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Abstract

We describe classes of graphs with the minimum number of edges for a
given number of vertices which have no discomnnecting, independent set of
vertices or edges. 2an independent vertex set has no adjacent pair of vertices.
An independent edge set (i.e., a matching) has no pair of edges incident to the
same vertex. A disconnecting set is one which, by its removal, transforms the
given, connected graph into one having at least two connected components. We
note a relationship to previocusly determined extremal graphs having certain

connectivity and forbidden subgraph properties.
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A k-tree with k vertices is a graph whose vertex sct forms a k-clique (i.e., a complete
graph with X vertices): given any k-tree T with n vertices, n 2 k, a k-tree with
n+l vertices is obtained when the (n+l)st vertex is made adjacent to each ;ertex of a.
k-clique in T. The result of Rose (3] restricted to 2-trees states that a graph is a
2-tree iff every minimal separator is an edge. As no set of independent verticeslin—
duces an edge, a 2-tree cannot be disconnected by an independent vertex set. 2-trees

are also minimal such graphs, i.e., one cannot remove an edge of a 2-tree and preserve

the property. The following theorem follows from (3, Proposition 3.3].

Theorem 2.1 Any graph of order n and size less than 2n-3 can be disconnected by some

independent vertex set.

Actually, a graph with any minimal separator containing an edge has the property
of remaining connected after removal of any set of independent vertices and edges. Let
us call this property R. Any 2-tree has property R. In fact, the class of 2-trees is
exactly the class of minimum size graphs with this property.

We first state a technical lemma.

Lemma 2.2 Let Gl and G2 be two 2-trees and (x,yl} and iz,yz) be edqges, respectively in

Gl and G,. The graph obtained by identifying yl and yz as a vertex y and adding a

vertex v adjacent to x, v, and z is a 2-tree.

Proof There is a perfect elimination order [3] reducing G1 to (x,yl) and G2 to (z,yz).
By definition, the subgraph induced by vertices x, y, 2z, v is a 2-tree. Thus, a
construction of G starting with this subgraph and using the reversed elimination

order of adding vertices defines a 2-tree. (1

Theorem 2.3 A graph G of order n » 2 is a minimum size graph with no disconnecting

independent set of vertices and edges iff it is a 2-tree.



Let us define the following reduction rules. We denote them according to the sub-

graphs they elimipate, see Figure 1.

(C2}

{C3)

(C4)

{P2)

Contract any two parallel edges (Figure la). Any two vertices u and v adjacent
through more than one edge are collapsed to result in a single vertex w preserv-
ing all external adjacencies.

Contract any triangle, C (Figure 1lb). The three vertices of such a triangle

3"
collapse into one preserving all external adjacencies.

and u

Contract two independent edges of any Cq. {i'igure 1lc). Let u, U, Uy .

be vertices of a C4 with sets of external adjacent vertices Nl, Nz, N3, and Nq,

respectively. The vertices u, and u_ collapse into w

1 5 whose neighborhood is the

1

union of Nl and N, . The vertex w, results from collapsing u3 and u4 and also in-

4" Vertices wl and w2 are connected by a new

herits their neighborhoods, N3 U N
edge.
Eliminate a vertex u of degree 2 and its neighbor v of degree 3 (Figure 1d).

Connect the other two neighbors of v by an edge and remove u, v and all edges

incident to them.

By a direct count of removed and introduced vertices and edges, we see that the

application of any of the four above rules reduces the size and the order of a given

graph by three edges and two vertices (C3, C4, and P2), or, even at a greater ratio,

by at least two edges and a vertex (C2). We have to prove that these reductions pre-

serve property P.

Lemma 3.1 Given a graph G, let G' be a graph resulting from application of any of the

reduction rules C2, C3, C4, or P2 to G. If G has property P, then G' also has this

property.

[Figure 1]



Lemma 3.2 In a graph G with property P and no C3 or Cd' any vertex of degree 4 can

be adjacent through simple edges to at most d-2 vertices of degree 2.

Proof A matching disconnectina a vertex v of degree ¢ and adjacent to it d-1 vertices

of degree 2 from the rest of G is shown in Figure 2. Thus G cannot have property P.
[Figure 2]

This observation allows us to establish a lower bound on the size-to-order ratio

for non-trivial non-reducible graphs with property P.

Lemma 3.4 A graph G with property P which does not admit application of any of the
reduction rules (C2)-(P2) either has only one vertex or has the ratio of its size

to its order at least 3/2.

Proof If G has more than one vertex, then all of its vertices of degree 2 (if tiere
are any) are adjacent to vertices of degree at least 4. Let S be the set of ver-
tices of degree 2 and F the set of adjacent to them vertices and let us denote
their cardinalities by s and £, respectively. Then ;%; deg{v) = 4f and, by Lemma

3.2, ;%% {deg(wv}=2} 2 25. These inegualities give us2sﬁ?§§eg(v) > 3(s+f}), and thus

E:deg(v)=izdeg(v)+ E:deg(v)+ deg(v) 2 3(s+£)+3(n-(s+f)}=3n
vev 5 i r v-{F VS -
The size of G is thus at least 3n/2, as postulated. []

Considering that all our reductions decrement the size and the order of a graph
with a constant ratio of 3/2, we have finally obtained a lower bound on the minimum size

of graphs with property P.

. Theorem 3.5 A graph of order n with no disconnecting matching must have at least

[3{n-1) /21 edges.

Proof Let G be a graph with property F with n vertices and m edges, and let successive



(AUGL) Augment a vertex v by a pair of mutually adjacent vertices adjacent only
to v.

(AUG2) Replace an edge (w ,wz) by a pair of non-adiacent vertices, each adjacent

1

only to both v, and wz.

Lemma 4.1 A graph G' obtained from a graph G by application of rules AUGl and AUG2

has property P iff G has property P.

Proof In a graph G' obtained by application of AUGL to a graph G, two edges (not in
the added triangle) are independent iff they are independent in G. Also, the ver-
tices of this triangle are non-separable by any independent set of edges in G'.
Hence, the preservation of provmerty P by AUGl. 1In a graph G' obtained from a graph
G by application of the rule AUG2Z to an edqe (wl'wz)' two edges (not adjacent to the
new vertices) are independent iff they are independent in G. Any matching M' in

1 L. : |= . . *
G' disconnects w, and w, iff M {{ul,uz),(u3,u4}}tjd (or, equivalently, (UE’UB) and

t

(ul,u4)) such that MU{(wl.wa)}is a matching in G disconnecting wl and wz. 0]

In the case of reduction by rule C2 when the degree of u {or v) is 2, the ratio
of discarded edges to dropped vertices is 2. Therefore, an inverse augmentation oper-
ation may preserve the minimum size of a graph with property P only if applied to a
graph with odd order. We note that to preserve property P, the added vertex of degree
2 can be made adjacent to any two vertices of an original graph with this property.

Hence the following rule.
{AUG3) Add a vertex of degree 2 adjacent to any one or two vertices of the original

graph.

Lemma 4.2 A graoh G' obtained from a graph G by application of rule AUG2 has property

P if G has property P.
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We have thus shown that the lower bound on the size of graphs with promerty P
which have a given order is attained by an infinite class of graphs. Our augmentation
rules appear to be necessary to construct a graph guaranteeingexistence of a reduction
giving equi-independence between the original and the reduced graphs. This constitutes
a strong evidence to indicate that the above class is indeed exactl? the class of extre-

mal graphs with property P. We were however unable to prove the following statement.

Conjecture 4.4 A graph G or order n > 3 and size m={3({n-1)/2) has property P iff

it can be obtained from a single vertex by a fipite combination of applications

of rules AUGl and AUG2, and exactly one application of rule AUGI.

Conclusions

(¥4}

We have establisned a minimum size of graphs of a given order with no disconnect-
ing independent set of vertices, edges, or both. The notion of a disconnecting match-
ing and the associated numerical results seem to be intriguingly related to the results

for gravhs having bounded local connectivity, see Bollobds {1, Sec. I 5]. Local connect-

ivity is defined for a graph G as the greatest minimum number of vertices (edges) that
have to be removed to disconnect a given palr of vertices of 5. The maximum size of a
graph with local vertex connectivity at most 2 is [3{n-1)/2). Such an extremal graph
is connected, with blocks which are triangles with the exception of at most one block
which is an edge or a C4. A similar result involves extremal graphs not having a sub-
graph isomorphic to a cycle C, a vertex X not on C and two edges joining % to C. This

is a particular case of a semi-topological subgraph; for definition and discussion see

[1, Section VII 3]. Exploring these relationships may helv to prove Conjecture 4.4.
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Figure 1 Four reductions preserving property P.
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Figure 4 (a) A graph G, and (b) the augmented graph G'.



