CIS~-TR-80-16

VERTEX AND EDGE DELETION ALGORITHMS
FOR TREES*

by
Sandra Mitchell Hedetniemi**

Stephen 7. Hedetniemi**

Abstract

In KD[79] Krishnamoorthy and Deo presented some 17 vertex-deletion
problems which are NP-complete for arbitrary graphs. In addition they showed
that many of these problems remain NP-complete when restricted to either
planar graphs or bipartite graphs. This paper is an attempt to complete one
aspect of their study by considering the algorithmic complexity of the same
problems when restricted to trees.

We show that most of the corresponding edge deletion problems for trees
have already been solved algorithmically, each in linear time, yet apparently
none of the vertex deletion problems have been considered. We present linear

time solutions to most of these problems.

* Research supported in part by the National Science Foundation under
Grant MCS-79-03913.

% Department of Computer and Information Science, University of Oregon,

Eugene, OR 97403.

1. Introduction

Given an arbitrary graph G = (V,E) the general vertex- (edge~) deletion

problem can be stated as follows: determine the minimum number of vertices
(edges) that can be removed from G so that the remaining graph has property II.
Typical properties 1l that one might consider are that a graph be (i) planar,
(ii) acyclic, (iii) bipartite, (iv) complete, (v) lamiltonian, or (vi)} Eulerian.

The vertex-deletion problem can also be stated as a maximization problem
as follows: determine the maximum number of vertices in a set S such that the
subgraph induced by S has property 1.

Unfortunately, for most of the interesting properties I that one might
want to consider, th; corresponding vertex—-deletion problems tend to be
NP-complete. For example, in KD[79] Krishnamoorthy and Deo present some 17
examples of vertex-deletion problems which are NP-complete. Other examples
can also be found in Garey and Johnson's book GJ{79]. Krishnamoorthy and Deo
also point out that many of the same vertex-deletion problems remain NP-complete
when the arbitrary graphs are restricted to be either planar or bipartite.

The purpose of this paper is to see what happens when these vertex- (edge-)
deletion problems are further restricted to trees. We will show that most of
the corresponding edge~deletion problems for trees have already been solved,
although they are stated in the form of vertex-partition problems. However,
it appears that the vertex-—deletion problems for trees have not been studied.

We present linear algorithms for sclving most of these problems.

2. Edge-deletion problems for trees
It is easy to see that when restricted to trees the general edge-deletion
problem is equivalent to the following general vertex-partition problem:

partition the vertices V of an arbitrary tree T into a minimum number of

subtrees each of which has property 1. 1In particular, the edges of T which
join vertices in different subtrees of such a partition are those whose deletion
produces the desired partition.

Although the properties Il of being planar, bipartite, Eulerian or acyclic
have no particular interest in the context of trees, the following properties

are of some interest:

(i) is a path;

(i1) is a star;

(iii) has diameter < k;

(iv) has maximum degree (A) < k;

(v) is a complete graph, i.e. consists of a single vertex (Kl) or two

adjacent vertices (Kz);

(vi) is a path of length < k; and

(vii) dis a star with < k vertices.

As indicated in Table 1 algorithms for solving the edge-deletion problem for
the first six of these properties have already been constructed.

The b-matching algorithm for trees in GHT{76] solves problems 5, 1 and 4
above for the b-values of 1, 2 and k, respectively. The algorithm for the dom-
ination number of a tree in CGH[75] solves problem 2 above. Kariv and Hakimi
KI[B0] have an algorithm which can be used to solve problem 3 above, although
Farley, Hedetniemi and Proskurowski FHP[80] independently obtained an algorithm
for solving this problem directly. Any algorithm for problem 3, incidentally,
also solves problem 2 when k = 2.

Finally, in HH[79} an algorithm is given for decomposing an arbitrary
tree into a minimum number of paths, each of which has length < k., All of
the above mentioned algorithms are linear in that they require 0(n) time for

a tree with n vertices.

&

To the best of our knowledge, an algorithm for selving the edge-deletion
problem for property 7 above has not been constructed, although one can be
constructed by modifying the vertex-deletion algorithm for property 7 in this

paper.

3. Vertex—deletion algorithms for trees
We conclude this paper by presenting solutions to each of the above-men-—

tioned vertex-deletion problems for trees, as indicated in Table 1.

Problem 4: Delete a minimum number of vertices from a tree so that each of

the remaining subtrees has maximum degree < K.

The following two lemmas provide the basis for a simple algorithm for

solving this problem,

Lemma 1. Let u be the root of a subtree Tu of a tree T (possibly T = Tu)’ and
let the degree of every other vertex in Tu be < K (cf. Figure 2). Then there
exists a minimum set of vertices S containing vertex u, whose deletion from

T results in a collection of subtrees, each of which has maximum degree < K.

Figure 2

Lemma 2. Let u be a vertex in a tree T which is adjacent to a vertex v, let

'l‘v be the subtree of T - (u,v) vooted at v, let the degree of v in Tv be K

and assume that the degree of every other vertex in Tv is < K (cf. Figure 3).
Then there exists a minimum set of vertices S containing vertex u whose deletion
from T results in a collection of subtrees, each of which has maximum degree

< K.

Figure 3

Algorithm SUBTREE. To find a minimum set of vertices whose deletion from a

rooted tree T results in a collection of sub-trees, each of which has maximum
degree < K; the rooted tree T with N vertices is represented by the parent
array TREE[l..N]; the array DEG[1l..N] is used to describe the final disposition
of each vertex as follows: DEG(I) = K+l means that vertex I is to be deleted;
otherwise DEG(I)} = J means that the current degree of vertex I is J.
[Initialize all vertices to zero]

for T+ 1 to N do

DEG(I) « O

od

[Process each vertex from N to 2]
[get the parent of vertex V]
U « TREE(V)
[remove vertex U if DEG(V) = K]
case DEG(V):

0 < DEG(V) < K-1: if DEG(U) < K then DEG(U) + DEG(U) + 1 fi

K 1 DEG(U) «+ K+ 1
= K+1 : [do nothing, vertex V is to be removed]
endcase

od.

[At this point vertex 1 will already have been processed]

It is easy to see that Algorithm SUBTREES not only solves Problem 4, but

by setting K = 1 it solves Problem 5 and by setting K = 2 it solves Problem 1.

Problem 3: Delete a minimum number of vertices from a tree so that each of the

remaining subtrees has diameter < K.

The correctness of Algorithm SUBDIAMETER for solving this problem is

based on the following simple lemma.

Lemma 3. Let u be the root of a subtree Tu of a rooted tree T (possibly Tu =T)
and let the descendants of u in Tu be Ugs Uyy veny U Furthermore, let

diam (Tu) > K and let diam (Tu.) <K for 1 <i<m Then thére exists a
minimum set of vertices S cont:ining u, whose deletion from T results in a
collection of subtrees, each of which has diameter < K.

Proof. Let S be a minimum set of vertices whose deletion from T results in

subtrees of diameter < K and assume that u 4 5. Consider § (} ‘Iu. Clearly,

| s 0 Tu| > 1, since diam (T) > K. But then §' =5 -5 {\ T, U {u)is
a minimum set of vertices containing vertex u whose deletion from T results

in subtrees of diameter < K.

Alporithm SUBDIAMETER. To delete a minimum number of vertices from a tree so

that each remaining subtree has diameter < K; a tree with N vertices is
represented by a parent array TREE [1..N]; the array LONG [1..N] records for
each vertex v, current value of the length of a longest path from v to an
endvertex in the subtree Tv rooted at v; the array DIAM [l..N] records for
each vertex v, the current value of the diameter of the subtree Tv; when the
algorithm is finished all vertices v with a value DIAM{v) > K are to be
deleted.
[Initialize diameters and longest paths to zero]
for I+ 1 to N do
DIAM(I) < O
LONG(I) <= O
od
[Process each vertex from N to 2]
for V + N downto 2 do
[get parent of v]
U + TREE(V)
(update diameters and longest paths]
if DIAM(U) < K and DIAM(V) < K
then DIAM(U) <« max {DIAM(U), DIAM(V), LONG(U) + LONG(V) + 1}

LONG(U) + max {LONG(U), LONG(V) + 1}

od.

fAt this point vertex 1 has been processed]

In addition to solving Problem 3, Algorithm SUBDIAMETER also solves

Problem 2 when the value of diameter K = 2.

Problem 6: Delete a minimum number of vertices from a tree so that each of

the remaining subtrees is a path of length < K.

Rather than stating a lemma concerning the correctness of the following
algorithm (which can easily be done); we will instead describe in more detail
how it works.

With ‘each vertex v we associate a variable STATE(v) having one of four

possible values:

STATE(v) = 0 means that vertex v has not yet been considered:

STATE(V) = 1 means that vertex v has one path attached to it of
length < K; the length of this path is given by the
variable LENGTH(v);

STATE(v) = 2 means that vertex v has two paths attached to it, the
sum of whose lengths is < K;

STATE(v) = 3 means that vertex v is to be deleted, in order to

produce subtrees which are paths of length < K.
Using the parent array representation of a tree, we proceed right-to-left
across the array examining in turn the state of each vertex v together with
the state of its parent vertex u = TREE(v). As in Algorithm SUBTREES, Algorithm
SUBPATHS 1s simply an iteration containing one CASE statement, depending on

the pair of values (STATE(v), STATE{u)).

Algorithm SUBPATHS. To delete a minimum number of vertices from a tree so

that each remaining subtree is a path of length < K; the tree is represented

by a parent array TREE [1..N]; the array STATE [1..N] is used to describe the

final disposition of each vertex, where STATE(u) = 3 means that vertex u is
to be deleted.
[Initialize each vertex]
for I <1 to N do STATE(I) <« 0 od
[Process each vertex]
for V « N downto 2 do
[get the parent of vertex v]
U <+ TREE(V)
[apply the case statement]
case { STATE{V), STATE(U)):
(0,0): STATE(U) <« 1 [U now has one attached path]
LENGTH(U) <« 1
(0,1): B LENGTH(U) = K
then STATE(U) + 3 [delete U]
else STATE(U) +« 2 [U now has two attached paths]
£i
(0,2): STATE(U) < 3 [delete U]
(1,0): 4if LENGTH(V) = K
then STATE(U) + 3 [delete U]
else STATE(U) + 1 fU has one attached path]
LENGTH (U) + LENGTH(V) + 1
£i
(1,1): 4if LENGTH(U) + LENGTH(V) + 1 > K
then STATE(U) + 3 [delete U]
else STATE(U) <« 2 [U has two attached paths]
fi

(1,2): STATE(U) + 3 [delete U]

10

(2,x): S$ATE(U) + 3 [delete U]
(Otherwise): [do nothing]

endcase

Problem 7. Delete a minimum number of vertices from a tree so that each of

the remaining subtrees is a star with < K vertices.

As in Algorithm SUBPATHS, an Algorithm SUBSTARS can be constructed for
solving Problem 7 which is a simple iteration containing a single CASE-statement.
We associate with each vertex v a variable STATE(v) having one of five

possible values:

STATE(v) = 0 means that vertex v has not been encountered yet;
STATE(v) = 1 means that vertex v has a single vertex attached to it;
STATE(v) = 2 means that vertex v has > 2 vertices attached to it;
in this case the variable SIZE(v) records the number
of vertices attached to it;
STATE(v)} = 3 means that vertex v is to be deleted in order to leave
stars with < K vertices;
STATE{v) = 4 means that vertex v is an endvertex of a star whose

central vertex is a descendent of wv.
In the interest of brevity, we only provide the corresponding CASE-
statement for this algorithm; the rest of the algorithm is identical to that

in Algorithm SUBPATHS.

CASE (STATE(V), STATE(U)):

STATE(U) *
STATE(V):

0

4§

ENDCASE.

0 1
STATE(U) <1 STATE(U) « 2

SIZE(U) «1 SIZE(U) « 2

STATE(U) + 4 STATE(U) + 3

if SIZE(V) = K STATE(U) <« 3

then STATE(U) <+ 3

else STATE(U) < 4

fi

[do nothing]) [do nothing]

STATE(U) * 3 STATE(U) <« 3

if SIZE(U) = K

then STATE(U) « 3

else SIZE(U) « SIZE(U)+1

£i

STATE(U) « 3

STATE(U) « 3

[do nothing]

STATE(U) + 3

{do nothing]

[do nothing]

[do nothing]

[do nothing]

[do nothing]

STATE(U) « 3

STATE(U) + 3

STATE(U) « 3

[do nothing]

STATE(U) « 3

11

12

One final peint concerns the construction of an edge-deletion algorithm
which leaves stars with K wvertices. Such an algorithm can be constructed
which is very similar to Algorithm SUBSTARS. It too contains a CASE-statement
with 16 possible pairs of values for (STATE(V), STATE(U)). We leave the

details to theinterested reader.

4. Summary

We have shown that most vertex and edge deletion problems can be solved
algorithmically in linear time for trees, althougn for bipartite or planar
graphs Krishnamoorthy and Deo KD[79] have shown they are usually NP-complete,

An interesting by-product of this study is the realization that most of
these algorithms for trees, using parent arrays, can be described as a simple
iteration containing a single CASE-statement, which compares a finite-state
value of a vertex with that of its parent vertex. It would be interesting to
know how widely this CASE-statement approach can be applied to tree algorithms

in general.

5. Bibliography
CGH[75] Cockayne, E., Goodman, S. and Hedetniemi, S. T., A linear algorithm

for the domination number of a tree, Information Processing Lett.,

4 (1974), 41-44,

FHP [80] Farley, A., Hedetniemi, S, T. and Proskurowski, A., Partitioning
trees: matching, domination and diameter < k, Univ. of Oregon Tech.
Rept. CIS-TR-80-2, 1980.

GHT[76] Goodman, S., Hedetniemi, S.T. and Tarjan, R., B-matchings in trees,

SIAM J. Comput., 5 (1976), 104-107.

GJ[79] Garey, M. and Johnson, D., Computers and Intractability: A Guide to

NP-completeness, Freeman and Co., San Francisco, 1979,

KD[79]

KH([79]

HH[79]

13

Khrishnamoorthy, M. and Deo, N., Node-deletion NP-complete

problems, SIAM J. Comput., 8 (1979), 619-625.

Kariv, 0. and Hakimi, S., An algorithmic approach to network problems

I; the p-centers, SIAM J. Appl. Math., 37 (1979),513-538.

Hedetniemi, S. M. and Hedetniemi, S. T., Broadcasting by decomposing
trees into paths of bounded length, Univ. of Oregon Tech. Rept.

CS-TR-79-16, 1979.

Property I

is a path

is a star

has diameter < k

has 4 < k

is a Kl or a K2

is a path, length < k

is a star, < k vertices

Problem

Remove a minimum number of

edges

vertices

from a tree so that each remaining

subtree has property I

GHT[76]
CGH[75]
Ki{80], FHP[80]
GHT[76]
GHT[76]

HH{79]

< this paper >

Table 1.

{a)

A

this

this

this

this

this

this

this

paper >
paper >
paper >
paper >
paper >
paper >

paper >

(b)

