Cis-TrR-80-14
OPTIMUM DOMINATION IN UNICYCLIC GRAPHS*

by

Sandra Mitchell Hedetniemi**

Abhstract

A dominating set is a set of vertices of a graph such that every
vertex not in the set is adjacent to a vertex in the set. The problem of
determining a2 minimum dominating set in an arbitrary graph is known to be
NP-complete. An algorithm which is linear in the number of vertices is
presented for unicyclic graphs. This result extends the classes of graphs

for which linear algorithms exist, i.e. trees and interval graphs.

= Research supported in part by the National Science Foundation under
Grant MCS-79-03%13.

** Department of Computer and Information Science, University of Oregon,
Eugene, OR 97403.

1. 1Introduction
Let 6 = {V,E) be an undirected graph. A vertex v ¢ V{G} is said to

dominate, or cover, all the vertices adjacent to it. A dominating set

D g V(G) is a set of vertices such that every vertex not in b is adjacent

to a vertex in D. The domination number d{G) is the minimum number of

vertices in a dominating set. If a graph represents a network of housing
neighborhoods, then a dominating set of vertices represents the minimum
number of neighborhoods which must have extra facilities such as parks,
elementary schools or fire stations. The problem of finding & minimum dominating
set in an arbitrary graph is known to be NP-complete (cf. Garey and Johnson
[3]). Furthermore, Booth [l] has shown that the problem is still NP-complete
for the class of chordal graphs. However, Cockayne, Goodman and Hedetniemi
{2] have shown that when chordal graphs are restricted to trees, a solution
can be found in time linear in the number of vertices. Natajaran and
White (5] present a linear solution to the generalized problem for trees
where the vertices and edges are weighted and the dominating set has minimum
weight among all dominating sets. Slater [6] generalized the domination to
r-domination. The r-domination problem requires that each vertex either
be in the set or within distance r to a vertex in the set. Kariv and
Hakimi [4] extended Slater's linear solution to a linear solution on trees
with both vertex and edge weights.

Booth [1) also has a linear solution to the domination problem on a
subclass of planar graphs, interval graphs. In this paper, we present 2

linear solution for another subclass of planar graphs, unicyclic graphs.

2. Uniecyelic graphs

A unieyclic graph is a connected graph with exactly one cycle. Trees

and unicyclic graphs have similar recursive definitions. A graph G has a

recursive definition if G can be constructed by a finite number of applica-
tions of operations chosen from a set O of operations, beginning with a

graph 99 chosen from an allowed set G, of initial graphs. For the class of

o
trees, G0 = (single edge} and 0 = {join a new vertex to an existing vertex!}.
The class of unicyclic graphs is obtained using the same set of operations
but changing G0 = {cycles}.

We will refer to those vertices in go of a unicyclic graph, i.e. those

vertices on the cycle, as cycle vertices. All other vertices in the unicyclic

graph will be called tree vertices.

The similarities in the recursive definitions of trees and unicyclic
graphs suggest that the procedure for finding a dominating set in a unicyclic

graph should be similar as well.

3. Mixed domination of unicyclic graphs
Cockayne, Goodman and Hedetniemi [2] solve the mixed domination problem
on trees, a generalization of domination. Let the vertices of a graph G be

partitioned into three subsets, V., V_ , and V,, where V. contains free

1 2 3 1

vertices, V7 contains bound wvertices, and V3 contains regquired vertices

A mixed dominating set in G is a set S of vertices which contains all

required vertices, i.e. V_ £ S, and which dominates all bound vertices, i.e.

3
every v ¢ V2 iz either in S or adjacent to a vertex in S. Free vertices

need not be dominated by S; however, they may be used to dominate bound

vertices. The mixed dominating number md(G) is the minimum order of a mixed

dominating set in G; such a set is called an md-set. If all the vertices
are bound, then md{(G} = d(G).

The correctness and construction of their algorithm is based on a theorem
which allows them to prune an endvertex from a tree. A vertex in a graph

is an endvertex if it has degree one. However, the proof of the theorem

makes use of no other property of the tree; hence, the theorem holds for any
graph with an endvertex. The theorem which follows is the theorem of

Cockayne, Goodman and Hedetniemi with the word tree replaced by the word

graph.

Theorem 1. (Cockayne, Goodman and Hedetniemi). Let G be a graph having free,

bound and required vertices, V,, V., and V

1 5 3 respectively. V 2*3. Let v

be an endvertex of G which is adjacent to u.
(i) ifve Vl' then md (G} = md(G-u},

(i) if v e V2 and G' is the graph which results by deleting v and
relakeling u as "required", then md(G) = md(G'),
(iii) if v ¢ V3 and u g v3, then md({G) = md(G-v) + 1,

{iv) if v e V3 and u ¢ V3, and if G' is the graph which results from

deleting v and relabeling u as "free", then md(G) = md(G') + 1.

The construction and correctness of the mixed domination algorithm for
a unicyclic gfaph with free, bound and reguired vertices is based upon the
pruning as defined in Theorem 1. After all endvertices of a unicyclic graph
have been iteratively removed, then the intial graph 99 {(which is a cycle)
will remain. The following three results specify the correct processing of

this cycle. The proof of the last result is obvious and is therefore omitted.

Lemma 2. Let C = [l..k] be a cycle having k vertices; which are free, bound
and required. Let v be required and adjacent to u and w. Then md{C) =
md(C') + 1, where C' = C - v with u and w relabeled free if they are not
already reguired.

Proof. Since v is required, it must be included in the dominating set.

any vertices adjacent to v, i.e. w or u are dominated by v; hence, they

will only be included if alsoc required. e

Lemma 3. Let C = [l..k] be a cycle having k vertices; vertices are only free
and bound. Le£ v be a free vertex adjacent to vertices u and w.
{1) If either u or w is free, then md(C}) = md(C-v).
{(ii) 1If neither u nor w is free, then md(C} = min {md(c-v),.md(C')+l},
where C' = ¢ - v with u and w relabeled free.
Procf. Let v be a free vertex in a cycle with only free and bound vertices;
let u and w be adjacent to v.

(i} Without loss of generality, assume u is free. If w is also free,
md(C) = md(C-v). Therefore, assume w is bound. Let x be the other vertex
adjacent to w. At most one of x, w, or v must be taken since v is free; and
at least one of these vertices must be included in the dominating set since
w is bound. Hence, md(C) = md(C-v) since omitting v will not result in a
larger dominating set.

(ii) Both u and w are bound and must be dominated. Either they are
dominated by including v in the dominating set or they are not. If they
are dominated by v, then this is equivalent to adding 1 to the domination
number, removing v and relabeling u and w as required. If they are not,

then this is equivalent to just removing v. ot

Lemma 4. Let € = [l..k} be a cycle having k bound vertices. Let ve C.
Then md(C) = md{(C'), where C' = C - v and the two vertices adjacent to v

have been relabeled free.

Algorithm DOMINATION is immediately suggested by Theorem 1 and Lemmas
2, 3 and 4. For completeness, we first present a shortened version of the
tree domination algorithm of Cockayne, Goodman and Hedetniemi as a subalgorithm

which prunes an endvertex v and updates the label of u adjacent to v in G.

Algorithm PRUNE {(V, U, G, DOM)

case label of v:
free: G « G -V
bound: u is relakeled reguired
G+G -V
required: if u is bound
then relabel u as reguired
£i
DOM + DOM |} {v}
G+G -~V

endcase. -

We next present a subalgorithm which processes the cycle after a
vertex has been removed. The resulting graph is a path which is processed

by repeated calls to PRUNE.

Algorithm PROCESS_PATH (G, DOMG)

while there exists an endvertex V adjacent to U in G do
PRUNE (V, U, G, DOMG)
od

[let V be the vertex which remains]

if V is bound oxr V is required

then DOMG + DOMG U {V}

£i, -]

Algorithm DOMINATION. Given a unicyclic graph G with free, bound and

required vertices, find a2 mixed domination set DOMG with minimum cardinality.

0. [Prune endvertices]
REQUIRED PTR + @
FREE_PTR + @
DOMG « @
while there exists an endvertex V adjacent to U in G do
if V is required
then REQUIRED PTR + V
else if V is free
then FREE PTR + V
£i
£i
PRUNE (V,U,G,DOMG)
od
1. [Process the cycle vertices)
if REQUIRED PTR # ©
then [let U and W be adjacent to V = REQUIRED PTR and apply Lemma 2]
poMG + DoMG \J {v}
label u and w as free
G +G-v
PROCESS_PATH (G, DOMG)
else if FREE PTR ¥ @
then {let U and W be adjacent to V = FREE PTR; apply Lemma 3]
if U is free or W is free
then G« G -V
PROCESS_PATH (G,DOMG)
else H+ G - V with U and W relabel free
DOMH < DOMG

PROCESS_PATH (H, DOMH)

G+G -V

PROCESS_PATH (G,DOMG)
DOMG ~ smaller (DOMG, DOMH }
i
else (G contains only bound vertices; apply Lemma 4 with
U and W adjacent to arbitrarily chosen V]

G +G -V with U and W relabeled free

PROCESS_PATH (DOMG,G)

Algorithm DOMINATION is easily shown to be linear in the number of
vertices. Each tree vertex is processed exactly once, using the constant
time execution of Algorithm PRUNE. The choice of the first cycle vertex to
be processed can be made in constant time and its subsequent processing
requires constant time. If this first cycle vertex chosen is free, it
requires the remaining cycle vertices to be processed twice rather than once.
In either of the three cases the processing of each of the remaining cycle
vertices requires constant time. Hence, since each vertex is processed in

constant time, Algorithm DOMINATION is linear in the number of vertices.

Acknowledgement. The author would like to thank Steve Hedetniemi for his

numerous useful discussions about the correctness of the algorithm.

4. References
[1] Booth, K. Private communication, 1980.
[2] Cockayne, E., Goodman, S. and Hedetniemi, S. T., A linear algorithm

for the domination number of a tree, Information Processing Lett.,

4(1975), 41-44.

[3]

(4]

(5]

{6]

Garey, M.

and Johnson, 5. Computers and Intractability: a guide to

NP-completeness theory, (W. H. Freeman and Co.: San Francisco}, 197%.

Kariv, O.

and Hakimi, S. An algorithmic approach to network problems I:

the p-centers, SIAM J. Appl. Math., 37(1979), 513-538.

Natajaran,

K. and White, L. Optimum domination in weighted trees, Infor-

mation Processing Lett., 7(1978), 261 - 265.

Slater, P.

446-450.

R-domination in graphs, J. Assoc. Comput. Mach., 23(1978),

