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ABSTRACT

Given a connected graph G = (V,E}, let d{(u,v) denote the distance,
gr length of a shortest path, between vertices u and v. The center of G
consists of the set of vertices u for which the value max {d(u,v): v € v(&)}
is a minimum. The median of G consists of the set of vertices u for which

the sum L d(u,v), v € V(G), is a minimum; and the center and median subgraphs

of G are the subgraphs induced by these two sets of vertices, respectively.
Recently, the center subgraphs of a variety of different classes of graphs
have been characterized; included among these are maximal outerplanar

graphs, 2-trees, unicyclic graphs, cacti and C(4)-trees. This paper

generalizes the result for C -trees by completely characterizing the

{4)

center subgraphs of all C(n}-trees. Several results about the possible

median subgraphs of C -trees are also presented.

(n)
A c(n)-tree is a graph which can be constructed from a cycle of length

n by a finite number of applications of the operation of adding another

cycle of length n and identifying one of its edges with an edge already

in the graph. These graphs are frequently used to describe classes of

chemical compounds.



1. Introduction

In general, a "center” of a graph G = (V,E) is a vertex or a set
of vertices which minimizes some function involving the distance between
an arbitrary vertex and a vertex in the center. For example, one may
want to find the set of vertices U = {ui} each element of which minimizes
the sum D(u) = I d(u,v), v € G, where d(u,v) denotes the distance, or
length of a shortest path, between vertices u and v. The set U is called
the median of a graph G, and the subgraph which it induces is called the

median subgraph. Alternately, one may want to f£find a minimax, e.g. the

set of vertices X = {xi} each element of which minimizes
max { d(v,x): v £ G }.
The set X is called the {Jordan) center of G and the subgraph which it

induces is called the center subgraph.

For a representative sample of the notions of centrality see
[1,3-7,12-18].

Until recently, the only known result which characterized the center
subgraphs or median subgraphs of a given class of graphs was one obtained

by Jordan [8] in 1869.

Theorem 1. {Jordan) If T is a tree, then the center subgraph (and the

median subgraph) of T is either a single vertex or two adjacent vertices.

In 1979, Proskurowski characterized the center subgraphs of maximal
outerplanar graphs [l1l] and of 2-trees (equivalently., C(B)-trees) [(10].
Subsegquently, Mitchell and Hedetniemi [9] characterized the center subgraphs
of unicyclic graphs, cacti and ctq)-trees, and Buckley, Miller and Slater
{2] examined the problem of embedding an arbitrary graph into a supergraph

with required properties. Slater [17] then presented the result for

medians corresponding to that of Proskurowski by characterizing the median



subgraphs of 2-trees, and it was demonstrated that any graph G is the
median subgraph of some supergraph.
In this paper the results in [9] which characterize the center

subgraphs of C -trees are generalized to C )—trees. Results are also

(4)
provided about the median subgraphs of C

(n

-trees.

(n}

Informally, a c(n)—tree is a tree of cycles, each having length n,
where two cycles are either disjoint or have one edge in common. More

formally, a graph G is a C -tree if and only if it can be constructed

(n)
from a cycle of length n by a finite number of applications of the following
operation: add a new cycle of length n and identify an edge of this cycle
with an edge of the existing graph. Every cycle of length n in a C(n)-tree

is called an elementary cycle.

2. Center subgraphs of C(n)-trees

In [9] the following results were presented concerning the center

subgraphs of C -trees and C -trees.

{4) {n)
Theorem 2. (Mitchell and Hedetniemi) The graphs in Figure 1 are the only

center subgraphs of C -trees.

(4)

Figure 1

Theorem 3. {Mitchell and Hedetniemi) Let Sn be the set of graphs which are

center subgraphs of C ~trees, for any n > 3. Then Sn contains {(a) K, ,

{n) 1

{b) Kz, and (¢) the graph containing four vertices Wy UeV WL, where Wy

and v are on one elementary cycle and u,v and w, are on another elementary

2t

cycle.

We next show that the subgraph in Theorem 3(c} is the only center



subgraph of a c(n}-tree which is not contained in one of the elementary
cycles of G. 1In order to do this we will need the following definitions.
A geodesic between two vertices u and v is any shortest path between them.

The eccentricity of vertex u, denoted e(u}, is the length of a longest

geodesic between vertex u and another vertex. The eccentricity of a graph G,

denoted e(G), equals the minimum eccentricity of any vertex in G.

Theorem 4. If G is a C(n)-tree with n > 4, and the center of G is not

contained in one of the elementary cycles of G, then the center consists

of four vertices w,,u,v,w., where vertices w

1 2 114,V are on one elementary

cycle and vertices u,v,w, are on another elementary cycle.

2

Proof. Let Cl' C2, 80D Ck denote the elementary cycles containing a given

~
edge {u,v). Let Ci denote the component of G - {u,v} containing vertices

o d

£~
of Ci' Assume that the center of G contains vertices w1 £ Cl and v, £ C2,

i.e. e(wl) = elw,) = e(G).
We will show that d(u,w) < e(G) and d{v,w) £ e(G) for all vertices

w in G. Let w e:'(.:' U..C' U...U-c’t , and let P be a w, to w gecdesic.
2 3 k W W 1

Clearly., Pw w contains u and/or v. If, for example, it contains v but not u,
1
then the path Puw = U, V, ..., W (where the v to w section of Puw is the

same as in Pw w) ghows that d(u,w) g_d(wl,w). Clearly in all cases,
1
d(v,w) f_d(wl,w) = e(G) and d{u,w) j.d(wl,w) = e{G). Similarly, if
~

w € C, then d(v,w) £ dlw,,w) = e(G) and d(u,w) j_d(wz,w) = e(G). Con-

sequently, e{u) = e(v) = e(G), and the center also contains u and v.
Select v' £ V(G) such that d{(v,v') = e{v), and assume that v' is not

o . .
incC.,. IfP , is a geodesic, then v t P or else d(w_,v') > d{v,v')
2 wzv wzw 2

= a(v) = e(wz). Thus u EPw v Furthermore, d(u,v') = d(v,v') would also
2
imply that d(wz,v') > e(wz), and so d{u,v') = d(v,v') - 1. How if

(wz,u) £ E{G), chen d(wz,v') > d{u,v') + 2 = div,v') + 1 > e(v) = e(wz)-



Hence, (wz,u) £ E(G).

~F
Let u' & V(G) be such that d(u,u’') = e{u). If u' is not in Cz, then

a similar argqument would also show that (wz,v) E E(G). This is a contra-

-~ ~
diction since n > 4. Hence u' ¢ Cz. Note that if v' is not in Cl' then the

argqument above would imply that (wl,v) £ E{G) and (wl,u) £ E(G), again
contradicting the assumption that n 2> 4.

In short, at this point one can conclude that the center of G consists

L

I Lt 3 4 -
of u, v, some vertices of C_, adjacent to u, and some vertices of Cl

5 adjacent

to v.

Let X, denote the vertex on C2 adjacent to u. It will be shown that

Since d(v,u') = d{u,u') - 1 by the argument above, it is easy to see
that u' must be in the component of G - {u,xz} containing v. And clearly
d(xz,u') > d(u,u') - 1. Let y be any vertex of%‘2 adjacent to u (and
different from xz). Since n > 4, one has d{y,u'}) = min {1+d(u,u"),
dly,x,) + d(xz,u')} > min {1 + d(u,u*), 2 + d(xz,u')} > 1 + d(u,u') > e(G).
Hence, v is not in the center.

Thus, W, = X, and similarly W, must be on Cl' and the center is

Wy s v, u, w., proving the theorem.

2

Theorem 5. Let C = {vl, v 50070 vzn} be a cycle of even length. Let

2!

SE€C be an arbitrary subset of C. Then there exists a C(Zn)-tree G,

n > 2, with cycle C and centexr S.
Proof. Let § = {wl, vee wk} be a subset of cycle C = {vl, cee s vzn} of

even length. FPor each vertex w £ S, go clockwise around C to vertices w’

and w" which are distances n-1 and n, respectively, from w. Add cycle C1

of length 2n so as to share edge (w',w") with C. Select the edge in Cl,



i

but not C, which is incident with w"; add cycle C2 of length 2n to this
edge (cf. Figurs 2a). Note that max {d(w,y): vy € Cl u CZ} = 2n, and if

u € C with u # w, then max {d(u,y): v € c, U Cg}.i 2n-1.

For each vertex w € C, w ¢ S, add cycle C, of length 2n, so as to

1

share edge (w',w") in C, where w' and w" are as previously defined. Let

x = (w",y) denote the edge incident with w" that is in Cl’ but not in C.

add cycle C2, of length 2n, sharing edge (v,y'} where y' is not w" {cf.
Figure 2b). Note that max {d(w,z): z ¢ c, U C2} = 2n+l, and if v £ C,
vFw I(lvESorv t S is possible when v # w), then max {d(v,z):
zec, Uc,} < 2n.

The graph G obtained by the above construction has eccentricity e(G) =
2n and the center of G is S, since any vertex not in $ has eccentricity at

least 2n+l.
Figure 2

Theorem 6. Let C = {vl, Voo eees v2n+1} be a cycle of odd length. Let

S & C be an arbitrary subset of C. Then there exists a C(2n+l)-tree G,

n > 2, with cycle C and center S.

Proof. Let § = {wl, B oo wk} be a subset of cycle C = {Vl' “ceey V2n+l}

of odd length. For each vertex w £ S, add the configuration of cycles Cl'
C2 and C3, of length 2n+l, as shown in Figure 3a, to the edge in C opposite

w. Note that max {d{w,y): yec, U c, U C3} = 3n and if v # w with

1
v € C, then max {d(v,y): v € Cl §) C2 U C3} < 3n-1.

LetuecC, u ¢ S. Add the configuration of cycles Cyr Cyr Gy and
C4, of length 2n+l, as shown in Figure 3b, to the edge in C opposite u.
Note that max {d{u,y): v € N u c, U Cg U C4} = 3n+l and if v € C with

v # u, then max {d({v,y): v & c; U c, U c, U C4} < 3n,



Any vertex not on cycle C clearly has eccentricity at least 3n+l.
Thus the graph G obtained by the above construction has eccentricity e{G) =

3n, and the center of G consists precisely of S.

Figqure 3

In summary, for n > 4, Sn consists of the collection of all subgraphs

of Cn and the subgraph z_-o as described in Theorem 4.
© gem

3. Median subgraphs of C(n)-trees

We next present results about the median subgraphs of C(n)-trees. Let
u be a vertex in a graph G. Denote by D{(u) the sum of d{u,v) for all other
vertices v in G. The median of G consists of the set of vertices for which

the sum D{(u) is minimum. We will first show that for even values of n, the

median is contained in an elementary cycle.

Theorem 7. Let (u,v) € E(G) for a graph G where {u,v} is a cutset. Let

R.+ Ro, «eey Rn be the components of G - {u,v} with vertex sets §

1" "2 ¢+ S,

1 20 Tt

. If we s, with

n
i < 5
S+ respectively, and assume Isll <z 8 1

i=2
d{w,u) < d(w,v}, then D{(u} < D(w).

Proof. Let d{w,u) =k > 1. Then d(w,v) = k+l. If x ¢ si with i > 2, then
clearly d(w,x) = d{u,x) + k; if x € sl' then d(u,x) < d{w,x) + k. Hence

we have the following:

D{w) = d{w,v) + d(w,un) + L d(w,x) + L diw,x)
X E Sl X E Si
i>2
In
> D{u) + 2* k ~k-|51| + k.U s|
i=2

> D{u).



Corollary 8. The median of a C(Zk)-tree is contained in an elementary

cycle of G.

Proof. C(2k)_ trees are bipartite. But (u,v} £ E(G) with d(w,u) = d{w,v)

implies an odd cycle.

It is shown in {17] that the median of a C(B)-tree is contained in an

elementary cycle, i.e. a triangle. The C(S)-tree in Figure 4, however,

has two median vertices in different cycles {as identified by sguares).

Such an occurrence can be found in any C -tree for any k > 2. Some

(2k+1)
relatively complicated applications of Theorem 7 can be used to prove

the following result.
Figure 4

Theorem 9. The median Mof a C -tree is contained in either cne

{2k+1)
elementary cycle or two adjacent elementary cycles. If M has vertices from
c, - {u,v} and c, - {u,v} (as in Figure 5), then exactly one of W

and v, is in M, and if u € M then M N {ul, LOVERERY “2k-l} = {uk}.

FPigure 5

To date we have not completed a proof characterizing the structure of

el ¥ }.

MmO {v,. v S

2!
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