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I our presentablon we will employ ke slandard nolions ofF &

Hamiltonian c¢yele, which 18 a cvcle concaasting of all vertices of &

cgrarh, and an ordered rooted lLyee, [2])., a 2lane embedding of a Uree

with a hode designated as a root.. To distinguiioh bnqucn cloements af
onterplanar graphs and Lhe acsocialed willh {hem Lrees we will refer Lo
vertices of the graphs and nodes of the trees.  For a non-roolt node u
of a rooted tree, the first node on the unigue path bto Lhe roobk is
called the father of u, qf_ whom u it a gon. All the other nodes
adjaéent to this fatper node and not: on the path are called brothors
OGS 1. The counter-clockwise ordering of brothern an vicewed from thely
common father determines aeniority, with brothers encountered :n thelr

increasing  seniority. My particular combedding in the plane oF an

ovkterglane graph definea an ouborplance grapn.,

£. O ity of £inding a minimum domin.g

We will now show that. the problem of Sfinding whether o dominai.ng
eyctle of at most the given sire oasts dn o general grach oo
NP-complete. We will doemonastrate it by proving that cven For  grapha

restricted to planar grapha the problem 12 likeowiose hard.

Problem @ Dominating cyele in a planar graph, PLAN.DOM.CYCLE.
Inatance: A planar graph € and an integer k.
Queskion: Is there a simple cycle of G of Tenglh B oy lesa which

dominates CG7



Page 4

We first observe that the problem i obviously in NP fince the
domination can be checked in time polynomial in the oize of the given:
graph. M non-deterministic algorithm would involwe, for a given grarh
G and an 1Integer X, chooaing a sequence of K verticen and checking
that they constitute a dominating aycle of . This decistion problem
has  an  immediate  polynomial time reduction to the optimization type
rroblem of finding a minimum size dominat.ing oygle of .

We wi;l PYOVE thp NP-completeness of PLAN.DOM.CYCOLE by a reduction
from PLAN.HAM.CYCLE, the problem of delermining the existence of a
Hamiltonlian cycle 1in a planar graph. This latter problem is known Lo

e NP-complete, [1].

2roof We present a polynomial tiume construciion which for any instance
of PLAN.BAM.CYCLE gives an inatance of PLAN.DOM.CYCLE with the sane
anawer as the original problem.  Ieot C(V,EY be a planar graph wih
n verticesz and m adges for which {he existeonoe of a Hamiltonian
cycle 15 to be establishaed. We conotruct a planar graph G/=(V’ R’
with n+3m vertices and 7m adges. Desides the vertices v/ oin v/
corresponding direct:ly to‘thn vertices in vV, {v':u in V}QV’, For

each edge e=(u,v) in II wo introduce verticea ul v/

¢ Ve - and w% with

the following adijacencies in &7
feur sl 3o €ur wle ), (ule ,Wie )k V) (VW) (Ve W) L ku v )R

The construction is illuatrated in Figuare 1.
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Saaure 1 Conatruction raducing PEANCBAG.CVOLN Lo PLANLOM . CYCLN

e

We prove now thats the graph GF han a aonbnabldng oye e ofF uee o 3 FF
¢ has a Hamiltarian oyele. Mo ihis cnd, we ohow thal a domshalsng
cyele an GF read only use Lthe verlbices v ool G which are cozies of
Lhese in O, Ary  oaominalang oyvoele of GF has o conlain all such
vertroes v0oin order Lo cover Phe vor Loes {v’.w’lv 1Y, ¢ an H}.
Taty alao, any  daleh Cyele ooplaining veriaocss v oy oW can e

Shortoned by droppemng henie wibhowd s ritg the  damanation

LYOpEerty. Thus, o dominalang dvele (vq ,UE ,-..,VQ1> g O
cdeltermines o Hamillondian  ovele (vt,vz,...,vn> of G. The
implication i 1 he ol hetr direation v rmmediate. Since

PLAN.EAM.CYCLE 1o NP-compieto, a polybomial Lime algorithm  solving
PLAN.DOM.CYCIF  would lead Lo a polynomial Bime aigorithm solving
any problem in MNP Together waih Uhe previons oboervalion, Lk

proves thatt PLAN.LOM.CYCLE 10 NP o compebae, 7

__________ Led with an

oulerglane ¢iagh

Since attempts to Find an officient algorithm FoOr aalving
PLAM.DOM.CYCLE may be a hopeleos tank, We witl reatry i of emry abbontson

o a asubclans of planar grapha, outerplanatr  graph. Firar o we Wil
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define a tree representing thedc graphs and glve an algorithm
computing this representation from a wlanc embedding of a glven

oﬁterplanar graph.

Given a two-connected outerplane graph G, the acsociated glane tree

T¢G) 1s defined as follows. ™e inkerna

1 nodes of T¢(G)Y correswond Lo
Lhe interior faces of G, the finite regionz of the plane bound by G’
edges. The external nodes of T(G) all correspond to the exterior face
0nf G. Edges of T(G? correspond uniquely to the edges of G, ana Lwo
nodes of T(G) are adjacent 1ff the correaponding two faces of G share
an  edge. Thus, edges incident to the external noded of T¢(G)
correspond uniquely to edges of the Hamiltonian cycle of G. Becaus

every vertex of G lies on the exlerior face, il is easty Lo see that
T(G) has no cycles. The non-aeparabilily of G ensures connectedness
of T{G), which ia thuge a tree. RWe want 1o prescrve the information of
the embedding of G and thercefore require that the noden adjacent: to an
interior node of T{C) be orderced in  the same manner as the

corresponding faces of G. 4 n
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our algorithin for donstructing the  azzocial.cd trﬂe £0Y & given
outerplane graph G asoumes a plang adijacency xgnzgﬂguiatign OFf G in
which, for each vertex v, the verlices adjacenl lo it are listed in
the counter-clockwice order. Such a reprecentation can be produced by
any outerplanarity testing algdrjthm ¢for an officient. oubkerplanarity
test: asee, for instance, [47). Tha aluwilhm given below inoa
slimpliification of an algorithm which Find: the dual graph of a  given
plane graph presented in [5]. Our algorithm traverses the Hamiltonian
cycle of G creating new nodes of T(C) and "pruning® the interior facesn
OFf G, all vertices of which have been traversed, by merging them into
vhe exterior face of C. The  prumng  operation is Facilibtated by
maintaining a astack of vartices with deyree greater than 2. The
algorithm produces a rooled remresenlalion of T¢G), which recuires a
astack  of nodes which are the youngest among their caiblings. A lLincar
list conslating of nadesn in the postorder traverzal of ") allows for
casy computation of links within "families" (fathoer, vounger and older
srother, youngest and oldest =@on). The resulbing ordered tree is
rooted at the leaf (extgrna] noda) corresonding Lo Lhe edae of G
ciooing the Hamiltonian ceycle. Wo asoume olerations Purth, Pop, andg
Yopo oon the stacks, InsertNew  {(oreating a new node ), Link&Sons, and
IinkBrobher on the list, and Next, Delete, and Dogroc on the plane

adijacency lisk.

Algorithm 3.1 ASSOCINTED TREE

Trrel: Plane adjacency representalion of an oulerslare gragh G
and an initial vertex .
Quipuk: Ordered rooted Lree repsresctalion of the associated Lreo TG .

Method;
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{0. Tnitialize] InsertNew(x); Push{x,Notack): u:=MNext{n);

Push(a,Vstack); Delete(as,u): nurront:du}

ri. Prune while current#e do
P1.1 a path ) while Degrec{ourrent){. do
o U InsertNow(s); n=Nexi(eurrent y;

Delele{current,u);

a2 current:=u; [end of wathl

1.2 ¢lean-up repeat [until no back cdges from current
L2l . . L:=Tap{Vstack);

1 1.2.2] 1f Next{t)=currcent. ihen

1L2.2.1 InsertNew(:) Deletefcurrent,t);
l}.:4.2.21 lankSongsix); Pop(Notacky;

1 1.2.2.37 £ Degrecdt 30 then Pushx,Natack);

rend of psanang g Face!

M P £ if b= ¢:-L:<f Degrecit) -0 then
or Pop¢Vatack); Ljnknrothaer);Pul(h
until =0 oy Degroc(l)y ) ;
1.3 current |} £ Dogrectouryent:) 2 ko
1.2.1] Push(ourrent ,Valachy;
M.2.2]3 InseriRew(x); Push(x,Natacky;
r1.3.31 u:=Nexi:(current ) ; Deletateurrent,uy;
11.3.4] currqnt:ru;

rend highcr degroc:

fend of pruning)

Hed
Inoertdx);

r2. Root 3

LinkSona{x);

fend of ASSOCTATED TRER:
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The algorithm 1 1llustrated in Appendix by 1t oqecutlion on the
grarh in in Figure 2. For discussion of correcthness and complexity of

the original algorithm the reader io reforrod to 167,

4. Minimal dominating cubgraph of an oulciilanc graph

We are now ready to compuke a  minima) dominatting  covele of an
outerplanar graph represented by ita asnociated tree.  This exlends
the results of Proskurowski [3) which deal  with maximal  outerplanar
graphs. We observe that reprasenting a maximal outerplanar grawh by
its asgociated tree, as defined abave, 1o ecquivalent to its
representation by the weak dual tree wilth inglinations of noden, used
in {21, In a rooted associated tree, the poziation of an internal node
Jmzlies  its inclination by considering position of  its Sibling,
relative to that of their common father. Using the asoociabted Srec to
represent an outerplanar  graph, we  can apply  the teohniqne  of
"pruning" this tree to obtain a representat.ion of a minimal domipabing

subgraxh of the graph.

Let us call a node of a tree pendant 1 all Lut one of 1640
nelghbors are  leaveon. In the associated tree ™) of o given
outexrplane graph G, pendant nodes corredspond 1o pendant  fFacen of @,
which have only one (bage) adge in common with the rest of Fhe gragh.
Pruning a pendant node u in ™CG) (i.e., delelbing all adjacent  lcaves)
corregsponds to deletion of all vertices of {he correaonding face of G
except: for the base vertices., This is cquivalent. to merdging  of  the

pendant face 1nto the edterior face, which results in a  new

outerplanar graph G/gC, represchted by the pruned associated tree.
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For the remainder of our papcr we will Qiscuns only two--connected
outerplanar graphs. 1et us define after {21 a faﬁ in.an outerplanar
graph G to he & maximal triangulated cubgraph F of G such that ail
triangles of TP have one vertex in common and an edge incident to this
vertex iz the only cdge F has in common wilh tho reat of G. HWe call
thin edge bage of the fan. N pivoel vertex of the base dominates all
vertices of FP. Thercfore, the naodes of  the anoociated  troe THE)
corresponding  to the faces (ﬁrianglnﬂ) of a fan can be pruned without
a corresgonding lnsg of this dominating vertad. fan is  reprasented
i rooted T¢(G) by & maximal path of internal nodes with only left (or
with only right) brothers, ending with a node with two exbternal sons

(oee Figure 3¢a)). The node on the other ond of thia path is incident

o the edge representing haze of the fan.

(&)

Figure 3 (a) A Fan, (k) Q& guadrangle  with Fans, ard bhelit

representatlion in the aocooclated breco.

v addition to jpruning nodes representing a fan, we will also prane
nodes  which represent coertain  quadrangle  facoen of an out.arplandl
graph.  Mjacent to such & face may be al most Lwo fans  comslebely

deminated by vertices of the only edge the face had i commen With ©ha
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rest of the graph (3cé Filgure 3(L) ). Verkiocen of “uch o sabgraph,
which we call a ghell, are dominated by the vertices: of ¥hjs base odge
ol Lthe shell. These vertices have Lo be included in 4 dominating
2—connected  subgraph of O, RWe atate formally propertics of thene

subgraphs of outerplanar graphs.

Lemna 4.1 Given an outerplanar graph G, nol. & Fan or  a ohell, every
2-connected, dominating, oubterplanar subgraph of C must conbtain a
pivot vertex of every fan and both basic vertices of aovery ohell of

G.

Proof Let H be a fan or a shell of G. vVortices of I ean be dominated
either by vertices of ita base, or by other verkjces of B incluading
a non-basic vertex u. In the latter case,  any  dominating  vertex
sett of G has £o contain al=o a vertex voin G-H. The base af H
separates u and v, and thus  any  2-connected Subgraph of G

containing both u and v must also contain vertices of the base of

H. =]

Fans and shells of a  givern outerplanar grayph G can be casily
recognized 1n the associated Lree T(G). The pruning algorithm, to be
presented shortly, processes godcs of the troe by marking the wpendant
nodes and pruning the leaf nodes of  the currend tree, i.e., the

subt¥ee of not yet prurned vertices of TIG). The mark of a node
carries  information about the ohape of it wruncd oubbreo: MEil) i
the mark of a leaf; T(rianglc) ia the mark of a node carrcaponding o

4 pendant triangle face; Lieft) and REighi) mark roapectavely noden
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corresponding to triangles of a fan dominated by the left and  the
1right bagsic vertex; Blase) wmarka a node which reprecents a £ace
cont:aining basic vertices of a fan or a ohelli.  Theoe definitions and

Lemma 4.1 justify the following atatement..

Lemma 4.2 Given an ounterplanar graph € and a current subtree 77 of 16
asoocliated trec T(O). A pendant: node of T 10 marked o rofleck
domination of vertices of G depending on nayiin of  jta neldghbors,
('Ihe pcnditjonﬂ‘ below indicato all markoed neighbors, aong, oF the
pendant node. )

(1) a T-node haa both sons marked N;

(11) an L-node has two song:  left marked Lo or T, and right marked

e

(111) an R-node has two gona: lefl marked N, and right marked R or
T;

(iv) a B-node results from one of  Lwo o canoa. tax) T8 has  bwWo
non-conmpatible fongs, i.e., marked Ioand R, T and R, L and 7, o
T and T for left and rightt son, roopectively. () T hant three
sons marked by elither of the following:  NONJK;  T,NN; TN

L,N,N; L,N,T; N,N,R; N,N,T; ",N,R; I,N,R, for lcoft, middlc,

and right con marks, respoctively.

After the pruning of T(G) haas been compzleled, Lhe final  current
tree T represents a minimal, Z-connccted, domipating, indaced,

outerklanar subgraph G of G. G/ 14 minimal in the senoe that no adge

or vertex of 1t can be  roemoved withoul areatling a graph which oo

cilher separable, or not. an induced subgraph of G, or nolt  dominabing
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Mlgorithm 4.2 Minimal Dominating Cycle of an Outerplanar Graph.

Input: The tree T assocliated with a given cmbedding of the outerplanar
graph G.
Output: The tree T/ assocliated with an induced outerplanar subgraph Gf
£ G dominating C.
Method: [prune leaves of the cﬁrrent tree marking the pendant nodes)
[0. Initialize] set T to T;
Mark leaves of T/ by Mil;
[1. Prune ] While there 18 a pondant: node w aof T/
Wwith all =ons nmarked
Cane markss of son:s: of w [as in Iémmn a.27
(1): oet mark of w to Trianglic;prunce its song;
(1i): met mark of w to Toft; prune song oF w;
(iii):oet mark of w 1o Right; prune sons OfF w;
(1v): et mark of w o Dase; srune aons of w;
other: delete marka of oona of w;
tend of pruaning’

[end of MINIMALS

Theorem 4.4 Given a tree T ascociated with an outerplance gragh 6, the

L1

subtree T/ of T output by Algorithm 4.3 is associated with a
minimal, 2-connected, dominating, induced, outerplanar subgraph Gf

of G.
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Proof By ILemmas 4.1 and 4.2, vertices of ¢/ dominate  C. Removal  of
any single vertex of Gf which ia nott a4 tip of 4 rendant triangle
face of G’ would dectroy nonaeparability of G, A pondant triangle
face of G’ must be represanted in T by a node whose con has been
marked Bagse, or else the face wonld have been. pruncd during
execution of Algorithm 4.2 (by ITemma 2.2).  An cuch, its non-basic
vertex dominates come deleted verkex of O not dominatied  hy any
otther vertex of_G’. Simil@rly, removal of the cxterior edges of a
pendant quadrang}e Face of G/ would affect a vertex necescary o
dominate some deleted vertex of G, as the node of T/ reproaenting
such a face must have a son marked Dane in order to be preaerved.
No  edges of a  larger pondant face of G/ can be removed withont
impairing domination of fsome of ito vertices. Thun, G/ is

minimal., 0

Not. every minimal 2-connected dominatiing outorplanar subgraph f of
C bhas the least number of vertices (and thi, he shortoest Bamiltonian
cyele).  Tn a special case of a quadrangle face of a sholl dominating
the rest of the graph, there may be an adjacent tao it triangle Face
210 dominatiing the graph, see Figure 4{a). This ia, however, the

only such case.,

T e e
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Figure 4 t(a) An outerplanar graph ¢ and (L) 4o aooociated  tree

TY(G) with hodes marked by Algoritlm 4.3,

Theorem 4.5 The Namiltonian coyecle of the dominating outerplanar
'ﬂubgraph G of O produaced by Algorithm 4.3 o t£he  miniroxn
dominating cycle of G, with the possiable citcepbion of the Following
LI, G conaists of  a triangle faoe whonse sides are bace: of a4

shell, and fwo mutually non-compatible (posaibly cmphy) fano.

Proof If G/ 1g a triangle, 1t 1o also a nmaisnum dominad ing oyolc of .
I 67 consists of more Lhan one face, {then all Lhese Faces are
necessary to dominate G, or clze they Lad  been pruaned (Theoren
A I TE G 10 a eyele of cizne groator than 4, Lhen iy soparctes
any other faces of G which could Joinlly dominate 7. Only o 7
which 2o a four-cyele can bBe dominatoed by an addacent to it face of
amaller size. This smaller  face, €, ia a triangle and  muast
deminate the rest of €, which 1g alao dominated by G/, Thin i
poszible only 1f C 10 adjacent to twa fans, any  of  which can be

crppty or a triangle, dominated by the base of 67, o
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Thusg, except for an easlily verifiable casc, Algorithm 4.3 oomputes
correctly a minimum dominating cycle of a qgiven outerplanar gragh.

This computation ia efficient.

Theorem 4.6 Algorithm 4.3 has the time complexity proportional to the

size of its inpul graph.

o

Proof The associated tree T(G) of an oulerpdlanar gravh G hag  les
nodes  than G hqs adges.  BEach node of T(G) ia referred to at mont
twice: once wheéen assigned mark, and sccond bime when thio mark  io
examined, and the nede is procesced, both constant time opcrations,

Once the mark is deleted or the node in pruned, the node io never

considered again.  bBence, the linear complexity, Y

A example of marks produced by Algorithm 4.2 1o given in FPigure 4.
A resulting marking of  the asoociatled Lree and Lhe correszonding
minimam dominating cyecle are indicated by bold linea. Another order
of  pruning the associated tree could  vield a minimal dominating

Four-cyele.

4. Berooting an ordered trce

Aan elaboration of Algorithin 4.3 computing a minimal dominating
cycle of G by pruning its azsoclated troe T(0) may use the rooted
representation of T(G), as the one produced by Algorithm 2.1. In such
case, 1t would be advantageous to have the rool. node of T(G) reprasent
4 face of a dominating outerplanar induced subgraph of . i this

section, we discuss the necessary rerooting algorithm (oF .

~
(4
-
~
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If we wilsh o ¢hange the lodatlon of the root ofF an ordered troe oo
that the plane embedding of the tree will not chnnée, wWe have Ho
"reroot™ it. This operation involves changing the direcction of father
links  for a number of nodes.  Tn many reopecta it resicmbles a seorics
of rotations (see, for instance, [2]1) of the relevant  noder. Deaide
the c¢hange of the father link, the affected lists of brothers miok be
upddted and the seniority order reevaluatad. Wa glve the rermotiﬂq
algorithm assuming associated Qith each vartex: doubly linked list of
nong in the seniorigy order, pointers to the oldest and youngest cons,
rointers to  older and younger brothors, and the father pointer (for
the root this pointer is null). The algorithm izs executed as a series
of rotations of nodes on the path from the 0ld root node toward the

newly designated one. Figure 5 illuskrates an individual rotarion.

Cigure L Changing position of the root from v to ite neighbor u.
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Our 1nvestigations have heen spurned by Stove Nedetnicem: /o
Srrent research problems (S.T.DNecdotnicmt,  unpablisahed memoy . The
cnatruction used in our NP comzlotioncs:: sroof ro:altias in G

connected  graph. T would e antercsting to euplore complexity of

SCodominating cycle problem £For 2 connectoed oroisme.
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LENCEE

-y

(1L B

.
M.R.CGarey and D.S.Johnson, Comgular:s: ancd intractabality,  Frecman,
HE TN

D.R.Knuath, The Ark of Compnter Programmilyg, vail LT, dnd edition,
Addirson-Waoley, 1973,

ALProskurowski,, Minimum dominating oycles i 2 Lraos,  Ink, b

Comp.  Info. Sci.. 8, 5(1973), 405-417.

M. Bynroe, Outerplanar  graphi: charact erviratiaon::, Lesiiing,
coding, and  counting, Dull, ncad. Portor, S¢h., Sor,  Ses

Marh., 26 (1978), G75-GB4.
M.M.Bynro, i oefficient oyele veotor space g gorithn  For  Jisting
sl eyelen of  a planar qragh. Proc, Int. Call. Oraph Theat y

Saeged 1978, North-Dolland, 1980,



Mppendix

Pacge 20}

Computation of the asscciated tree of the outerplanc graph given in

Figure 2

Assuming the initial vertex 1, the atacks Vatack and Natack

have the following contents {(top of the astack

side).

current Vetack

2

2
L

81}

6

7

12

1

5

3

[ #%]

w
93]

56

Notack

:._\

)
O

jul

fa]
el
*h

L
)
th
tal

)
w
H

el
O

a n

iz

-
’

on

the

right:--hand
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Computation of the assoclated tree of the outerilane graph given in
Figure 2. Assuming the initial vertex 1, the atacks Votack and Motack
have the following contents {(top of the stack in on the righlt-hand

aide ).

current Votack Natack

2 1 a
3 13 ac
4
5 a
ac
i ER aec s
o 1t 3Ib6aefyg
K
B
= a e &
i a e
a R
W a e
13 a
a '
13

—
B
[ul)



