October

CS-TR-80-18
LITTLE BIG LISP
by

Jed B. Marti

Department of Comp. and Inf. Science
The University of DBregon
Eugene, Oregon 97403

ABSTRACT

1980

This manual describes the Little Big LISP system for the

Z80 microcomputer. The manual describes data
defined functions, operating procedures, a compiler,
parser, and support packages.

structures,
an RLISP

Page 2

INTRODUCTION

Little Big LISP is a subset of Standard LISP C13d
implemented for the Z80 microprocessor. If runs in a minimum
of sixteen thousand bytes of storage and most effectively with
thirty two thousand or more. The system consists of the
following:

1. An interpreter

2. A program to load precompiled object files ("fast 1load"
files)

3. A compiler for generating either fast load files or
directly executable code

4, An arbitrary precision integer arithmetic package L2131
5. A parser for a subset of RLISP L[31

This manual is divided into five sections, the first describing
data structures, the second the functions of the base system,
the third the operating system interface. The fourth section
describes the compiler. The fifth section describes the RLISP
parser and gives examples of its use. Separate manuals
describe the wuse of the system with the various operating
systems that support it.

CHAPTER 1

DATA TYPES

1.1 ITEMS

An item is a 16 bit quantity. The last 12 or 13 bits
constitute the data portion of the value and the first 3 or 4
bits, its tag, indicating type and current accessability from
the base systen.

Bit Use
0 Used by garbage collector to indicate
item is in use.
1-2 Data type:
00 - Dotted-pairse.
01 - Identifiers.

10 - Integerse.
11 - Strings and function pointers.

3 Subtype bit for strings and function
pointers.

1.2 DOTTED-PAIRS

Up to 8192 dotted-pairs (32k bytes) may be referenced by the
little big LISP system depending on the amount of available
storage. A minimum of 300 pairs are required for the base
system to operate. To address a full Bk pairs requires that
the data portion of a dotted-pair pointer be an index intoc the
"vector™ of dJdotted-pairse. Dotted-pairs are two contiguous
items, four bytes arranged in ascending storage order:

DATA TYPES

Page 1-2
fmm—————— fmmm————— pm—————— tm———————- +
l CAR | CDR i
| byte 1 | byte 2 | byte 3 | byte 4 |
fm—————— S — fm—————— pmmm————— +

To compute the real address of a dotted-palr from its item
pointer, the value portion of the item is shifted left tuwo bits
and the resulting value is added to the base address of the
pair space.

Dotted-pairs are entered and printed in the same form as
Standard LISP. The 1list representation of dotted-pairs is
permitted as well as the use of “ to represent the QUOTE
function.

1.3 IDENTIFIERS

Identifiers are the same as those defined in Standard LISP
except that all identifiers are interned and may not be removed
from the object list (the symbol table in this case). The
system requires a minimum of 160 identifiers to operate and may
reference up to eight thousand of them.

Identifiers have 1 to 255 character print names. The
first character must be alphabetic or any other character
preceeded by the ! escape character. Following characters may
be alphanumeric or other characters prefixed by the escape
character. There is no 1*RAISE flag, lower case characters are
not converted to upper case.

Each identifier is two items in the symbol table, the
first being a pointer to the string by which the identifier is
known to the outside world called the print name. The second
is a pointer to values associated with the identifier called
the property list. The symbol table is a vector of these
pairs.

The property list is implemented as a list structure with
the following attributes:

l. An atom is a flag (see the FLAG, FLAGP, and REMFLAG
functions)

2. A dotted-pair is an indicator-value pair (see the GET,
PUT, and REMPROP functions). There are three special
pairs for global values and functions, these being (GLOBAL
« Xxx), (EXPR . xxx), and (FEXPR . xxx)

DATA TYPES

Page 1-3

Thus the function REVERSE, a compiled EXPR has as its
symbol table entry (note that $6003 is a hexadecimal quantity
described later):

Fmm—————e Fm——————— $mmm———— pmm—————— +

i 1 i |]

+—- + - + ——— e ————— +
Y"REVERSE"Y™ (print name) ((EXPR . $§6003))

1.4 INTEGERS

Integers are stored as 13 bit two’s complement values. They
conform to the Standard LISP conventions for fixed numbers in
the range -4096 to +4095,

1.5 STRINGS

Strings are arbitrary character sequences from 0 to 255
characters in length. Strings serve as print names for
identifiers or as constants. A string pointer is a 12 bit
offset into the string space which is a single large character
vector. The minimal system requires a few more than 1200 bytes
of string space. Each string is a byte containing the number
of characters in the string followed by that number of
characters. Thus the string "REVERSE":

e s Bt ot ok +—+—+

|7IRIEIVIEIRISIEI
—————— +=+—+

Strings are entered surrounded by "“s. Unlike Standard LISP,
"*s are not allowed within the string.

DABA TYPES

L™

Page 1-4

1.6 FUNCTION POINTERS

Since compiled functions may occur almost anywhere in storage
and thus their addresses 1look 1like an arbitrary item, real
addresses of functions are hidden in the regl address table. A

compiled or primitive function is normally addressed indirectly
through this table.

$m—————t
| l
=== + STDAC
| | St PR ™ == Ty
] | | | REVERSE
REVERSE function +===-—% | | code
pointer 1 ! { 1
tm———— + I 5
56003 ———===D>|§TDAC | ~=———— + .
$m———— + .
| |

Function pointers may not be tead in but are displayed as 4
hexadecimal digits preceded by a dollar sign. The number in
the table may not be accessed except internally.

1.7 STACKS

There are two internal stacks. One contains stack frames,
displays for local variables in compiled functions. The other
contains a pushdown stack for return addresses and intermediate
values. The stack frames are in ascending storage order and
the pushdown stack descends. When they cross or are about to
cross the system stops.

To assure that only valid ditems on the stack for the
garbage collector forces the following requirements:

1. All values less than 8192 (31FFF) are pointers to
dotted-pairs.

2. All greater than 8192 are atomic. Thus, the first 8k
of storage must not have routines which will have return

addresses on the stack when the garbage collector might be
called.

DATA TYPES

Page 1-5

We have made this possible by putting dotted-pair space and
stacks in the low Bk of the system. Since functions are stored
above the B8k boundary, their return addresses Llook 1like
constants and are not examined by the garbage collectore.

CHAPTER 2

FUNCTIONS

The functions that follow are presented in the format of the
Standard LISP Report T[11]. Except for the low level and
compiler support functions the function descriptions have been
copied from the report.

2.1 LOW LEVEL FUNCTIONS

The following functions are accessible by the user but are not
part of Standard LISP.

15PA(x2integer)
Type: EVAL, SPREAD.
Using the last 8 bits of the integer X, print these bits
as an ASCII character.

156A0)zinteger
Type: EVAL, SPREAD.
Read the next character from the input file and return its
character value as an integer from 0 to 255.

GETPIS{(X:id)iany
Type: EVAL, SPREAD.
Return the property list for the identifier X. X 1is not
type checked for being an identifier.

BRUTP1S(x:id,PROPsany)
Type: EVAL,SPREAD.

Replace the property list of the identifier X with PR{OP.
X is not type checked for being an identifiere.

FUNCTIONS

Page 2-2

CATCH(X:anv):any
Type: EVAL, SPREAD.

Evaluate the argument X (X is preevaluated because

CATCH

is an EXPR) and return this value. If a THROW occurs

during this second evaluation, return the value of

argument of THROW.

IHROW(X:any)
Type: EVAL, SPREAD.

the

Cause a jump back to the most current CATCH .- restoring
stack pointers and the 1like to the environment of the

CATCH. The value returned by CATCH is the value of

the

actual parameter X. A THROW which is not in the scope of

a CATCH is caught by the Standard LISP reader.

NCONS(Xsany):;dotted-pair
Type: EVAL, SPREAD.
Returns (X . NIL).

ZCONS(A:anv.Bianv)idotted-pair
Typte: EVAL, SPREAD.
Returns the dotted-pair (B . A).

RECLAIM()sNIL
Type: EVAL, SPREAD.

Forces a garbage collection.

NTOKQ) :atom
Typet EVAL, SPREAD.
The NTOK function reads the next token from the

input

stream and generally returns it. The token {(if any) is

stored in the global variable TOK!* and its type
integer) in the variable TYPE!l*,

IYPES* TOK1* Meaning
0 nnn Integer
1 id Identifier
2 * (
3 * .
4 *)
5 string String
6 id Single character

(an

converted to identifier

(* means "has no defined value™)

ORDERP{Azanv.Bianvliboolean
Type: EVAL, SPREAD.

FUNCTIONS

Page 2-3

A 16 bit comparison of the values of A and B are made.
This 1includes the tag fields. ORDERP returns T if A is
less than B in the range 0 to 65535, The function is
useful for determining the order of items within a3 space.

2.2 COMPILER SUPPORT FUNCTIONS

The following functions are used by the compiler to create
absolute code or by the fast load program to load files.

BPUI(X:jiptedger)
Type: EVAL, SPREAD.
The last 8 hits of the integer X are stored at the
location in the global function pointer BPTR and the value
in BPTR is incremented by 1l.

CPLUS(X:integerl:worgd
Type: EVAL, SPREAD.
Add the 12 bit sign extended value in X to the current
value in the global function pointer BPTR and return this
16 bit value which must not be placed anywhere but in
binary program space. CPLUS is used to create absolute
jump addresses within a functione.

LEFT(X:integerd):integer
Type: EVAL, SPREAD.
Return the leftmost B8 bits of X as a positive integer 0 to
255.

MKCODE(C(): function~-pointer
Type: EVAL, SPREAD.

Create 2 new function pointer and store the real address
in the function pointer BPTR in the real address table for
the new function pointer. This function is used to enter
a compiled function in the real address table.

MEGLOB(X:dotted-pair):list
Type: EVAL, SPREAD.
X is the dotted-pair (GLOBAL . xxx). Create a 1list of
the address of xxx as two integers 0 to 255 which are the
two bytes in reversed otrder of xxx.

MKREF(X3anv):list
Type: EVAL, SPREAD.

FUNCTIONS

Page 2-4

This function is the same as MKGLOB except that X can be
any object. If X is a dotted-pair (or list), it is added
te the global uninterned variable MLIST so that it will
not be removed by the garbage collector. MKREF is used by
the compiler to generate the addresses of quoted items.

RIGHT(Xsanv):integer
Types EVAL, SPREAD.
Return the rightmost 8 bits of what ever value X is as an
unsigned positive integer in the range 0 to 255.

WRUILX:anv)
Type: FVYAL, SPREAD.
Same as EBPUT except that the two bytes of X are placed in
reverse storage order.

2.3 ELEMENTARY PREDICATES

Functions return T when the condition defined is met and NIL
when it is not.

ATOM(Uianyliboolean
Type: EVAL, SPREAD.
Heturns T if U is not a dotted-pair.

CODEP(U:ianv)iboolean
Types: EVAL, SPREAD.
Returns T if U is a function pointera.

CONSTANTIP(U:anvlsiboolean
Type: EVAL, SPREAD.
Keturns T if U 1is a constant ({(a number, string, or
function pointer)e.

EQQU:any,¥iany)shoolean
Type: EVAL, SPREAD.
Feturns T if U points to the same object as V. Unlike
Standard LISP, fixed integers (not BIGNUM®s) are EQ@ if
they have the same value.

EQN(U:any,¥ianvi:boolean
Type: EVAL, SPREAD.
Returns T if U and V are EQ. In Little Big LISP, EQ and

FUNCTIONS Page 2-5

EGN are the same.

EQUAL(Uzanv.VYianylibgolean
Type: EVAL, SPREAD.

Returns T if U and V are the same. Dotted-pairs are
compared vrecursively to the bottom levels of their trees.
All atoms must be EQ (EQN is the same as EQ).

EIXP({Us:anyl:boplean
Tvype: EVAL, SPREAD.,
Returns T if U is an integer (a fixed number).

IDP(U:anv)ibogolean
Typet FEVAL, SPREAD.

Returns T if U0 is an identifier.

MINUSP(U:anyliboolean
Type: EVAL, SPREAD.

Returns T if U is a number and less than 0. If U is not a
number or is a positive nurber, NIL is returned.

NULL(U:anv):boolean
Type: EVAL, SPREAD.
- Returns T if U is NIL.

NUMBERP(U:anv)iboolean
Type: EVAL, SPREAD.
Returns T if U is a number. In Little Big LISP, NUMBERP
is the same as FIXP.

QNEP(Uzanv)iboolean
Type: EVAL, SPREAD.
Returns T if U is a number and EQ to 1. Returns NMIL
otherwise.

PAIRP(U:any)iboolean
Feturns T if U is a dotted-pair, else returns HNIL.

STIRINGP(Usanv)iboolean
Returns T if U is a string pointer otherwise returns HWIL.

ZEROP(Usanv) iboolean
Type: FEVAL, SPREAD.
Returns T if U is a number and has the wvalue 0, returns
NIL otherwise.

FUNCTIONS

Page 2-6

The following Standard LISP elementary predicates are not
defined:

FLOATP VECTORP

2.4 FUNCTIONS ON DOTTED-PAIRS

The following are elementary functions on dotted-pairs. All
functions in this section which require dotted-pairs as
parameters detect a type mismatch error if the actual parameter
is not a dotted-pair.

CAR(U:idotted-pairl:iany
Type: EVAL, SPREAD.
CAR(CONS a b) ==> a. The left part of U is returned. The
type mismatch error occurs if the actual parameter is not
a dotted-pair.

CDR{Uz:dotted-pairliany
CDR(CONS a b) ==> b. The right part of U is returned.
The type mismatch error occurs if U is net a dotted-pair.

Unlike Standard LISP, the composites of CAR and CDR are
supported only to three levels.

CAAAR CAAR CAR
CAADR CADR CDR
CADAR CDAR

CADDR CDDR

CDAAR

CDADR

CDDAR

CDDDR

CONS(U:anv.Vianyl:dotted=pair
Type: EVAL, SPREAD.
Returns a dotted-pair which is not EQ to anything except
itself and has U has 1its left (CAR) part and V as its
right (CDR) part.

LISTC(LUzany3lilist
Type: NOEVAL, NOSPREAD.

A list of the evaluation of each element of U is returned.

FUNCTIONS Page 2-7

) BRPLACA(U:dotted-pair.,Vianvlidotied-pair
Type: EVAL, SPREAD.

The CAR portion of the dotted-pair U is replaced by V. If
the dotted-pair U is {(a . b) then (B . b) is returned.
The type mismatch error occurs if U is not a dotted-pair.

RPLACD(U:sdotYed-pair.V:anvlidoited=-pair
Type: EVAL, SPREAD.
The CDR portion of the dotted-pair U is replaced by V. If
dotted=-pair U is {(a . b) then (a - V) is returned. The
type mismatch error occurs if U is not a dotted-pair.

2.5 IDENTIFIERS

Al]l identifiers in Little Big LISP are interned as are all
GENSY¥M*s,

GENSYM():id
| Creates an identifier which is the characters Gxxxx where
xxxx 1s a hexadecimal number which is incremented each
time GENSYM 1is5 called. The symbol generated is not
guaranteed to be unique.

The following Standard LISP functions are not implemented in
Little Big LISP.,

COMPRESS EXPLODE INTERN REMOB

2.6 PROPERTY LIST FUNCTIONS

With each id in the system is a "“property 1list", a 1list of
items which are associated with the identifier for fast access.
These entities are ctalled "flags™ if their use gives the id a
single valued property and "properties"™ if the id is to have a
multivalued attribute: an indicator with a property. in
Little Big L1ISP, indicator-value pairs are dotted-pairs, and
flags are atons.

FUNCTIONS

Page 2-8

Flags and indicators may clash, consequently case should
be take to avoid occurrences of indicators which have the same
name as a flag. Likewise, the implementation of functions and
globals requires that the indicators or flags EXPR, GLOBAL, and
FEXPR not be used.

ELAC(U:id-]ist V:id)iNIL
Type: EVAL, SPREAD.
U is a list of ids which are flagged uwith V. The effect
of FLAG is that FLAGP will have the value T for those ids
0of U which were flagged.

FLAGP(U:id):iboolean
Type: EVAL, SPREAD.

Returns T if U has been previously flagged with V, else
NIL.

GEI(U:anv.IND:anyliany
Type: EVAL, SPREAD.
Returns the property associated with the indicator IND
from the property 1list of U. If U does not have the
indicatoer IND, NIL is returned.

PUT(U:id.IND:id,PROPsany)iany
Type: EVAL, SPREAD.
The indicator IND with the property PROP is placed on the
property list of the identifier U.

Standard LISP functions which are not implemented:

REMFLAG REMPROP

2.7 FUNCTION DEFINITION

Functions in Little Big LISP are global entities which are
stored on the property list of the (EXPR . xxx) or (FEXPR .
Xxx) pair.

DE(FNAME:id,PARAMS:id=-1ist ENzanyliid
Type: MNOEVAL, NOSPREAD.
The function FN with the formal parameter list PARAMS is
added to the set of defined functions with the name FNAME.
Any previous definitions of the function are lost. The
function created is a LAMBDA expression unless the 1*COMP

FUNCTTONS Page 2-9

. variable is T in which case the EXPR is compiled. The
name of the defined function is returned.

DE(FNAME:id.PARAM:id-1ist FNianvliig

Type: NOEVAL, NOSPREAD.

The function FN with formal parameter PARAM 1is added to
the set of defined functions with the name FNAME. Any
previous definitions of the function are lost. The
function created is a lambda expression unless the 1*COMP
variable is T in which case the FEXPR 1is compiled. The
name of the defined function is returned.

GEID(FNAME:anv):{NIL.dotted-pair)
Types: EVAL, SPREAD.
If FNAME is not the name of a defined function NIL is
returned. If FNAME 1is a defined function then the
dotted-pair:

(TYPE:ftype . DEF:{function-pointer,lambda})

is returned.

[PUTD(FNAME:id, TYPE: ftvpe,BIDY: functionl:id

; Type: EVAL, SPREAD. Creates a function with name FNAME
and definition BODY of type TYPE. If PUTD succeeds the
name of the defined function is returned. The effect of
PUTD dis that GETD will return a dotted-pair with the
functions type type and definition. Unlike Standard LISP,
Little Big LISP does not have GLOBALP returning T for
functionse.

If the function FHNAME has already been defined, a
warning message Will appear:

{ FNAME redefined)
The function defined by PUTD will be compiled before
definition if the 1*COMP variable is non-NIL.

Little Big LISP does not support the MACRO function type. The
following Standard LISP functions are not defined in Little Big
LISP:

DM REMD

FUNCTIONS

Page 2-10

2.8 VARIABLES AND BINDINGS

A yvariable is a place holder for an item which is said to be
bound to the variable. The sgope of a variable is the range
over which the variable has a defined value. Little Big LISP
supports three binding mechanisms.

Local Binding
This type of binding occurs only in compiled functionse.
Local variables occur as formal parameters in lambda
expressions and as PROG form variables. The binding occurs
when a lambda expression is evaluated or when a PROG form is
executed. The scope of a local variable is the body of the
function in which it is defined.

GLOBAL binding
Only one binding of a global variable exists at any time
allowing direct access to the value bound to the variable.
The scope of a global variable 1is universal. Variables
declared GLOBAL must not appear as parameters in lambda
expressions or as PROG form variables. A variable must be
declared GLOBAL prior to its use as a global variable.

ALIST Binding
Little Big LISP does not support compiled FLUID variables as
does Standard LISP. However all interpreted functions bind
local variables on an association 1list permitting fluid
style access for interpreted functions only.

GLOBALCIDLIST:id-list):NIL
Type: FEVAL, SPREAD.
The 1identifiers of IDLIST are declared global type
variables. If an identifier has not been declared
previously it is initialized to NIL. Identifiers already
declared GLOBAL are ignored.

CLORALP(Usany)iboolean
Type: EVAL, SPREAD.
If U has been declared GLOBAL T is returned, else NIL is
returned.

SET(EXP:id VALUE:any)zany
Type: EVAL, SPREAD.
EXP must be an identifier or an error occurs. The effect
of SET is replacement of the item bound to the identifier
by VALUE. If the identifier is not a 1local variable or
has not been declared GLORAL an error occurs. The other
Standard LISP error checking is not performed.

FURCTIONS

Page 2-11

SEIQ(VARTABLE:id.VALUE:any)iany
Type: NOEVAL, NOSPREAD.

SETQ has the same effect as SET except that the

first

argument 1is a variable and is not evaluated. The same

errors occure.

The following Standard LISP functions are not implemented:

FLUID FLUIDP UNFLUID

2.9 PROGRAM FEATURE FUNCTIONS

These functions provide for explicit control sequencing,

and

the definition of blocks altering the scope of local variables.

GOCLABEL3id)
Type: NOEVAL, NOSPREAD.
GO alters the normal flow of control within a

PROG

function. The next statement of a PROG function to be
evaluated is immediately preceded by LABEL. A GO may only

appear in the following situations:

1y At the top level of a PRDG referencing a label
also appears at the top level of the same PROG

which

2a) As the consequent of a COND item of a COND appearing

on the top level of a PROG
2b) As the consequent of a COND item which appears as
consequent of a COND item to any level

3a) As the last statement of a PROGN which appears at

the

the

top 1level of =@ PROG or in a PROGN appearing in the

consequent of a COND to any level subject to
restrictions of 2a,b

3b) As the last statement of a PROGN within a PROGN or

the

as

the consequent of a CDND in a PROGN to any level

subject to the restrictions of 2a,b and 3a

If LABEL does not appear at the top level of the PROG

which the GO appears, an ercor occurs:
***xx« [ABEL is not a known label

PROG(VARS:id-1ist, LPROGRAM:i<{id, anv<}l)iany
Type: NOEVAL, NOSPREAD.

VARS is a list of ids which are considered fluid when

in

the

PROG 1is interpreted and 1local when compiled (see the

FUNCTIONS

Page 2-12

“"VYariables and Bindings"™ section). The PRDOGs variables
are allocated space when the PROG form is invoked and are
deallocated when the PROG is exited. PROG variables are
initialized to NiIL. The PROGRAM is a set of expressions
to be evaluated in order of their appearance in the PROG
function. Identifiers appearing in the top level of the
PROGRAM are labels which can be referenced by GO. The
value returned by the PROG function is determined by a
RETURN function or NIL if the PROG "falls through".

PROGN(RUzanvl1):any
Type: NOEVAL, NOSPREAD.
U is a set of expressions which are executed sequentially.
The value returned is the value of the last expression.

REIURN(U:any)
Type: EVAL, SPREAD.
Within a PROG, RETURN terminates the evaluation of a PROG
and returns U as the value of the PROG. The restrictions
on the placement of RETURN are exactly those of GO.

Standard LISP functions not implemented: PROG2.

2.10 ERROR HANDLING

ERROR(NUMBERiinteqer MESSAGEZany)
Type: EVAL, SPREAD.

NUMBER and MESSAGE are passed back to a surrounding
ERRORSET (the Little Big LISP reader has an ERRORSET).
MESSAGE is placed in the global variable EMSGlI* and the
error number becomes the value o0of the surrounding
ERRBRSET. Local variable bindings are unbound to return
to the environment of the ERRORSET. Global variables are
not affected by the processe.

ERRORSET(Uiany . MSGRiboolean.IRiboolean)iany

Type: EVAL, SPREAD.

If an error occurs during the evaluation of U, the value
of NUMBER from the ERROR call is returned as the value of
ERRDRSET. In addition, if the value of MSGP is non-NIL,
the MESSAGE from the ERROR call is displayed on the
currently selected output device. The message appears
prefixed with 5 asterisks. The MESSAGE from the ERROR
call will be available in the global variable EMSG!*, the

FUNCTIONS Page 2-13

number in ENUMI1*,

If no error occurs during the evaluation of U, the
value of (LIST (EVAL U)) is returned.

2.11 BOOLEAN FUNCTIONS AND CONDITIONALS

AND(TU:anvl):exira-boolean
Type: NOEVAL, NOSPREAD.
AND evaluates each U until a value of NIL is found or the
end of the list is encountered. If a non-NIL value is the
last value it is returned, or NIL is returned.

COND(LUscond=formlliany
Type: NOEVAL, NOSPREAD.
The antecedents of all U”s are evaluated in order of their
appearance until a non-NIL wvalue 1is encountered. The
i consequent of the selected §§ is evaluated and becomes the
value of the COND. The consequent may also contain the
special functions GO and RETURN subject to the restraints
given for these functions in the "“Program Feature
Functions™ section. 1In these cases COND does not have a
defined value, but rather an effect. If no antecedent is
non=-NIL the value of COND is NIL.

NOICU:anv)iboglean
Type: EVAL, SPREAD.
If U is NIL, return T else return NIL {same as NOULL
function).

OR(LU:apyl):iexira-boolean
Type: NOEVAL, NOSPREAD.
U is any number of expressions which are evaluated 1in
order of their appearance. When one is found to be
non—-NIL it is returned as the walue of OR. If all are
NIL, NIL is returned.

FUNCTTIONS

Page 2-14

2.12 ARITHMETIC FUNCTIONS

ABS(Usnumber)inumber
Tvype: EVAL, SPREAD.
Returns the absolute value of its arqument.

ADD1(U:pnumber)inumber
Type: EVAL, SPREAD.
Returns the value of U plus 1.

DIFFERENCE(Uinumber. ¥inumber):inumber
Type: EVAL, SPREAD.

The value U - ¥V is returned.

DIVIDE(Usonumber.Vinumberlidotted-pair
Type: EVAL, SPREAD.
The dotted-pair (quotient . remainder) is returned. The
quotient part is computed the same as by QUOTIENT and the
remainder the same as by REMAINDER.

GREATERP(U:number,V:nymber):iboolean
Type: EVAL, SPREAD.
Returns T if U is strictly greater than V, otheruise
returns NIL.

LESSP{Us:pumber.Vinumberliboglean
Type: EVAL, SPREAD.
Returns T if U is strictly less than V, otherwise returns
NIL.

MAX2{U:number,¥Y:number):number
Type: EVAL, SPREAD.

Returns the larger of U and V. If U and V are the same
value U is returned.

MIN2(Uinumber,¥ipumber):number
Types: EVAL, SPREAD. Returns the smaller of its
arguments. If U and V are the same value, U is returned.

RLUS(CY:numberd) inumber
Type: NOEVAL, NOSPREAD.
Forms the sum of all its arquments.

PLUS2(U:inumber.VYinumber):number

FUKCTICONS Page 2-15

- Type: EVAL, SPREAD.
Returns the sum of U and V.

QUOTIENT(U:number.Vinumber)inumber
Type: EVAL, SPREAD.
The quotient of U divided by V is returned. Division of
two positive or two negative integers is conventional.

REMAINDER(U: number.¥inumberlinumber
Type: EVAL, SPREAD.
If both U and V are integers the result is the integer
remainder of U divided by V. If either number is negative
the remainder is negative. If both are positive or both
are negative the remainder is positive.

SUB1¢Uspumber):inumber
Type: EVAL, SPREAD.
Returns the value of U less i.

TIMES(LUinumberl)ioumbetr
Type: NOEVAL, NOSPREAD.
N Returns the product of all its arquments.

TIMES2(Us:number.Vinumber)snumber
Type: EVAL, SPREAD.
Returns the product of U and V.

The following Standard LISP functions are not implemented:

EXPT FIX FLOAT MAX MIN

2.13 MAP COMPOSITE FUNCTIONS

MAP(X:list .EFN:fupnction)iany
Type: EVAL, SPREAD.
Applies FN to successive CDR segments of X. NIL 1is
returned.

MAPC(X:list,FNsfunction)iany
Type: EVAL, SPREAD.
FN is applied to successive CAR segments of list X. NIL

FUNCTIONS

Page 2-16

is returned.

MAPCAN(X:list . FN:functionliany
Type: EVAL, SPREAD.
A conczatenated 1list of FN appllied to successive CAR
elements of X is returned.

MAPCAR(X3:1ist.FNifunctionl:any
Type: EVAL, SPREAD.

Returned is a constructed list of FN applied to each CAR
of list X.

MAPCON(X:list,.FN:functionliany
Type: EVAL, SPREAD.
Returned is a concatenated 1list of FN applied to
successive CDR segments of X.

MABLIST(X:1list,FN:function)iany
Type: EVAL, SPREAD.

Returns a constructed list of FN applied to successive CDR
segments of X.

2.14 COMPOSITE FUNCTIONS

APPEND(Us1list,V:list)slist
Type: EVAL, SPREAD.
Returns a constructed list in which the last element of U
is followed by the first element of V. The list U is
copied, V is not.

ASS0C(Usanv,Vialist):{dotted-pair,NIL}
Type: FVAL, SPREAD.

If U occurs as the CAR portion of an element of the alist
V, the dotted-pair in which U occurred is returned, else
NIL is returned. ASSOC might not detect a poorly formed
alist so an invalid construction may be detected by CAR or
CDR.

DEFLIST(U:dlist IND:id)zlist
Type: EVAL, SPREAD.
A "dlist" is a list in which each element is a two element
list: {ID:id PROP:any). HEach ID in U has the indicator

FUNCTIONS

Page 2-17

IND with property PROP placed on its property list by

PUT function. The value of DEFLIST is a list of the first

elements of each two element list. Like PUT, DEFLIST
not be used to define functions.

DELETE(U:anv,.¥3ilistlilist
Type: EVAL, SPREAD.

Returns V with the first top level occurrence of U removed

from it.

LENGIH(Xzanv):integer
Type: EVAL, SPREAD.
The top level length of the list X is returned.

MEMBER(A:anv.Bilistl)iextra-boolean
Type: EVAL, SPREAD.
Returns NIL if A 1is not a member of list B, returns

remainder of B whose first element is A.

MEMGQfAsanv.Bslist)sextra-boolean
Type: EVAL, SPREAD.

Same as MEMBER but an EQ check is used for comparisone.

NCONC(U:1list ¥ilistlilist
Type: EVAL, SPREAD.

Concatenates V to U without copying U. The last CDR of

is modified to point to V.

PAIRCU:]ist.Vilist)ialist
Type: EVAL, SPREAD.
U and V are lists which must have an identical number

elements. If not, an error occurs (the 000 used in the

ERROE call is arbitrary and need not be adhered

Returned is a 1list where each element is a dotted-pair,
the CAR of the pair being from U, and the CDR the

cortesponding element from V.

REVERSE(Uz1ist):1list
Type: EVAL, SPREAD.

Returns a copy of the top level of U in reverse order.

SUBLIS(X:alist.Y:anvliany
Type: EVAL, SPREAD.
The value returned is the result of substituting the

of each element of the alist X for every occurrence of the

CAR part of that element in Y.

FUNCTTONS

Page 2-18

SUBST(U:anv.Vianv.Wianv)iany
Type: EVAL, SPREAD.
The value returned is the result of substituting U for all
occurrences of V in W.

The following Standard LISP functions are not implemented:

DIGIT LITER SASSOC

2.15 THE TINTERPRETER

APPLY(FN:{id . function) (ARGS:anv=Listl:iany
Type: EVAL, SPREAD.
APPLY returns the value of FN with actual parameters ARGS.
The actual parameters in ARGS are already in the form
required fer binding to the formal parameters of FN.

EVAL(Uzanvliany
Type: FEVAL, SPREAD.

The value of the expression U is computed.

EVLIS(U:any-list)ianv-list
Type: EVAL, SPREAD.
EVLIS returns a list of the evaluation of each element of
Ua

QUOTE(U:anvl:any
Type: NUEVAL, NOSPREAD.
Stops evaluation and returns U unevaluated.

The following Standard LISP functions are not implemented:

EXPAND FUNCTION

FUNCTIONS

Page 2-19

2.16 INPUT AND OUTPUT

The user normally communicates with Little Big LISP through the
terminal. Little Big LISP allows input from one disk file at a
time and output to another.

CLOSE(FILEHANDLE :numberlzany
Type: EVAL, SPREAD. Closes the file with the internal
name FILEHANDLE writing any necessary end of file marks
and suche. The value of FILEHANDLE is that returned by the
corresponding OPEN. The value returned is the value of
FILEHANDLE. If an error occurs during a file close or the
wrong file handle is given, Little Big LISP stops with an
operating system errore.

OPEN(FILE:string .HOH:id)snumber
Type: FEVAL, SPREAD.
Open the file with the system dependent name FILE for
output if HOW 1is EQ to OUTPUT, or input if HOW is EQ to
INPUT. If the file is opened successfully, a value which
is internally associated with the file is returned. This
value must be saved for use by RDS and WRS.

PRINT(U:ianvi:any
Type: EVAL, SPREAD.
Displays U in READ readable format and terminates the
print line. The value of U is returned.

ERIN1(Usanvliany
Type: EVAL, SPREAD.
U is displayed in a READ readable form. In identifiers,
special characters are prefixed with the escape character
1, and strings are enclosed in "...". Lists are displayed
in list-notation.

PRIN2{U:snv):any

Type: EVAL, SPREAD.

U is displayed upon the currently selected print device
but output 1is not READ readable. The value of U is
returned. Items are displayed so that the escape
character does not prefix special characters and strings
are not enclosed in "...". Lists are displayed in
list-notation.

RDS(FILEHANDLE 2number)sinumber
Type: EVAL, SPREAD.
Input from the currently selected input file is suspended
and further input comes from the file named. FILEHANDLE
is a number returned by the OPEN function for this file.

FUNCTIONS

Page 2-20

If FILEHANDLE 1is NIL the terminal input device 1is
selected. When end of file is reached on a non-standard
input device, the standard input device is reselected.
RDS returns the internal name of the previously selected
input file.

READR{):any
Returns the next expression from the file currently
selected for input. Valid input forms are: dot-notation,
list-notation, numbers, strings, and identifiers with
escape characterse.

READCH():id
Returns the next dinterned character from the file
currently selected for input. Two special cases occur.
If all the characters in an input record have been read,
the value of ISEOL1S is returned. Comments delimited by %
and end of line are not transparent to READCH.

JIERPRIC)SNIL

The current print line is terminated.

HRS(FILEHANDLE snumber) :number
Type: EVAL, SPREAD.

Output to the currently active output file is suspended
and further output 1is directed to the file namede.
FILEHANDLE is an internal name which is returned by OPEN.
The file named must have been opened for output. If
FILEHANDLE is NIL the standard output device is selected.
HRS returns the internal name of the previously selected
gutput file.

The following Standard LISP functions are not implemernited:

EJECT LINELENGTH LPOSN PAGELENGTH POSN PRINC

2.17 SYSTEM GLOBAL VARIABLES

These variables provide global control of the LISP system, or
implement values which are constant throughout execution.

I1*COMP - Initial value = NIL.
The value of 1*COMP controls whether or not PUTD compiles the
function defined in its arguments before defining it. If

FUNCTIONS

Page 2-21

1*COMP is NIL the function is defined as a LAMBDA expression.
I1f 1*COMP is non-NIL, the function is first compiled.

I*ECHO - Initial value = NIL.
If *ECHO is T, input character will be written to the selected
output file as they are read.

EMSGY* - Initial value = NIL.
Will contain the MESSAGE generated by the last ERRDR call (see
the "Error Handling" section).

ENUMI* - Initial value = NIL.
Centains the error number from the last ERROR call.

ISEQLIS - Value = an uninterned identifier.
The value of !$EO0OL1S$ is returned by READCH when it reaches the
end of a logical input record.

]*FLINK - Initial value = NIL.

If I*FLINK is non-NIL, fast call instructions are generated in
place of slow indirect calls in compiled code. Once a fast
call has been generated it may not be changed back to a slow
call. A slow call takes about 250 microseconds and a fast
about 5.

1*GC - Initial value = NIL.

1*GC controls the printing of garbage collector messages. If
NIL no indication of garbage collection may occur. If non-NIL,
the number of free cells remaining after each collection will
be displayed on the selected output file.

NIL - value = NIL.
HIL is a special glebal variable.

T - Value = T.
T is a special global variable.

1*QUTPUT - Value = T.
If *DUTPUT is T then the result of each LISP reader evaluation
is printed otherwise no value is printed.

The following Standard LLSP global variables are not
implemented:

ISEOF!S 1 *RAISE

FUNCTIDNS

Page 2-22

2.18 STANDARD LISP DIFFERENCES

Functions supported by Little Big LISP but are not in the
Standard LISP report are listed in the first two sections, low
level functions and compiler support functions. The following
Standard LISP functions are not currently supported for a
variety of reasons:

COMPRESS FLOAT PAGELENGTH
CxxxxR FLUIDP POSN
DIGIT FLUID PRINC
DM FUNCTION PROG2
EJECT INTERN REMD
EXPAND LINELENGTH REMFLAG
EXPLODE LITER REMOB
EXPT LPOSKN REMPROP
FIX MAX SASSOC
FLOATP MIN UNFLUID
VECTORP

2.19 SYSTEM ERRORS

The system tries to maintain an operating environmente. Some
severe errors cause complete termination and program restart
with global data intact but with stacks gone and so one. These
errors appear uwith 7 astersisks preceeding them and are
followed by the LITTLE BIG LISP prologue heading.

*kkkkkx STACK OVFLW
This occurs when the stack frame gets to close to the push
down stack. This usually means that recursion has
preceeded to deeply or infinitely.

kkxxt SYMBOL TABLE FULL
This error occurs when too many symbols have been added to
the symbol table. This is usually the result of to many
GENSYM“s being done or too large a program being read in.

AkkrxA*x STRING SPACE FULL
This error occurs when the string table overflows intoe the
symbol table. This could be too many GENSYM®s or too many
large string messages.

*xxxdxx FREE CELLS EXHAUSTED
This error occurs when all available free dotted-pairs
have been used. To determine how many available free

FUNCTIONS

Page 2-23

pairs there are do:

(SETQ '*GC T)
(RECLAIM)

2.20 SYSTEM STGRAGE ALLOCATION

The number of free pairs is dependent on the available storage
and what percentage of the system 1is reserved for binary
program sSpace.Assuming that no binary program space is
allocated and the following percentages are used:

Stack %18
Strings %13
Symbol Table %11
Real Address Table 32
Dotted-pairs %56

the following systems sizes are possible:

Svstem Size Siack sStrings Symhols Pairs

16k 736 26 85 887
24k 1503 1105 313 2049
32k 2223 2145 533 3169
40k 2961 3211 758 4317
48k 3699 4277 984 5465
56k 4437 5311 1209 6613
64k * 5175 6409 1435 7761

The maximum space that a Jove system can operate in is 56k due
to operating system requirements. For the TRS-80 system,
approximately 40k is the largest amount of space that can be
used due to operating system requirements and the large amount
of ROM and program memeory used for memory mapped 1/0 that 1is
used, 64k would be an 1ideal machine. Note that the 16k
machine has a rediculously small string space. By altering the
percentages for various machine sizes (in this case subtracting
from free pairs) more reasonable allocations can be made. it
is expected that about the smallest system that can possibly be
made te do anything is about 12k bytes. By removing all
non-required functions of Standard LISP this could probably be
reduced to Bk or 9k.

CHAPTER 3

FAST LOAD

Rather than compiling the entire system or reading and
compiling code every time, program modules are compiled into
relocatable files which we will call fast load files. Most
modern LISP systems provide this facility in one form or
another. The fast loading program is normally built into the
system. It reads binary code and top level S-expressions to
interpret. To load a precompiled package enter:

(FLOAD Y"filename™)
where "filename" is the name of the package on the default
input unit (usually a floppy disk). If all goes well the
system will respond with NIL. If you try to 1load the wrong
type of file, the error message:

**xkx% FAST LOAD ERROR
wWwill appear.

To create a fast load file you must enter the following
sequence:

(FLOAD "COMPILER™) 3Load the compiler
(FSLOUT "filename”™) $Create a file
00 $LISP source code here.
FSLEND $End of source code.
The file "filename™ will appear in the directorye. All

S-expressions read between the FSLOUT and the FSLEND are
directed to "filename" with the exception of DE, DF, and PUTD"s
which are evaluated and cause compiled code to be directed to
the file. To cause an expression to be evaluated during the
FSLOUT the function should be flagged as EVAL. Thus (FLAG
“{RDS GLOBAL) °“EVAL) will cause RDS and GLOBAL to be executed
during the building process rather than deferred for evaluation
during the load process.

CHAPTER 4

THE COMPILER

The compilation process is divided into two passes: the first
translates LISP into pseudo-assembhly code called LAP (for Lisp
Assembly Program), the second translates this LAP into absolute
machine code and places this in storage for execution or dumps
it to a FAP file for later reloadinge.

4.1 OVERVIEW

The LISP interpreter contains code for reading functions into
the LISP system and executing them interpretively much like
other microprocessor based systems. Unfortunately interpreted
functions require large amounts of storage and execute very
slouly.

A more efficient scheme reads functions in the
interpretive form, and then compiles them to machine code to be
executed directly by the microprocessor. The 1interpreted
version of the function disappears, its storage becomes
available for use at a later time.

For example, the function FACT which tomputes the
factorial of a number recursively is defined in Little Big LISP
as follouws:

(DE FACT (N)
(COND ((LESSP N 2) 1)
(T (TIMES2 (FACT (DIFFERENCE N 1)) N))))

In Little Big LISP, dotted-pairs, of which this function is
composed, take 4 bytes each. 23 dotted-pairs are used to
define FACT for a total of 92 bytes. Little Big LISP° s
compiler generates the following code for FACT:

0000 (ENTRY FACT)
0000 D7 (RST ALLOC)
0001 02 (DEFB 2)

THE COMPILER

Page 4-2
0002 FFF2 {STDX HL 0)
0004 F7CO (LDX HL 0)
0006 110240 (LDI DE 2)
0009 EF (RST LINK)
000k 6521 (DEFW LESSP)
0006C E7 (RST CMPNIL)

000D CAl600 (JPEQ G0002)
0010 210140 (LDI HL 1)
0013 €32600 (Jp GO0001)

0016 (LABEL G0002)
0016 F7CO (LDX HL 0)
0018 110140 (LDI DE 1)
001B EF (RST LTNK)
001C 6621 (DEFW DIFFERENCE)
001E EF (RST LINK)
001F 6721 (DEFW FACT)
0021 F780 (LDX DE 0)
0023 EF (RST LINK)
0024 6821 (DEFW TIMES2)
0026 (LABEL G0001)
0026 DF (RST DALLODC)
0027 FE (DEFB -2)
0028 c9 (RRET)

(FACT USED 41 BYTES AT 0)

FACT

A total of 41 bytes, less than half the size of the interpreted
version. The execution of the compiled version uses
considerably less free space than the interpreted version and
tuns about 5 to 10 times fastere.

4.2 COMPILATION MECHANISMS

Much support software is needed for compiled programs which
simply move infeormation between registers and call subroutines
to perform most operations. In this section we describe how
various LISP constructs are implemented in LAP and enumerate
the various support functions reguired.

4,2.1 Parameter Passing

Zero to 3 parameters may be passed to a function. The first
argument of a function (if it has any) will always be in the HL
register pair, the second in DE, and the third in BC.
Functions with more than three arguments cannot be compiled.

THE COMPILER

Page 4-3

4,2.2 Stacks

Function parameters and PROG type variables are kept in a stack
frame, a contiguous block of locations pointed to by the IX
index register. When a function is invoked it creates a new
frame on the +top of the stack by calling the ALLOC support
subroutine. ALLOC adds a number to IX to create a new empty
stack frame. It also checks for stack overflow and signals an
error if this has happened or is about to happen. When a
function terminates it calls the DALLOC routine which subtracts
the number of locations used from YX freeing the space for use
by the next function.

Storing and retrieving values from the stack frame is
accomplished by the tuWo support routines LDX and STOX. Since
these operations occur frequently in compiled code it |is
necessary that they use as 1little storage as possible.
Therefore the LDX and STOX routines should be called using the
ZB0 RST imnstruction with the following byte containing what
register pair is to be stored (or loaded), and the displacement
from the top of the stack frame. The format of the control
byte is given in the source code listings of LDX and STOX. The
LAP instructions generated by the compiler are also called LDX
and STOX and contain the register pair name and what
displacement is to be used.

Let us examine a LAMBDA function with an imbedded PROG and
look at the code generated by the compiler.

(LAMBDA (A B) (PROG (C D) eaa) eeas)}

The generated LAP code pushes and pops the stack frame and
stores registers into the frame.

THE COMPILER

LISP

LAR

(LAMBDA (A B) ...

(RST ALLOC)
(DEFB +4)

(STOX HL 0)
(STDX DE -1)

««{PROG (C D) aue.

(RST ALLOC)
(DEFB +4)

(LDI HL NIL)
(STOX HL 0)
(STOX HL -1)

Page 4-4

Stack Frame

+ —

IL [<-- new IX
+—- A -4

|H {

+ - +

lE |

o B -=+

1D H

+ - +

- c<-- Old Ix
e +

1L 1<=-=- new TIX
+=— c -—

| H !

P m——————— +

IL 1

4——) —_

|H 1

e ———————— +

- A .<-- Old IX
. B -

Nested PROGs cause more frames to be allocated up to a maximum
of 64 accessable variables. The limiting factor is the 6 bits
of displacement in the LDX and STOX macrose.

The Z80 internal stack (pointed to by the SP register) is

used for saving return addresses and intermediate values during
function evaluation.

arguments stores the
arquments on the Z80 stack while the third is being computed.

The

values are popped

A call to a function FUN3 with 3

results of evaluatien of the first two

into the appropriate registers 3just

before the function is invoked.

would

{FUN3 (FUNA

eas) (FUNB a2o) (FUNC ...))

generate the following code segquence:

ves evaluate FUNA
(PUSH HL)

see evaluate FUNBE
(PUSH HL)

==+ evaluate FUNC
(LDHL BC)

¢Save result of FUNA on stacke.
sSave result of FUNB on stacke.

sMove BC to HL.

THE COMPILER

Page 4-5
(POFP DE) sResult of FUNB is second argumente.
(POP HL) sResult of FUNA is first argument.

(RST LINK) ;Call FUN3.
(DEFW FUN3)

4,2.3 Calling Functions

The compiler will not always know the address of a function
being called because it might not be defined yet. Even if the
functicn is defined the compiler does not know whether it will
be compiled or interpreted at run time. A special internal
subroutine called LINK is used to transfer control at run time.
Since both compiled and interpreted functions can exist at the
same time, LINK will perform either of two functions. If an
interpreted function is being called from compiled code the
LISP interpreter will be invoked for that functione. If the
function being called is compiled or is a system function the
call to LINK will be replaced by a direct call to that
function. The call to the LINK function must be an RST type
link so that the 3 byte 280 CALL instruction will exactly
replace the compiled call. If the system global variable
F*FLINK is NIL, the substitution will not take place and the
slogw 1link form will be used. This is a useful debugging tool
as it allows vyou to compile functions and change their
definitions (for tracing) without reloading the system.

Compiled as: Changed by LINK to:
(RST LINK) (CALL function-address)
{DEFY function-name)

The two byte DEFW attached to the LINK contains the symbol
table pointer of the function being called. At execution time
the LINK routine looks for either a compiled or interpreted
function attached to he name and either invokes EVAL, generates
the CALL, or if the *FLINK flag is on, just transfers to the
function. If no such function is defined, the undefined
function error will occur.

4,2.4 The LIST Function

The LIST function 1is compiled in a special way to take
advantage of the Z80 internal stack. The arguments of the LIST
function are compiled and the results of each are pushed onto
the stack. When all have been computed the support function
CLIST is called.

THE COMPILER Page

(LIST (Fl aee} eue (FN ase))
compiles to:

eee evaluate Fl ...

(PUSH HL) sSave result of F1 for CLIST.
. sEvaluate other arguments.
eees eValuate Fn ea.
(PUSH HL) sSave result of Fn for CLIST.
(LBA n) sNumber of values on stack for

(CALL CLIST) jcall to CLIST routine.

4.2.5 COND Compilation

The LISP COND function is compiled into a series of tests

4-6

and

conditional jumps. The CMPNIL support routine compares the
result of a predicate to NIL and sets the ZB0 NZ and Z flag
z bits which control the conditional branch instructions

genertated. If the last predicate of the COND is T,

the

predicate and Jjump will not be compiled (this is the usual

case).
(COND (a0 c0) .. (an cn))
generates the following code:

ses evValate 30 <o

{RST CMPNIL) 7Is a0 NIL?
(JPEQ G0O001) 3Yes, Jjump to next antecedent.
wae Evaluate c0 <..
(Jp G0002) sFirst consequent evaluated, quit.

(LABEL G0001) sCome here if a0 is not true.

. sEvaluate other antecedents.

(LABEL 6000x) ;Try last predicate.
*uee gvaluate an
* (RST CMPNIL) ;Is last one NIL?
* {JPEQ G0002) ’Go return NIL then.
sees Bvaluate cn ee.
(LABEL G0002) sAluays come here when done.

Lines preceeded by an asterisk are not dgenerated 1if the
predicate is T.

last

THE COMPILER

Page 4-7

The PROG function and the control constructs GO and RETURN are
compiled by plugging 1labels and values into a template. The
compiler does not check for GO®s to undefined labels, this is
done by LAP. RETURN®s not in PROGs and illegally nested GO°s
are also not checked.

(PROG (X)

LBL «..
« aese {RETURN val)

EGU LEL)

.-o)

compiles to:

{RST ALLOC) 7sSpace to save variable X allocated.
{DEFB +2)

(LDI HL RNIL) sPROG variable set to NIL.

(STOX HL O)

(LABEL LBL) ;& PROG label generates a LABEL.

ses evaluate val ...
(JP G0001) ;Jump to end of this PROG.

(JP LBL) s (GD LBL) generates a jump.

(LABEL G0001)} 7411 RETURN"s come here.
(kST DALLOC) sFree the stack frame allocated
(DEFB -2) sfor X.

4.2.7 AND And OR Compiled

AND and OR are compiled identically except that the evaluation
of the arguments of AND terminates if one is NIL, and the
evaluation of OR terminates if one is non-NIL. The compilation
of AND generates JPEQ instructions after a comparison to NIL,
and the compilation of OR generates JPNEQ instructions.

(AND a0 .. an)

THE COMPILER

Page 4-8

compiles to:

ese evValuate al ...
{RST CMPNIL) 3Is result of a0 NIL?
(JPEQ G0001) +S5top evaluation if ves.
N ;Evaluate other arquments.
«ee eVAaluate AN ecee
(LABEL G0001) sAlways end up here.

The OR function instance compiles exactly the same way, but
JPNEQ is generated instead of JPEQG.

4,2.8 Constants, Variables, And Quoted Values

These items are loaded directly into the correct register for
the function to which they are to be passed. Local and Global
variables may have values assigned to them with the appropriate
store instructions.

Quoted items are saved on a list of compiled quoted values
s0 that the garbage collector will not remove them. The value
representing the quoted item is 1loaded into the appropriate
register.

4.3 THE LAP INSTRUCTION SET

The LISP Assembly Program accepts the following instruction set
generated by the compiler (or wuser) and generates absolute
machine code or the correct information to place in a FAP file.
The following symbols are used:

pp - denotes a register pair HL, DE, or BC.
nn - an immediate 16 bit value.

n - denotes an immediate 8 bit value.

1bl - denotes a label found somewhere.

dsp - denotes an 8 bit stack displacement.
addr - denotes a 16 bit global address.

(ENTRY name)
Serves as the entry point of function "name'. ENTRY does
not generate any Z80 instructions.

THE COMPILER

Page 4-9

{(LAREL 1lbl)
Defines a 1label referenced elsewhere in the current
function. Labels are not known outside of a function.

(LDHL pp)
Causes two ZBO0 register to register idinstructions to be
generated to transfer the contents of HL to BC or DE.

(LDI pp nn)
Generates a "load immediate"™ instruction to load the
register pair pp with the 16 bit value nn. nn may be a
number, T or NIL, or a gquoted item.

(LDX pp dsp)
Generates a call to the LDX routine to 1load the register
pair pp with a 16 bit value at dsp*2? bytes from the top of
the current stack frame. The control byte contains both the
register identifier and the displacement.

(LDA n)
Causes a single ™"Load A Immediate™ 1instruction to be
generated which 1loads the 8 bit value n into the Z80 A
register. This instruction is used in the compilation of
the LIST function.

(ST0X pp dsp)
Generates a call to the STOX reoutine to store register pair
pp at the displacement dsp*2 bytes from the top of the
currently active stack frame. The control byte generated to
follow the short call to the STOX routine contains both the
register identification to store and the & bit displacement.

(STO pp addr)
Generates a "store direct" instruction to store the value in
register pair pp in the value cell of a global variable at
addr.

(JP 1bl)
(JPEQ 1b1)

(JPNEQ 1b1)
& long ZB0 jump instruction is generated to get to the
location of the 1label named. The JP instruction is an
unconditional jump. The JPEQ instruction generates a Jjump
conditional on the Z condition code and the JPNEQ based on
the NZ condition code set.

(PUSH pp)
Generates the single byte instruction to push register pair
pp onto the ZB0 stack.

(POP pp)
Generates the single byte instruction to pop the ZB0 stack
into the register pair pp.

THE COMPILER Page 4-10

(CALL name)
Genherates a long 3 byte call instruction ¢to the absolute
address o©f name. This absolute address is stored under the
CALL property as two integers representing the bytes of the
address in reverse order. Currently ALLGC, DALLOC, and the
CLIST support routine addresses are so stored and called.

{RST name)

Generates the single byte Z80 call instruction to one of 8
possible routines. A minimum of 3 RST calls must be
available for the compiled code to operate correctly, one
for LINK, one for LDX, and one for STOX. The other RST‘s
used in this system may be changed into Z80 CALL
instructions, but the compiled code will be significantly
longer. Current calls are to:

CHPHNIL - compare HL to NIL, set Z, NZ.

STO0X - store register pair in stack frame.

LDX - retrieve register pair from stack frame.
CAR - take the CAR of HL.

CDR -~ take the CDR of HL.

LINK - slow link to defined function.

(RET)
Generates the ZB0 "return from subroutine™ instruction.

(DEFH¥ name)
Generates an identifier name for the LINK call. LINK
expects a symbol table pointer.

(DEFB n)
Generates a single byte numeric value which is used as the
control byte for the STOX and LDX stack frame primitives and
for the ALLOC and DALLOC calls.

4.4 USING THE COMPILER

The compiler is normally kept as a FAP file on the same
disk as the interpreter. 1t must be manually loaded by typing:

(FLOAD "COMPILER")

The name of the compiler varies from system to system. After
10 or 20 seconds the machine will respond with the value NIL
and the prompt character. There are two options at this point.
You may either manually compile functions by typing:

(COMP fn type body)

Where "fn" is the name of the function, "type" is either EXPR,
or FEXPR, and "body" is the LAMBDA expression of the function

THE COMPILER

Page 4-11

to be compiled. To compile the factorial function presented
earlier using this methed, you would enter:

(COMP “FACT “EXPR
“(LAMBDA (N)
(COND ((LESSP N 2) 1)
(T (TIMES2 N (FACT (DIFFERENCE N 1)))))))

Functions may be compiled as normally entered by setting the
1*COMP switch to T. When a function is entered using either
PUTD, DE, or DF and this flag is on it will be compiled before
being defined. Thus:

(SETQ !*COMP T)
(DE FACT (N)
(COND ((LESSP N 2) 1)
(T (TIMES2 N (FACT (DIFFERENCE N 1))))))

will result in the function being compiled before being
defined.

4.4.1 Compiler Flags

The following flags and global variables are used by the
compiler and are of interest to the user.

J*COMP
When non-NIL, causes DE, DF, and PUTD to automatically call
the compiler to define a function.

I*FLINK
When non-NIL, the HST LINK - DEFW name LAP idinstructions ae
replaced by fast CALL instructions when executed. This
happens only when the function call is executed.

I*FSLOUT
then non~-NIL, causes the assembler to generate the code for
a FAP file. I*FSLOUT should be set only by the FSLOUT
function discussed under generating FAP files.

I*LAPP
¥hen non-NIL, causes the LAP generated by the compiler, and
the hexadecimal machine code generated by the assembler to
be listed on the selected output device., This flag should
not be set while generating FAP files.

THE COMPILER

Page 4-12

4.4,2 Using LAP

The Lisp Assembly Program may be called directly with a list of
LAP instructions in the global wvariable LAPS. This may be
useful for optimizing functions that are critical to the
execution of a program. Likewise, it is easy to modify the
assembler to add new instructions to provide the ability to
build special 7I/0 functions, special data transfer functions
and the like without modifying the source of the interpreter.

CHAPTER 5

RLISP

Some may consider the rigours of coding in LISP with all its
parentheses a bit onerous. To provide a syntax more amenable
to users of contemporary high level programming languages, a
parser from RLISP to LISP has been implemented. This syntax
was invented by A. C. Hearn in 1973 to facilitate the
implementation of a symbolic algebra system, REBUCE [£33. The
subset described here is reasonably complete and is restricted
only by the subset of Standard LISP implemented in Little Big
LIsP.

The RLISP parser contains its own top level EVAL 1loop
which reads LISP expressions in RLISP syntax, parses them into
LISP and if there are no syntax ertors, evaluates them. The
user can drop into LISP at any time.

The remainder of this section presents the syntax of RLISP
together wWith examples of 1ts use. The section concludes with

a list of known differences with the distributed version of
RLISP.

5.1 PROCEDURES
Functions are defined in RLISP as procedures with
parameters. The following syntax is used:
l. <function> ::= <ftype> PROCEDURE <id> <parameter list>;
<unlabeled statement>;
2. <ftype> ::= EXPR | SYMBOLIC | FEXPR
3. <parameter list> 3= () | <id> | (<id list>)

4. <id-listd> s3:3= <id>L,I*

RI ISP

Page 5-2

A <function> is a PROCEDURE statement preceded by its type.
Note that EXPR and SYMBOLIC both stand for EXPR (EVAL/SPREAD)
type procedures. The identifier which must follow the
PROCEDURE keyword 1is the name of the function being defined.
The parameter list must be () if the function has no
parameterse. If the function has a single formal parameter it
need not be enclosed in parentheses. Two or more parameters
must be enclosed in parentheses and the identifiers must be
separated by commas. Functions with more than three parameters
may be defined but may not be compiled. The statement
following the procedure heading may be a compound BEGIN - END
block or a simple statement or function call.

The RLISP procedure is parsed into a DE or DF function
form. The name and formal parameters from the heading line
become parts of the call and the statement following becomes
the body of the function. The LAMBDA expression is generated
by DE and DF“s call to PUTD.

5.2 STATEMENTS

There are several different statement types in RLISP
corresponding to the different contrel constructs. The BEGIN -
END block is translated into a LISP PROG function.

5. <BEGIN-END block> ::=
BEGIN SCALAR <id-list>; <statement>[C;3* END |
BEGIN <statement>C;1* END

The identifiers in the optional SCALAR clause are variables
local to the BEGIN - END block. These become the variables of
the PROG while the statements separated by semicolons become
the body.

6. <statement> ?2:= <id>: <unlabeled statementd> |
<unlabeled statement>

Labeled statements may occur only within BEGIN - END blocks. &
statement may have a single 1label which serves only as the
object of a GO TD statement. Labels are transferred, as is, to
the generated PROG form.

7. <unlabeled statement>d :1:=¢BEGIN-END block> |
<IF statement> |
<do group> |
<WHILE statement> |
<FOR statement> |
<RETURN statement> |
<G0 TO statement> |
<value statement>

RLESP

Page 5-3

An unlabeled statement may be a contrel construct or a value
statement, a general catch all for stand azalone fuanction
invocation, assignment, and the like.

B. <IF statement> 2:=
IF <expression> THEN
<unlabeled statement 1> ELSE
<unlabeled statement 2> |
IF <expression> THEN <unlabeled statement>

The IF statement is in the classical form as either IF ...
THEN <.+ ELSEe... or just plain IF ... THEN. Like all other
RLISP statements, an 1IF statement has a value. If the
expression has a non-NIL value, then the value is the wvalue of
unlabeled statement 1 otherwise the value of unlabeled
statement number 2. If there is no ELSE clause and the value
of the expression is NIL, the value of the statement 1is NIL.
Multiple IFeeoTHENewoELSE IFce e THENew«ELSE IFeee statements
are parsed into a single COND with pultiple antecedent
consequent pairse.

9. <do group> ::= << <unlabeled statement>C;31* >>

The do group is translated into the LISP PROGN form. Statement
labels are not permitted within the group, but GO TO"s and
RETURN"s are permitted within the scope of a surrounding BEGIN
- END block. The value of the do group is the value of the
last statement.

10. <WHILE statementd> ::=
WHILE <expression> DO
<unlabeled statement>

The WHILE statement repeatedly evaluates the unlabeled
statement while the expression is non-NIL. The value of a
WHILE statement is NIL unless there 1is a RETURN within the
unlabeled statement which is not embedded within a BEGIN - END
block. The statement is translated into a PRDG form with an
internal loop. The unlabeled statement is the consequent of a
COND or a single statement within this PROG, thus any RETURN
will be the value of the loop or the value of an intecrnal PROG
from the use of a nested BEGIN - END hlock.

11. <RETURN statement> ::= RETURN |
RETURN <unlabeled statement>

RETURN may be used only within a BEGIN -~ END block and is
translated directly into the regular RETURN function call.
RETURN without a parameter is translated into (RETURN NIL).

12. <GO TO statement> 2:= GO TD <id>

The GO TO statement may be used only within a BEGIN - END block
and only to a label at the current lexical tevel within that
blecke.

RI, ISP

Page 5-4

13. <FOR statement> :1:=
FOR EACH <id> IN <cexpression>
DO <unlabeled statementd> |
FOR EACH <id> 1IN <{expression>
COLLECT <unlabeled statement> |
FOR <id>:=<expression 1>:<expression 2>
DO <unlabeled statement>

There are three forms of the FOR statement. The first form
evaluates the wunlabeled statement with the identifier set to
eacth successive element of the 1list resulting from the
expression. This FOR 1is mapped into something like the MAPC
function but in an internal form more suitable for compilation.
The wvalue of a FOR statement of the first form is always NIL.
The second form of the FOR statement is like the first but the
word COLLECT instead of DO signifies that the results of the
statement being evaluated are collected into a 1list which is
returned as the value of the FOR statement. This form is
translated into an internal form roughly egquivalent to a MAPCAR
statement. The only difference between these forms and MAPC
and MAPCAR is that local variables may be used within the
unlabeled statement with impunity whereas they would have to be
GLOBAL or FLUID in other systems. The final form of the FOR
statement is the usual jiterative form which sets the identifier
to the wvalue of the first expression and increments it
evaluating the unlabeled stzatement each time until the value of
the variable 1is greater than the value of expression 2.
Expression 2 1is recomputed each time through the loop. This
form of the FOR statement always has the value HNIL and 1is
translated into a nested PROG. It may not have GO TO“s out of
the range of the loop.

53 VALUE STATEMENTS

Any statement which can not be parsed as a control
construct is assumed to be a value statement, that is, an infix
expression. The infix operators implemented are 1listed in
increasing order of precedence:

) ss ee
Al w

AND

<, >, LEQ, GER, NEG, EQ, =
+-

* /

* %

L 4

What follows is the BNF for expressions starting with the
lowest precedence and working to the highest. Expressions are

RLISP

Page 5-5

what yvou would expect with the exception that function calls
Wwith single arguments need not have the arguments enclosed in
parentheses, and the . operator for CONS, and the “ for QUOTE.

14. <value expression> ::=
<id> = <unlabeled statement> |
<boolean term>

A value expression can assign the value of a statement to a
variable or is Jjust a boolean term. Note that an unlabeled
statement may be another wvalue expression (the usual case).

15. <boolean term> ::= <boolean secondary>)
<boolean secondary> DR <boolean term>

A boolean term is a nuamber of boolean secondaries separated by
DR "s. Note that all the terms are collected into a single OR
by the parser to keep down the size of expressions.

16. <boolean secondary> ::= <relational expression> |
<relational expression> AND <boolean secondary>

A boolean secondary is like a boolean tetm only AND is the
connective. An expression <«.-AND.,..AND...AND... 1is collected
into a single (AND <..).

17. <relational expression> ::= <{CONS expression> |

<CONS expression>

<{relational operator>
{CONS expression>

18. <relational operator> ::=

<1 >1 =1 NEQ | LEQ | GEQ | EQ
A relational expression 1is two expressions separated by a
diadic operator which returns NIL or something else. The <
operator is translated into GREATERP, the > operator to LESSP,
the = operator to EQUAL, and the other operators are translated
into themselves.

19. <CONS expression» i:= <{arithmetic expression> |
<arithmetic exptression> . <CONS expression>

TWwo expressions separated by a . are the CAR and CDR parts of
a CONS function call. The dot operator is right associative,
so in a string of dot operators, the rightmost one is done
first. Dots within LISP S-expressions are not affected.

20. <arithmetic expression> ::= <arithmetic term> |
{arithmetic term> + <arithmetic expression> |
<arithmetic term> - <arithmetic expression>

The + and -~ operators are right associative and are translated
into PLUS2 and DIFFERENCE respectively.

RLISP

Page 5-6

2l1. <arithmetic termd> :3:= <arithmetic secondary> |
{arithmetic secondary> * <arithmetic term> |
Carithmetic secondary> / <arithmetic tern>

The * and / operators are right associative and are translated
into TIMES?2 and QUOTIENT calls respectively.

22. <arithmetic secondary> 2:= <QUDTE expression> }
<QUOTE expression> ** {arithmetic secondary>

The exponentiation operator ** is right associative and
translates into an EXPT function invocatiocon. FExponentiation is
allowed only to positive integer powers.

23. <QUOTE expression> ::= <{primary> |
“¢LISP S-expression>

The ° operator causes the LISP S-expression reader to be
invoked to read the following LISP S—-expression. Note that *
may not be used to quote an RLISP expression. DUOne must use the
QUOTE function explicitly to do this.

24, <primary> ::= <unsigned integer> |
<string>
{ <unlabeled statement>) |
<id> ¢
€id> <expression> |
<id>() |
<id> (<expression>C,1*)

A primary is an atom (like an unsigned integer, a variable
name, or a string), or an wunlabeled statement (usually an
expression) enclosed in parentheses, or a function call. A
function with no arguments must have () following it to
distinguish it from a variable. A function with a single
formal parameter may be followed directly by its parameter
which need not be enclosed in parentheses. Functions with
multiple parameters nmust have these parameters enclosed in
parentheses and separated by commas.

5.4 SYSTEM FLAGS

For the most part the RLISP reader works exactly like the
Little BIG LISP readere. There are a number of flags which
affect the way in which the system operates. These are all
prefixed by a * and may be set on by setting them to T or off
by setting them to NIL.

1*DEFN - Initial Value = NIL.
If this variable is non-NIL, the parser form of the RLISP
expression entered will be displayed and not evaluated. By

RLISP

Page 5-7

this means you may examine the parsing of a function or
convert RLISP into LISP. By directing output to a file and
turning on the !'*DEFN flag and reading in an RLISP file, a
file with nothing but LISP can be created.

I*QUTPUT — Initial Value = T
If this variable is NIL, the results of an evaluation of an
expression read by the RLISP reader will not be printed.

s -
This variable will always contain the results of the last
evaluation of the RLISP reader.

5.5 ERROR MESSAGES

The RLISP parser implemented for Little 8ig LISP 1is naot
always successful in parsing. All parsing errors are caught by
the reader which scans to a semicolon when an error is detected
and restarts at the top 1level. The errors are listed here
together with their probable causes.

**kxxk*x Missing Semicolon
When the parser finishes with a form the 1last token must
always be a semicolon or dollar sign. If this is not the
case, an error occurs and the parser scans until one is
found.

**x%xx*x Missing PROCEDURE
The word PROCEDURE did not follow the keywords EXPR, FEXPR,
or SYMBOLIC. This is usually a misspelling of the worde.

x%¥x Missing procedure name
The +token following the word PROCEDURE was not an
identifier.

kxx Missing THEN
In an IF statement, the THEN <could not be found. This
usually means that the expression of the IF was improperly
constructed.

¥x%k*x Missing DO
In a WHILE or FOR statement, the D0 keyword could not be
found. This usually means the conditional expression or FOR
loop object was not properly parsed.

*x**xx Missing END
The last statement of a BEGIN - END block mnust not be
followed by a semicolon, but rather an END. This usually
means that the 1last statement has been improperly
constructed. If the last statement has a semicolon on it,
the END will be an unrecognizable statement.

RL1SP

Page 5-8

kkk%k* Missing >>
The last statement of a do group (<< <.. 2>>») must not be
followed by a semicolon, but rather the >> terminator. If
the 1ast statement is improperly constructed, this error
will occur. If a semicolon fellows the last statement the
unrecognizable statement error will occur.

*xxxx Missing TO
In a GO TD statement, the TO is missing. This is usually
caused by forgetting that RLISP uses GD TO and LISP uses
just plain GO for transfer of control.

x%% nrecognizable statement

This happens when the first token of a statement is not a
keyword, nor can the expression parser make an expression
out of it. If the first word of a statement 1s a keyuword
like ELSE, TO0, DO, or COLLECT, this error will occur.
Usually it means a semicolon in the middle of a statement
before the error, or a semicolon as the last statement in a
block.

*xxk*x Missing (
A formal parameter list that has more than a single variable
or none at all must start with a left parenthesis.

**%%* Missing)
A formal parameter list that is poorly formed or is missing
the closing right parenthesis will cause this error as will
improperly balanced parentheses in expressions.

*x*xx Non-id
Formal parameters must aluways be identifiers.

**x%x* (lperator misplaced
This error occurs when two infix operators occur without an
intervening operand.

x%xx ERAOR TERMINATION

All errors will be suffixed by this message meaning that
parsing will procede only with more user input.

Hhen an error occurs during evaluation, the error message will
be printed followed by the omnipresent ERROR TERMINATION
message. The WS global variable will contain the error message
number.

RLISP

Page 5-9

5.6 STARTING UP RLISP

The RLISP system must first be loaded from the system disk
in the fast load format. The FLOAD function is entered in LISP
format with the name of the file. +When the system has been
loaded properly you enter:

(BEGIN)
and the system will respond immediatly with:
RLISP - <date>

where the <¢date> is the date the system was last created. To
exit from RLISP back into LISP parsing vou enter:

END;
to rhich the system should immediately respond:
ENTERING LTSP «0s

You may reenter RLISP at any time. All the functions of the
basic Little Eig LISP system are available in RLISP and you may
load other packages on top of it, including the compiler, big
number package and so on.

5.7 EXAMPLES

The following few functions 1illustrate some of the
features of RLISP. They are given with their equivalent LISP
translations.

% Factorial in RLISP (see compiler section for LISP).
EXPR PROCEDURE FACT N;
IF N ¢ 2 THER 1

ELSE N * FACT(N - 1);

% SUPREV - super reverse of tree to all levels.
EXPR PROCEDURE SUPREY A;
IF ATOM A THEN A

ELSE SUPREV CDR A . SUPREV CAR A;
{DE. SUPREV (A)

{COND ((ATOM A) A)

(T (CONS (SUPREV (CDR 1))
(SUPREV (CAR A)) 2)))

% A procedure with a WHILE loop.

RLISP Page 5-10

. EXPR PROCEDURE SEMISCANC);
<< WHILE NOT{({TOK!* EQ "1; AND EQN(TYPEl*, 6))
DO NTOK();
NTOK() >>;
{DE SEMISCAN NIL (PROGN
{(PROG NIL
G0008 (COND
((NULL (NOT (AND
(EQ TOK!* (QUOTE 1;))
{EQN TYPE!* 6))))
(RETURN NIL)))
{NTOK)
(GO G0008))
(NTOK)))

RLISP

Page 5-11

List of References

1.

2

3.

Marti, J. B., A. C. Hearn, M. Le Griss, C. Griss,
"Standard LISP Report“, SIGPLAN Notices, Vol. 14, Ho. 10,
October 1979, pp. 48-68, reprinted in SIGSAM Bulliten, Vol.
14, No. 1, 1980.

Griss, M. L., private comnunication.

Hearn, A. C., "REDUCE 2 VUser®s Manual®”, Utah Symbolic
Computation Group, UCP-19, March 1973.

- 5—6

INDEX

L
-
-
-

I*comp .
1*defn .
I*echo -« » «
t*flink
t*flink
I*fslout . «
1*ge -
i*lapp .
I*output .

15e0lts
1893 « «

5-5

Ve
-
i1
[a Mol

2-14

2-14

2-10

4-3

2-13(4"7;
2-16

2-18

s ¢ ° &

- - L J - - - -
- - - - [] L] -
- - - -
- - - - - - -
- L J - - - - -
- - L J - - - - - -
» - - L J - - - - L]
- - L - - -
- - - - L] - -

Append .
Apply

Alist binding

Abs
Addl .
Alloc
And
Assoc
Atom .

Begin
Bptr .
Bput .
Caaar
Caadr
Caar

Cadar
Caddr
Cadr .
Call

4-10
4-10

b ; b
DO N OO D WO WD O D LD

HONNONMNONNNN N

e & g @& 9 4 9 v ¥ 0

*« 8 9 & % 9 3 8 ¥ @

-
L
-
-
-
-
-
-
-
-

- -
- -
- -
- -
- -
- -
- -
- -
- -

Calling functions

Car

Catch
Cdaar
Cdadr
Cdar .
Cddar
Ccdddr
Cddr .
Cdc

[=A T
— D T et

L]

Clist
Close

4-10

1
NN DTN

Cmpnil .
Compiler .
Cond .

Codep
Collect

3' 4‘6, 5"3

5-5

Constantp
Constants

Cons .
Cplus

-
-
-
-
-
-
-
-
-
-
-
-
.
-
-
L J
-

Error termination

Errors .
Fexpr property .

Expr property
Fixp .«

Expt
Fast load error

Potted~-pairs .
Fexpr

Difference .
Do group .
Fast load

Divide
Errorset

Dalloc .
Deflist
Defu .
Delete «
Df<.
Else .
Emsgl* .
End
Entry
Enuml*
kEqn
Equal
Error
Eval
Evlis
EXpPr .
Flag .

De .
Defbh .

r~
!
(o]

L) ™
O N o N~
0 I SR e b
Nel MDD N NM MU -
T 8 @& 2 % ¥ & O 0 O @
¢« & 0 B & 0 0 & 0 2 9

Fu]
s 0 ¢ a2 0 e e 8 & @
a
s ¢ ¢ s E 2T & % v »
[} <]
00 Pl 4 e g R
= m 1] 7}
[JECT I N B T Y TR B N 1
=y} i) Q
e 2 o Q L v v) 42
oA K lanll =1
s o o0 b Q@ ¢ o=
Q) Mo
s s s N E U e L QO
QO Qe
(I W =gy ¥ L = =]
(S o Q
T4 o DD ded vl oo
RNTO A 0 =i
[B = 43 oL
MU O M MMNU~N~L O
- Q0O O RWVINDTD
Ce Cra e (oy Doy Coo [P2y Loy [z oy

Gensym .

Geq
Get

Global

Getd .
Getpls

" e

=)
e Bh4d
=]
o= Q
3 L
r 2O
o ket
LI = ="
-t
mm
£ .0
[=)
= =]
W

Globalp

Go

Go to statement

Greaterp «

If statement . «
Indicators =

Identifiers

Idp

Integers .

Itens
Jpneg
Label
Labels
Lap
Laps .
L.da
Ldhl
Ldi
Ldx
Left
Length .
Leq
Lessp
Link
List .

Local binding

<<
| I
wn N
~ .
I RO WO WO
— v e
LR R L
NN N NN
T 9 ¢ 2 ¢ @
4« & 0 @ [.
¢ @& 9 *+ B @
s @& & & * 9
" 8 9 ® [I]
¢ 0 @& 8 * 2
s @ 8 2 & 9
* 0 ¥ B B0
"« 2 0 9 ¢ 2
s o ®w B 0
« 4 8 & B
e ¢ 9 9 @
-t
LB -0 I~)
© U Qe
DLL L
[« ia V= RN a TRE o PR o T
WMo mMoe
TEZEXTITE

-
-
-
-
-
-
-
-
-
L J
-

-
-
-
L]
-
[]

Max?2
Member .
Memg .
Min2
Mihusp .
Mkcode .
Mkglob .
Mkretf
Nconc
Ncons
Neg

Nil

Not

Ntok
Null
Numberp

2=19
4-7, 5-5

2=~5
2-13,
2

Open .

Onep .
Or

Predicates .

Pairp
Parameters .
Plus

Plus?2

Pop

Prinl

Orderp .
Pair .

-
q_l_gagl
—

™~
]
¥g)
-
~™
1~
<5 |
o~
L)
o h 4 ™N
- NN
RN] 11
NN NN
L T T B TR T Y T TN]
[I S T DN TN D RN R N
" " 0 0 B 8 B 8 B B
e & 9 o ® ¢ ® 8 » @
% & & 5 8 8 & 8 @
LN TN T Y R T Y TR N]
LI N T T R I I I I)
s v 0 ¥ 4 ® * s 9 @
[I T R R N I [2]
et
¢ ¢ o 8 2 ¢) & @
L]
o ¢ » O B o=l o @
B o
[I T « SN0 SRR N BN SR I
c3 +
L= It = %
[BE I 1) = @
[=EN —N ol S B N o N PR o)
vl ol] O O 0 Q R
[SIS T R N TR TR -
[~ PR« Vit = Vi« PRy . W « Vi « PR . TRy =

5~-6

2-18,
2=-117

NN

Real address table .

Reclaim
Return statement

Quoted values
Reverse

Quotient
Remainder

Putd .
Putpls .
Quote
Rds

Read
Readch .
Reduce .
Ret
Return .

-
-
-

-
»
-
-
-

Stack frames
Stack ovflw

Stacks .
Statements .

Right
Rlisp
Rplaca .
Rplacd .
Rst
Scalar .
Scope
Set

Setq .
Stack frame
Sto

Storage allocation .

Stox .

4-9 to 4-10

- - - - -

String space full

Stringp
Strings
Subl

5-4
. 2-10, 4-8

-« 2-2

-
L

-
-
L
-
-
-

-
-
-
-
-
-
-
-

-»
-
-

System global variables

Value statements .

Symbol table full
Variables

Symbolic .
While statement

Sublis .
Subst
Then .
Throw
Times
Times?2
¥Wput
¥rs
Hs .
Xcons
Zerop

