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Abstract

In a recent paper, Harary and Kabell [5] discuss the problem of determining
the line index of balance of a signed graph. They establish a theorem which
suggests a computational procedure solving this problem. The procedure is based
upon a simple modification of their linear algorithm for detecting balance in
signed graphs. Unfortunately, this procedure would involve considering all
spanning trees of a given signed graph, the number of which may grow exponentially
with the size of the graph. The question arises whether the problem of detax-
mining the line index of a signed graph can be solved efficiently (i.e., in
polynomial time). We show that the problem is indeed difficult, being NP-

complete in the general case.
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l. Computing the index of a signed graph.

Signed graphs have been used in various areas of social science to model pos-
itive and negative relationships among entities [6,7]. A {(combinatorial) grach
G=(V,E) consists of a set V of vertices and a set E of edges, s.t. each edge is

incident to exactly two different vertices. A signed graoh is a graph each edge

of which has been labeled either '+' or '-'. A cycle in a graph is a sequence of
vertices vo,...,vk such that v0=vk, no two other vertices are identical, and
(vi—l' vi) is an edge of the graph (1 $1i < k). The sign of a cycle in a signed

graph is the product of the signs of all edges of the cycle. A signed graph is
balanced if the sign of every cycle is positive. The line index (of balance) of
& signed graph is the minimum number of edges which must be removed to obtain a
balanced signed graph.

A marked graph is a graph each vertex of which has been labeled '+' or '-='.

By the Correspondence Theorem [5, Theorem 1], for each balanced signed graph B
there exist two associated marked graphs (with reversed signs on corresponding
vertices), such that the sign of an edge in the signed graph is equal to the pro-
duct of signs of its end vertices in the associated marked graph. Harary and
Kabell give a linear algorithm [3, Sect. 3] for determining the marked graphs cor-
responding to a given balanced signed graph. The algorithm, henceforth called

HK, employs the notion of a spanning tree of a connected graph G. A connected
grapn is a graph such that a sequence of incident edges exists between any pair

of vertices. A spanning tree of a connected graph G is a connected, acyclic sub-

graph of G containing all vertices of G. Let S be a spanning tree of a connected
signed graph G to which algorithm HK has beer. applied. After vertices of S have
all been marked by HK according to the signs of its edges (branches), the remaining
edges (chords) of G can be classified as compatible or incompatible. An edge is
compatible with the marks of its incident vertices if its sign equals the product

of those marks; otherwise, the adge is incompatible. Harary and Kabell establish




a theorem [5, Theorem 2] stating that the line index of a given connected signed
graph G equals the minimum number of incompatible chords associated with a marked
spanning subtree of G, over all such marked subtrees.

The result suggests a straightforward algorithm for determining the line index
of an arbitrary connected signed graph. Even in relatively simple, sparse classes
of graphs, each graph has an exponential number of spanning trees (as a function
of the number of vertices in the graph) [3]. Therefore, the worst case execution

time of the implied algorithm depends exponentially on the size of the input graph.

2. Complexity of some decisian problems.

Recent research in computational complexity has provided a framework for
evaluating the inherent difficulty of given decision problems (3]. A relevant
complexity concept is that of NP-completeness. It is based on the notion that a
computational procedure is efficient if and only if its execution time grows no
faster than a polynomial function of the size of its input. The class of problems
for which a potential solution c¢an be evaluated in polynomial time is called NP.
The computational complexity of a problem in this class depends upon the number of
its potential solutions and our ability to select correct solutions. There exists
a large subclass of NP consisting of problems which are not known to be solvable by
any efficient algorithm; however, if such an algorithm is found, it would solve
efficiently all problems in NP. The problems in this class are all interrelated by
polynomial time transformations and are called NP-complete problems. The question
as to whether NP-complete problems are efficiently solvable or not has received
much attention in the past decade, but has yet to be resolved.

In this paper, we establish that the problem of determining the line index of
an arbitrary signed graph is NP-complete. We first pose the problem as the follow-

ing decision problem:



Problem: Line index (of balance) of a signed graph, LINE.INDEX;
Instance: A signed graph G and an integer %;
Question: Is there a set of at most % edges of G such that their removal

results in a balanced subgraph of G?

An efficient solution to LINE.INDEX would imply an efficient algorithm to solve
the original optimization problem of determining the line index of a signed graph
G=(V,E). Such an algorithm would involve solving LINE.INDEX only for some values

of k < |E

. We will demonstrate NP-completeness of LINE.INDEYX by presenting a
polynomial time reduction from a known NP-complete problem. The problem involves
determining the maximum value of a cut in a weighted graoh. Given a graph G=(V,E},
a partition P dividing V into two subsets determines a cut, being the set of edges
each of which is incident to a vertex in each of the subsets. For a given weight
function defined on the edges, w: E+Z (where Z is the set of integers), the value

of the cut c(P) equals the sum of weights of edges contained in the cut.

Problem: Value of a maximal cut, MAX.CUT;
Instance: A weighted graph G and an integer k;
Question: Is there a cut with value at least k?

It is well known that MAX.CUT is NP-complete and remains difficult even when the
weights of all edges equal 1 (SIMPLE.MAX.CUT problem [3, p. 210]). Therefore if
the domain of the weight function contains two values, -1 and +1, the ensuing pro-

blem is likewise NP-complete. We define this special case of MAX.CUT as follows:

Problem: Value of a maximal cut, UNIT.MAX.CUT;
Instance: A graph G with edges weighted -1 and +l, and an integer k;

Question: Is there a cut of G with value at least k?



3. Main result.
We will use a polynomial time transformation £rom UNIT.MAX.CUT to LINE.INDEX

to prove that the latter problem is NP-complete.
Theorem 1. LINE.INDEX is NP-complete.

Proof: Assume that we are given an instance of LINE.INDEX: a signed graph
G=(V,E) and an integer k. Let a subset F of at most k edges of G be a pro~
posed solution to the problem. An application of algorithm HK to G'=(V,E-F)
can determine correctness of this claim in linear time. Thus, LINE.INDEX is
in NP,

Now, suppose we are presented with an instance of UNIT.MAX.CUT: a weighted
graph G=(V,E) and an integer k=k1. Let m denote the number of edges weighted

+1l in G (wleog., m > kl) and let k2=m—k Let us define the following con-

1
struction of an instance of LINE.INDEX: for every edge e of G, label e '+’
if w(e)=-1 and '-' if w(e)=+1, and establish the constant k=k2. We will show
that the answers to these two instances of UNIT.MAX.CUT and LINE.INDEX are
identical. Let us assume that the answer to LINE.INDEX is 'yes', i.e., the

removal of some set F of edges, |F| < k,, results in a balanced graph. Then,

2!
there exists a partition P of V into subsets of vertices marked '+' and '-',
such that all edges in E-F are compatible with marks of V. The value of the
corresponding cut c(P) is equal to the difference between the number of edges
in F weighted +1 (i.e., compatible edges signed '-') and the number of edges

in F weighted -1 (i.e., incompatible edges signed '+'). Let us denote by p

the number of incomp&tible edges signed '+' and by g the number of incompatible
edges signed '-', p+g=|F|. Then the cut value equals

(m-q)-p = m=|F| > mk, = kl.

Thus, the answer to the original problem is also 'yes'. Similarly, a cut with



value at least kl determines the marks of vertices of G so that if there

are r incompatible edges signed '+', then at least k.+r compztible edges are

1
signed '-'. This gives the upper bound on the total number of incompatible
edges (in this particular marking) r+(m—tkl+r}l = m—kl = kz. Hence, the
answer to the corresponding instance of LINE.INDEX is also 'yves'.

Thus, an efficient algorithm solving LINE.INDEX could be used to solve effi-
ciently UNIT.MAX.CUT after transforming a given instance of the latter. as

we established that LINE.INDEX is in NP, this completes our proof that

LINE.INDEX is NP-complete. (]

4. Coneclusiocn.

Discovery that a problem is NP-complete prompts the search for efficient
algorithms which either determine approximate solutions in the general domain,
or determine sxact solutions over restricted subdomains. LINE.INDEX proves to
be efficiently solvable on maximal outerplanar graphs, meps, {to be reported
elsewhere, (2].) Mops are an interesting class of graphs being minimum (in number
of edges) graphs with certain favorable connectivity properties [l]. From a social
sciences point of view, mops may represent networks of interacting ternary relation-
ships (i.e., "triangles"). Mops are a subclass of planar graphs, for which the
SIMPLE.MAX.CUT problem is known to be efficiently solvable (4]. This might sug-
gest that UNIT.MAX.CUT and, by our transformation, LINE.INDEX are likewise effi-
ciently solvable when restricted to planar graphs. Unfortunately, correctness of
the known efficient solution algorithm for SIMPLE.MAX.CUT depends upon the fact
that all edge weights are positive. This is not the case for UNIT.MAX.CUT. Thus,
it remains an open guestion as to whether LINE.INDEX is efficiently solvable or

NP-complete on planar graphs.
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