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Abstract

The following two guestions can be asked about AVL search trees:

(L} Given any integer k, does there exist an AVL tree with two leaves at
level numbers differing by k?

(2) what is the minimum number of nodes such a tree can have?
It is shown that a subset of the Fibonacci search trees have the

minimum number of nodes among all AVL search trees with two leaves at level

numbers ditfering by k.
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1. 1Introduction

Binary search trees are well recognized as a means of representing
and handling symbol tables and file directories. TFile directories, in
pérticular, are characterized by numerous insertions and deletions, requir-
ing constant updating to the data structure. The optimal binary search
tree, with file names at the leaves, is the complete binary tree (all
leaves occur at the same level) or the extended binary tree (all leaves
occur at most two levels). These trees are "balanced” since the searches in
these trees are all the same length (plus or minus one question). Various
procedures have been proposed for maintaining some resemblance of balance
in the search tree despite the updates; these include height-balanced
(AVL [1] or Foster's generalized version [5]), weight-balanced [2],
bounded-balance (8], brother trees [9] and power trees [7].

Baer and Schwab have performed comparative studies on several of
these balancing procedures. They recommend using AVL trees if the number
of queries per insertion is greater than 3 but less than 8. It is this

class of trees which we characterize further.

2. AVL search trees
Let a binary tree T be defined by a tuple < Tl' 1, Tr)- where Tl
designates the left subtree and Tr designates the right subtree. Define
the level li of vertex 1 in T to be 1 if i is the root of T or one plus
the level of its parent otherwise. The level of a leaf of T corresponds
to the number of questions that must be asked in order to find the leaf
during a search, i.e. the length of the path followed in searching.
Measures performed on the above-mentioned balancing algorithms are typically

given in terms of maximum (worst-case) path length or average (expected)

path length.



AVL trees, named for Adel'son-Vel'skiy and Landis, are designed to

restrict the heights of the subtrees of each node. The height of a node
is zero for a nonexistent node in the tree or one greater than the

maximum of the heights of all the children of the node. The height of a

subtree is the height of the root of that subtree. A binary search tree
is an AVL tree if the difference between the heights of the left and right
subtrees of each node is either -1, 0, or 1. Figure 1 illustrates two

AVL trees; the first is also an extended binary tree.

Figure 1.

Figure 1(b) leads one to ask the following interrelated questions
about "how far from optimal" an AVL tree can be:

(1) Given any integer k, does there exist an AVL tree with two

leaves at level numbers differing by k?

(2) What is the minimum number of nodes such a tree can have?

Let us reconsider the definition of an AVL tree. The definition is
expressed in terms of the difference of the level of a rtoot r and the
level of the deepest leaf in t's left subtree and the level of the deepest
leaf in r's right subtree. This, of course, says nothing about the level
of any other leaves in these two subtrees. However, since the definition
asserts that this restriction is true at each node, these other leaves
will have their level restricted because they are also in the subtree of
another node which is a descendant of r. It is these leaves which help
to produce the differences in levels as desired in Question (1).

In order to describe those AVL trees which satisfy questions (1) and

(2), we first define the class of binay search trees known as Fibonacci




trees. These trees were first used as a searching technique by Ferguson
[4]. The Fibonacci trees are so named because their construction is

similar to the construction of the well-known Fibonacci sequence 0,1,1,2,
3,5,8, ... where each term in the sequence is the sum of the previous two.

Formally, the i-th Fibonacci number ®i = ¢ + 0

i-1 so2 for i > 3. 1If

we let FO denote the empty binary tree, and F, denote the binary tree with

1

one node, then the (i+l)-st Fibonacci tree Fi is defined to be

<Fp2'1’Ff1

tree of height h, Fh, has the fewest nodes among all those AVL trees having

? . It has previously been shown in [6] that a Fibonacci

height h. We show that a subset of the Fibonacci trees are those AVL

trees which have leaves at level numbers differing by k, for any k, and

which also have the fewest number of nodes.

We first present an alternative constructive definition of Fh which

shows a closer relationship to the Fibonacci numbers. Fh can be constructed

which does not have

from Fh—l by joining a new leaf to every node in Fh—l
2 children. The number of leaves added to Fh~l will be ¢h~l + ¢h—2’
where @h-l denotes the number of leaves in Fh—l and wh—2 denotes the

number of nodes with one child. This alternative definition more clearly
demonstrates that a Fibonacci tree is an AVL tree.

We will use this second definition to show the minimality of the
Fibonacci trees in meeting the condition of the difference in the levels
of the leaves. The first seven Fibonacci trees are presented in Figure 2.
Some of the nodes have been labeled to help identify the construction
according to the second definition. In particular, nodes d, e, and f
have been added to nodes a, b and c, respectively, in F3 to create T,.
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Nodes g, h, i, j and k have been added to nodes a, d, e, ¢ and £, respec-—

e T



tively, in F, to create F5,

4

Figure 2

We see that the differences between the minimum and maximum level of
leaves is 1 in both F3 and F4’ but is 2 in FS. We consider the data in
Table 3 to predict when this change will occur in larger Fibonacci trees.

We denote a node with only one child as a gingle parent, sp. The

minimm level of a leaf in Fh is

1+ min { min {lv} , min {lsp} 1,
where v is taken over all leaves in Fh—l and sp is taken over all single

parents in But

Fh-l'

min {1 ) = min {1 1},
sp W

where w is taken over all leaves in Fb— when h > 5. This Follows since

2

a leaf in Fh_2 will take two iterations to create both its children (where

its children will have the same level in the tree).

Table 3

Since the minimum level is incremented only every other iteration

and the maximum level is incremented every iteration, the difference between

these two levels in Fh is L-Egi.J, where i is the number of iterations

required o create Fh from FO' But that means i is just h.

Thus, it follows from the construction that FZk-l is an AVL tree with

two leaves at level numbers differing by k. Furthermore, F3 and F5 are

clearly the AVL trees with the minimum number of nodes for which this is




true when k = 1 or 2. By induction, using the second construction of the
Fibonacci trees, this can be shown true for all k. The number of nodes in

FZk—l is easily shown to be:

2k+1

I ¢

i=1 ?
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