x)1},
max {a({v)d(v,x)}, or
max f{a(v) + d(v,x)}, for all v ¢ G.
A represenative sample of papers which use these notions of centrality can be
found in [1], (2], [4-11].
In this work we define the (Jordan) center of a graph to consist of the
set of all wertices x for which max {d(v,x)} is a minimum. The first result

which characterized the centers of a given class of graphs was the following

due to Jordan in 1869 [81.

Theorem 1. (Jordan) If T is a tree, thenm the center of T consists of either

a single vertex or two adjacent vertices.



The centers of several other classes of graphs have only recently been
characterized, including 2-trees [11], C(N)-trees [ 7], unieyclic graphs and
cactd [LO].

There also exist linear time algorithms for determining the centers of
trees [ 9], maximal outerplanar graphs and 2-trees [4 ]. In this paper we
extend the development of linear algorithms for locating the centers of graphs
to include unicyclic graphs, a class of graphs which occurs frequently in the

study of computer networks [ 3].

2. Definitions

A unicyclic graph G = (V,E) is a connected graph which has exactly one

l’ v'),

The branch of cycle vertex v is the subtree of G rooted at v, denoted Tv’

cyecle C; the vertices of C = {v vy vk} are called cvecle vertices.

(possibly empty), which contains no other cyele vercices than v.

Assume that the cycle C of a unicyclic graph has been given an orientation,
i.e. C is a directed cycle of length k. Let h = [E/;J. Then the range of
cycle vertex vi, denoted RANGE(vi) is the set of h vertices {vi+l’ Vippr cee
vi+h} following vy half way around cthe cycle in the direction of the orienta-
tion.

The height of cycle vertex v, h{v), equals max {d{u,v): u g Tv}’ where
d(u,v) is defined to be the length of a shortest path between vertices u and
V.

~

The eccentricity e(u) of a vertex u in G is the maximum length of a

shortest path from u to any other vertex, i.e. e(u) = max {d(u,w): we G}.

A vertex w in G for which e(w) is minimum is a central vertex. The center

of G is the set of all central vertices.

The height, h(v), of a cycle vertex v in a unicyclic graph can be used to



refine the definition of the eccentricity of v. For every cycle wvertex v,
a(v) = max {h(v), d(u,v) + h{u)}, where u is a cycle vertex, i.e. there exists
a vertex farthest from v either in its branch or in a branch of another cycle

vertex u.

For all vertices w ¢ C, denotad as tree vertices, e{w) = max {d(x,w),

d(v,w) + d{u,v) + h{u)}, where w and x are in Tv (the branch at v) and u is
another cycle vertex. That is, cthe vertex farthest from vertex w is either in

the same branch as w or in a branch of another cycle vertex.

3. A linear representation for unicyclic graphs

411 unicyclic graphs with n vertices can be constructed recursively as
fellows:

(i) construct a cycle C of length k < n

(1i) perform the following operation n-k times:

add a new vertex and join it to an existing vertex.

Figure 1 illustrates a linear (implicit) representation of a unicyelic
graph whiech can be generated by this process. Note that any unicyclic graph
can be numbered so that the c¢ycle vertices are numbered 1, 2, ..., k. Thus,
if the cycle has M vertices, then the first M entries in the representation
can denote the cycle. The remainder of the entries describe the branches. It
should be noted that such a representation for a unicyclic graph G can be
obtained in linear time from a list of the edges of G by using a depth-first

search.
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4. Calculation of the height of tree and cycle vertices

In order to determine the center of a unicyclic graph we first need o
calculate che eccentricity and height of each vertex. In order to do this we
will associate with each tree vertex w a height (HT(w)) which aquals the
maximum distance from w to any endvertex (vertex of degree 1) in its
subtree Tv (as determined by its cycle vertex root v). We will also associate
with w the number of its subbranches having that height, NO_HT(w), as well as
the height of its second longest branch, NEXT HT(w).

In [ 9], a linear algorithm was presented which calculates these heights.
This algorithm can be extended to calculate the heights and "second heights"
of all the tree vertices (since the calculations are dependent only on the
respective branches) by using the last N-M entries in the linear represencation
of a unicyclic graph with N vertices and cycle length M. We present this
extension as Algorithm BRANCHES. 1t should be noted that after the completion
of Algorithm BRANCHES, h(v), the height of cycle vertex v, will have been

calculated for all cycle vertices as HT(v).

Algorithm BRANCHES. To find the height HT(V) of each vertex V im a unicyclic

graph UNICYCLE {1 .. N] having cycle [l .. M]; to determine for each trae vertex
V the number of branches having HT(V); and to determine the height of the second
longest’ branch NEXT_HT(V) of each vertex.
0. [Initialize]
for V+ 1 to N do

HT(V) « 0

NO_HT(V) « 1

NEXT _HT(V) + 0

od



1. [Iteratively determine heights]
for V « N downto M+l do
PARENT + UNICYCLE(V)
if HT(PARENT) < HT(V) + 1
then NEXT HT(PARENT) + HT(PARENT)
HT (PARENT) <« HT(V) + 1
NO_HT (PARENT) + 1
else if HT(PARENT) = HT(V) + 1
then NO_HT(PARENT) « 2
NEXT_HT(PARENT) -+ HT(PARENT)
else if HT(V) + 1 > NEXT HT(PARENT)

then NEXT HT(PARENT) « HT(V) + 1

£i

stop.

5. Calculation of cycle eccentricities

As mentioned earlier, the zccencricity of a cycle vertex v is defined as
e(v) = max (h(v), d(v,u) + h(u)}, where u ranges over all cycle vertices. After
the completion of Algorithm BRANCHES the values h(v) will have been computed
for all cycle vertices v. In this section we present a fairly complex, but
linear, algorithm which can be used to determine for each cycle vertex v,
max {d{u,v) + h(u)} over every other cycle vertex u. In particular, Algorithm
CYCLE_ECCENTRICITY determines the value CYCLE E(v) = max {d{u,v) + h{u)} for
every u £ RANGE(v), for every cycle vertex v. A second application of
Algorithm CYCLE ECCENTRICITY with the cvcle in the reverse orientation will

suffice to determine a second CYCLE_E'(V), in terms of the remaining cycle



vertices u not in the original RANGE(v).

Given these three values, the eccentricity of v is simply e(v) = max
{h(v), CYCLE E(v), CYCLE_E'(v)}.

The primary reason why the center of a unicyclic graph can be found in
linear time lies in the fact that all of the values CYCLE_E(V)} can be found
in linear time. Thus, Algorithm CYCLE_ECCENTRICITY should be presented with
some care.

Consider Figure 2, which illustrates the cycle of a unicyclic graph with
the cycle vertices numbered 1 to 8 and with each vertex labelled with its
height, as determined by Algorithm BRANCHES. Beneath the cycle we have listed
the vertices in order, followad by an additional half-cycle since the repeated
vertices 1, 2, 3, 4 lie within the indicated clockwise range of vertex 8.
Beneath these wvertices we have listed their heights; and beneath this we
have listed their ADDED_HT, which equals the sum of the height plus the index
of each vertex. These ADDED HT are very useful in computing the cycle eccen-
tricities. Norice for example that ADDED HT(B) - 5 = d4(5,8) + h(8), i.e.
d(u,v) + h(u) = ADDED HT(u) - v for u ¢ RANGE(v).

Notice also that since 18 is the largest value of an ADDED HT in Figure
2, which occurs for example at vertex 8, we can immediately conclude that the
cycle eccentricities of vertices 4, 5, 6 and 7 must be 14, 13, 12 and 11,
respectively, since vertex 8 lies within the (clockwise) range of vertices
4, 5, 6 and 7.

It is this important observation that permits us to calculate the
cycle eccentricities in O(N) time instead of the anticipated O(NZ) time. For
all we need to do is to bucket sort into decreasing order ADDED_HT values
{into at most 2N buckets), and to determine the cycle eccentricities once and

for all from this list of ADDED_HTs.
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Figure 2

Hotice furthermore two additional consequences of this ordering of
ADDED-HTs. First, vertex 1l (a copy of vertex 3) also has a maximum ADDED-HT
of 18, from which we can infer cycle eccentricities of 11, 10, 9 and § for
vertices 7, 3, 9 and 10, respectively. However, we are o¢nly interested in
vercices 1 to 8 and can ignore the cycle eccentricity values for vertices
9 and 10.

Second, having processed vertices 11 and 8, each having ADDED-HTs of 18,
we could next process vertex 3 having ADDED-HT of 13. From this we would

normally conclude that the ¢ycle eccentricities of vertices 1, 2, 3 and 4



were 12, 11, 10 and 9, respectively. However, the cycle eccentricity for
vertex 4 had been previously determined (by vertex 8) to be l4. Thus, in
processing vertex 5 we need to know which vertices within its range have
already had their cycle eccentricities determined.

We can do this using a simple scheme of pointers and the observation
that at any time the vertices whose cycle eccentricities have been determined
occur in consecutive blocks of length at least LM/%J . In our example, after
vertex 1l has been processed, the block of completed cycle eccentricities
include vertices 7, 8, 9 and 10. After vertex 8 has been processed, this block
includes vertices 4 - 10, and finally after vertex 5 has been processed, this
block of determined cycle eccentricities includes vertices 1 -~ 10 (and the
algorithm is essentially finished).

In order to calculate the cycle eccentricities, in addition to the
linear array ADDED HT, we will require four linear arrays. The length of all
five of these arrays will be M + Ly/ZJJ a length sufficient to contain the
cycle vertices with a half-cycle "wrap-around”. We will assume, for the
remainder of the discussion and for the details of the algorithm, a clockwise
orientation from v, to v, ., for all i > 1 and from Vy o vy

The array ADDED_HT is defined as follows: for 1 < I <M, ADDED HT(I) =
HI(v) + Ij and for M < T < M+ [M/2], ADDED_HT(I) = HI(v__.) + I, where
HT(I) is obtained from Algorithm BRANCHES.

The second array, FIRST(I), is used to denote the smallest index of any
vertex in whose range vertex I occurs. For each I the value of FIRST(I)
(recalling the clockwise orientation) is max {1, I - Lﬁ/ZJ .

The third array, CYCLE _E(I), will contain the calculated value of the
cycle eccencricity for each vertex I.

The remaining two arrays prevent more than one cycle eccentricity from

being calculated for each cycle vertex and insure that all calculations will



be done efficiently. The first array, RIGHT END, contains pointers into

the second, LEFT_END, which alsc contains pointers. The two pointers LEFT_END(I)
and RIGHT _END(I)} are used to encompass a block of vertices, inciuding I,

which are known to already have been assigned a cycle eccentrieity, Imitially,
RIGET END(I), for all I, will be set to zero to serve as a flag.

In order that the largest cycle eccentricity is calculated for each cycle
vertex during the first (and only) calculation, the values in ADDED HT will
be sorted in descending order and the vertices processed according to this
order.

Let vertex T be the next vertex to be processed. Either there exist
vertices between FIRST(I) and I~l that have not had their cycle eccentricities
calculated or there do not. The vertices within these boundaries which have
not had their cycle eccentricities calculated exist as a single consecutive
block.

The determination of whether or not there are any such vertices involves
checking the pointers LEFT END(I-1) and RIGHT_END(I-1). 1If RIGHT _END(I-1) = G,
then the cycle eccentricity of vertex I-1 has not been calculated. Calculation
continues leftward (toward lower 1) until a vertex K is reached such that
either K < FIRST(I) or RIGHT_END(K) # 0. If RIGHT_END(I-1) = J, for example,
then LEFT END(J) indicates a leftmost vertex in a block of vertices containing
vertex I-1 for which cycle eccentricities have been calculated. Two possible
situations arise, depending on the values LEFT_END(J), FIRST(I) and
RIGHT_END( LEFT_END(J) - 1) # 0, then no cycle eccentricities will be calculated
using vertex L. Otherwise, the cycle eccentricities of the vertices W,

FIRST(I} < W < LEFT_END(J) - 1 will be calculated as CYCLE_E(W) = ADDED HT(I) - W.

The pointers in RIGHT_END and LEFT END will be updated to reflect the
new knowledge of the calculated cycle eccentricitcies.

We next present Algorithm CYCLE ECCENTRICITY which calculates the cycle
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eccentricity of each cycle vertex v. It is phrased in terms of a clockwise
orientation of the cycle which directs each cycle vertex I te its neighbor I+l and
vertex M to 1. Obvious changes are necessary for the counterclockwise

orientacion.

Algorithm CYCLE ECCENTRICITY. Given an oriented cycle with heights RT(I)

associated with each vertex I, having M vertices; the orientation is assumed
to be clockwise directing vertex I to I+l and vertex M to 1l; te calculate the
cycle eccentricity CYCLE_E(I) of each vertex I.
0. [Initialize]
for I+ 1 toMdo
ADDED HT(I) + HT(I) + I
FIRST(I) + max {1, T - [M/2]}
RIGHT _END(I) + O
od
for I + Ml to M/2 + M do
ADDED_HT(I) « HTI(I-M) + I
FIRST(I) « I - [M/2] +1
RIGHT _END(I) + O
od
1. [Sort the vertices according to ADDED_HT]

Bucket (radix) sort the vertices in decreasing order according to ADDED_HT

into array LIST

(28]
»

{Process the vertices in LIST]
for J« 1 to M + [M/2] do

I + LIST{(J)
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if RIGHT_END(I-1) = 0
then START < T - 1
else START « LEFT_END( RIGHT END(I-1) ) - 1
£i

LOOP « FALSE

W + START

while ¥ > FIRST(I) and RIGHT END(W) = O do

CYCLE_E(W) < ADDED_HT(I) - W

LOOP + TRUE
W+W-1
od

if W < FIRST(I) and LOOP
then LEFT_END(START) < W + 1
else if LOOP

then LEFT_END(START) + LEFT_END(W)

sStop.

6. Calculation of the center of a unicyclic graph

After applying Algorithm BRANCHES once and Algorithm CYCLE_ECCENTRICITY
twice, (using the two different orientations), to a unicyclic graph G, we are
in a position to finish the calculations necessary to determine the center of
G. The calculations of the eccentricities of both the cycle vertices and the
tree vertices are only partially completed.

The eccentricity of each cycle vertex is the largest of: the two cycle

eccentricity values calculated by Algorithm CYCLE_ECCENTRICITY and the value
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HT.

The determinarion of the eccentricities of the tree vertices of a unicyclic
graph 1s a bit invelved. We are given, by Algoritchm BRANCHES, che height HT(W)
of each tree vertex W. From Algorithm CYCLE ECCENTRICITY we know the eccen-
tricities of the root v of each branch Tv of the unicyclic graph. By working
down each branch f£rom this root toward the endvertices we can then determine
the eccentricity of each tree vertex.

In particular, we can determine the eccentricity of tree vertex I, if
we know (i) the height (HT(I)) of I; (ii) if there are at least two subbranches
of height HT(I), (NO_HT(I)); (iii) the eccentricity of the parent of vertex I,
(ECC(PARENT 1)), where PARENT I = UNICYCLE(I); (iv) if chere are at least two
branches or paths leaving the parent which have this eccentricicy,
(NO_ECC(PARENT 1)); and (v) the second longest path from PARENT I,

(MEXT _ECC(PARENT_I)), disjoint from the first.

Figure 3 illustrates the four possible cases that arise in determining

the eccentricity of a tree vertex I. Denote a vertex farthest from I as

an eccentric of I. 1In case (a), I is not on the path from PARENT I to its

eccentric. 1In case (b}, PARENT I has two eccentrics; therefore, I is not on
the path to one of them. 1In case (¢), I is on the path to PARENT I's
eccentric; however, PARENT I has a next-eccentric which is as far from PARENT I
as HT(I).

We next present Algorithm CENTER to find the center of a unicyelic graph.

Algorithm CENTER. To find the CENTRE of a unicyclic graph UNICYCLE[L..N])

having the cyele [1..M].
0. [Perform initial calculations]
execute Algorithm BRANCHES

execute Algorithm CYCLE_ECCENTRICITY twice using the clockwise and



(a)

(c)

parent-i

if ECC(PARENT-I) = 11

then ECC(I) = 12

if ECC(PARENT-I) = 10
and NO-ECC(PARENT-I) = 1
and NEXT-ECC(PARENT-I) = 9

then ECC(I) = 10

Figure 3

(b) if ECC(PARENT-I) = 10
and NO-ECC(PARENT-I) > 2

then ECC(I) = 11

(d) otherwise

ECC(I) = 9

13
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counterclockwise orientations of the cycle; storing results in
CYCLE_E(I,1) and CYCLE E(I,2
(Calculate the eccentricities ECC(I) of the cycle vertices I; iteratively
determine the center]
MIN < N
CENTRE + @
for T« 1 to M do
ECC(I) + max {HT(I), CYCLE_E(I,1), CYCLE_E(I,2)}
NEXT ECC(I) <+ second largest of {HT(I), NEXT_HT(I), CYCLE E(I,1),CYCLE E(I,2}
if NEXT _ECC(I) = ECC(I)
then NO ECC(I) + 2
else NO_ECC(I) « 1
fi
if ECC(I) < MIN
then MIN < ECC(I)
CENTRE «+ (I}

else if ECC(I) = MIN

then CENTRE ~ CENTRE \J (I}

£i

od

[Calculate the eccentricities of the tree vertices; iceratively determine

the center]

for I + M+l to N do

PARENT I + UNICYCLE(I)
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if ECC(PARENT I) > 1 + HT(I)
then [Figure 3, case (a))
ECC(I) <1 + ECC(PARENT I)
NO_ECC(I) « 1
NEXT_ECC(I) ~ HT(I)
else [ecc(parent-i) = 1 + ht(i)]
1f NO_ECC(PARENT I)> 2

then [Figure 3, case (bh)]
ECC(I) + 1 + ECC(PARENT I)

NO_ECC(I) « 1
NEXT ECC(I) + HT(I)

else [no-ecc(parent-i) = 1 and ecc(parent-i) = 1 + he(i)]
if NEXT ECC(PARENT I) = HT(I)
then [Figure 3, case (c)]
ECC(I) « 1 + HT(I)
NO_ECC(I) + 1

NEXT_ECC(I) + HT(I)

else [Figure 3, case (d), next-ecc(parent-i} = hc(i)]

ECC(I) + HT(I)
if NEXT_ECC(PARENT I) = ECC(I) - 1
or NO_HT(I) > 2
then NO_ECC(I) + 2
else NO_ECC(I) + 1
£1

NEXT_ECC(I)*+max (NEXT HT(I), NEXT_ECC(I)}

1

2



if ECC(I) < MIN
then MIN + ECC(I)
CENTRE + {1}
else if ECC(I) = MIN

then CENTRE ~ CENTRE U {I}

7. Complexity of Algorithm CENTER

The intialization step in Algorithm CENTER involves the application of
two other algorithms. Algorithm BRANCHES essentially contains two simple
loops and is clearly O(N). The analysis of Algorithm CYCLE-ECCENTRICITY should
be done more carefully. The initialization is clearly linear in the length
of the cycle. The bucket sort can be performed in O(N) time since the
possible values for the heights of the cycle vertices certainly must be in
the range 0 to N. Each cycle vertex will be processed exactly omce from LIST.
Because of the value storad in RIGHT-END no verctex will have its cycle
eccentricity calculated more than once. Because of the two levels of pointers,
the determination of which vertices have already had their cycle eccentricities
caleulated can be made in constant time. Hence, Algorithm CYCLE-ECCENTRICITY
can be performed in O(N) time. Steps 1 and 2 in Algorithm CENTER are clearly
linear in the number of vertices. Hence, the center of a unicyclic graph can

be determined in time linear in the number of vertices.
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