CIS-TR- §1 - a2

COMPUTING THE LINE INDEX OF BALANCE
OF SIGNED OUTERPLANAR GRAPHS
by
Arthur M. Farley and Andrzej Proskurowski
Department of Computer and Information Sciences
University of Oregon, Eugene, Oregon, 97403

Abstract
In a recent paper, Harary and Kabell discuss the problem of deter-
mining the line index of balance of a signed graph. They suggest
a solution algorithm which would invelve considering all spanning
trees of a given graph in order to compute the index of this graph.
The number of spanning trees may grow exponentially with size of
the graph. We show that the problem is indeed difficult, being NP-
complete in the general case. Subsequently, we give an efficient
(Tinear time) algorithm solving the problem for outerplanar graphs
with bounded size of interjor faces.

1. Introduction

Signed graphs have been used in various areas of social science
to model positive and negative relationships among entities [5, 6]. A
(combinatorial) graph G=(V,E) consists of a set V of vertices and a
set £ of edges, such that each edge is incident to exactly two differ-
ent vertices. A signed graph is a graph each edge of which has been

labeled either '+' or '-'. A cycle in a graph is a sequence of

vertices Vo""’vk such that v0=vk, no other two vertices are identical,
and (v, ;, v;) is an edge of the graph (1sick). The sign of a cycle

in a signed graph is the product of the signs of all edges in the

cycle. A signed graph is balanced if the sign of every cycle is
positive. To determine the line balance of a plane signed graph G we
need only check balance of its all interior faces. This follows

from the fact that the interior faces of G form a cycle basis under
operation of symmetric difference over the set of edges. Thus the



L]

sign of any cycle of G is given by the product of signs of its con-
stituent interior faces. The line index (of balance) of a signed graph
is the minimum number of edges which must be removed to obtain a
balanced signed graph. '

A marked graph is a graph each vertex of which has been labeled

'+' or '-'. By the Correspondence Theorem (4, Theorem 11, for each
balanced signed graph there exist two associated marked graphs (with
reversed signs on the corresponding vertices), such that the sign of
an edge in the signed graph is equal to the product of marks of its

end vertices in the associated marked graph. Harary and Kabeil give

a linear algorithm [4, Sect. 31 for determining the marked graphs as-
sociated with a given balanced signed graph. The algorithm, henceforth
called HK, employs the notion of a spanning tree of a connected graph G

which is a connected, acycltic subgraph of G containingall
vertices of G.

Let S be a spanning tree of a connected signed graph G to which
algorithm HK has been applied. After vertices of S have all been
marked by HK according to the signs of its edges (branches), the
remaining edges {chords} of G can be classified as compatible or
incompatible. An edge is compatible with the marks of its incident
vertices if its sign equals the product of those marks; otherwise,
the edge is incompatible. Harary and Kabel estabiish a theorem [ 4,

Theorem 21 stating that the line index of a given connected signed
graph G equals the minimum number of incompatible chords in a spanning
subtree of a marked graph associated with G, over all such subtrees.
The result suggests a straightforward algorithm for determining the
line index of an arbitrary connected signed graph. Even in relatively
simple classes of sparse graphs, each graph has an exponential number
of spanning trees (as a function of the number of vertices in the
graph) [7]1. Therefore, the worst case execution time of the implied
algorithm depends exponentially on the size of the input graph.

The problem of determining the 1ine index of an arbitrary signed



graph appears to be difficult, in general. 1In [2] we establish that
indeed it is NP-complete. This result has been obtained independently
by Chvatal (private communication). We will briefly present our
argument. We first pose the problem as the decision problem:
Problem: Line index (of balance) of a signed graph,

LINE.INDEX;
Instance: A signed graph G and an integer K;
Question: Is there a set of at most K edges of G such that their
removal results in a balanced subgraph of G?

An efficient solution to LINE.INDEX would imply an efficient
algorithm to solve the original optimization problem of determining
the line index of a signed graph G=(V,E). Such an algorithm would
involve solving LINE.INDEX only for some values of K<|E|.

NP-Completeness is most often established by demonstrating poly-
nomial-time reduction from a known NP-complete problem. In this case,
it is the maximal-cut problem. Given a graph G=(V,E}, a partition of
V into two subsets determines a cut, being the set of edges each of
which is incident to a vertex in each subset. For a given weight
function defined on the edges, w: E-->Z (Where Z is the set of all
integers), the cut value equals the sum of weights of the edges con-
tained in the cut,

Problem: Value of a maximal cut, MAX.CUT;
Instance: A weighted graph G and an integer k;
Question: Is there a cut with value at least k?

MAX.CUT is NP-complete and remains difficult even when the
weights of all edges equal 1 (SIMPLE.MAX.CUT problem (3, p. 2101).
Therefore, if the domain of the weight function is generalized to
contain two values, +1 and -1, the ensuing problem (UNIT.MAX.CUT) is
likewise NP-complete. In [2]we present a polynomial time trans-
formation from UNIT.MAX.CUT to LINE.INDEX, proving that LINE.INDEX is



NP-CompTlete.

2. Computing the 1ine index of signed outerplanar graphs

Discovery that a problem is NP-complete prompts the search for
efficient algorithms which either determine approximate solutions in
the general domain, or determine exact solutions over restricted sub-
domains. We chose the latter course of action. LINE.INDEX proves to
be efficiently solvable on maximal outerplanar graphs, mops. Mops
are an interesting class of graphs being extremal graphs with certain
favorable connectivity properties [1]. From a social science perspect-
ive, mops may represent networks of interacting ternary relationships
(i.e., "triangles"). An outerplanar graph is a planar graph which may

be embedded in the plane so that every vertex is on the exterior face.
A maximal outerplanar graph (mop) is a 2-connected outerplanar graph

such that every interior face is a 3-cycle (i.e. a triangle). Mops
can be equivalently defined as follows:

(i) a triangle is a mop; and

(ii) any mop G having n>3 vertices can be obtained from a mop G'
having n-1 vertices by connecting a new vertex to two adjacent vertices
on the exterior face of G'.

We define an algorithm, requiring linear time and space, which deter-
mines the line index of balance of an arbitrary signed mop. The
algorithm is straightforwardly adaptable to general outerplanar graphs
having bounded size of interior faces. The decreased algorithmic
difficulty of general problems when restricted to outerplanar graphs
seems to be due to by the close relation of such graphs to acyclic
graphs. For a two-connected outerplane graph, such as a mop M, the
associated tree, T(M) [81,has internal nodes which correspond to the

interior faces of M and external nodes, all corresponding to the

exterior face of M. Each line of T(M) "crosses" an edge of M, see
Figure 1. For a signed mop M we associate with each line of T(M)} the
sign of the edge of M it crosses.



Figure 1 A mop and its associated tree

We will call a signed forest F stable if for any subset S of its
internal nodes, the product of signs of edges between S and V(F)\S is
positive. Let us call the product of signs of edges incident to a node
the sign of that node. For any subset S of internal nodes of F, the
edges of the cut defined by S constitute the symmetric difference of
the sets of edges incident with each node of S. Thus, the produce
of signs of the cut edges is equal to the product of sign nodes in S.
Stabiiity of a forest F is equivalent to the stability of all its
node sets consisting of single nodes. It is now easy to see that a
signed outerplane graph G is balanced if and only if its associated
tree is stable.

In analogy to the removal of an edge in the process of balancing
graphs let us define contraction of a line in a forest. This opera-
tion results in collapsing the nodes incident with the Tine into a
new node, preserving adjacencies with other nodes. Contracting a
pendant 1ine (i.e., incident to an external node) results in a



number of new external nodds. The lines incident with the Bther end
node of the contracted 1ine are now pendant and incident with the new
nodes. The minimum number of lines that have to be contracted to
stabilize a given forest F is called the stability index of F.

Theorem 1 The line index of a signed outerplane graph G is equal to
the stability index of its associated tree T(G).

Proof We will prove it by induction on the line index. If G is bal-
anced, then T(G) is stable, as the stability of an internal node
of T(G) corresponds to the balance of an interior face of G. Let
us assume that the theorem holds for all graphs with the line index
greater to or equal to k, and let G be an outerplane graph with the
Tine index equal to k+1. Obviously, T(G) has the stability index
exceeding k, or else the inductive assumption would not hold. There
is an edge e such that its removal from G results in an outerplane
graph G' with line index k. The stability index of T(G') equals k
and T(G') is a forest obtained from T(G) by contracting the line
corresponding to e. This proves the theorem. 3

Based upon this theorem, an algorithm computing the stability index
of a trivalent tree can be used to compute the 1ine index of a mop.
The algorithm prunes leaf nodes of the current tree C, initially equal

the given signed tree. With every pruned node the algorithm associates
two values: the minimum number of 1ines that must be contracted to
stabilize the previously pruned nodes while stabilizing the current
node under assumption that the remainder of the current tree will
contribute sign product of (i) plus or (ii) minus. We define an
external node to be stable,

Algorithm; Stability index of a signed trivalent tree.
Input: A signed trivalent tree T.
Qutput: Stability Index of T.
Method:
[0.] Set C to T;
[1.] For each leaf v of T



[1.7] initialize values associated witﬁ v,
1.2] prune v from C;
f2.] While there are more than one node in C do
.11 let w be a leaf of Cwith pruned neighbors x and y
2.2] determine the minimum number of lines
that must be contracted to keep subtrees
rooted at x and y stable and
[2.2.1] w be stabilized by a "+"
[2.2.2] w be stabilized by a "-",
[2.3] prune w from C;
[3.]1 Let r be the last vertex in C with pruned
neighbors x, y, and z;
f4.] Set Stabilitylndex to the minimum number of lines
which must be contracted to stabiiize r, and subtrees
rooted at x, y, and z.

Theorem 2 Atgorithm 1 computes correctly the stability
index of a signed trivalent tree. It can be implemented
to execute in time proportional to the size of its input.

Proof The stability of the pruned nodes of T under con-
traction of the minimum number of lines is invariant
during the execution of the while loop [2] . Also, Jeaf
nodes of the current tree C have the proper values assoc-
iated with them. Considering the four cases of possible
combinations of l1ine signs for (w,x) and (w,y), values
w.p and w.m can be determined in constant time based on
the values for x and y.

Case sign (w,x) & sign {(w,y) of

-k 'Yy w.piE=min{24x.p+y.p, T+x.m,y.m)
w.m:=min{1+x.p+y.m, Y+x.m+y.p)

U LI R w.p:=min(i+x.m+y.m, 1+x.p+y.p)
w.m:=min(x.p+y.m, 2+x.m+y.p)

L TR w.p:=min(1+x.m+y.m, 1+x.p+y.p)
w.m:=min(x.m+y.p, 2+x.p+y.m)



'+ & '"+' : w.p:=min(x.pty.p, 2+x.m+ty.m)
w.m:=min{l+x.m+y.p, T+x.m+y.p)

If a 1ine, say (w,x), is contracted, then nodes of the sub-
tree rooted at x remain stable accordfng to the inductive
assumption. The new node w will be stabilized by the rest
of the current tree according to signs of lines incident
with x and the sign of (w,y). If the end node x of the
contracted Tine is a leaf, then w becomes a l1eaf and thus
is stable independently from the contribution of the rest
of C. The stability of the other node, y, depends on the
sign of (w,y) and the values associated with the node.
Upon exit from the loop [2.], the only remaining node w of
C has three pruned neighbors x, y and z. Case analysis

of the signs of the three 1ines considering the values
associated with the nodes results in a constant time
determination of the StabilityIndex. The program segment
performing this case analysis is given in Figure 2. I}

Case sign (w,x)&sign{w,y)&sign(w,z)of
PotR'-'&'-': StabilityIndex:=min{l+x.p+y.m+z.m,
T+x.m+y.ptz.m, 1+x.m+y.m+z.p, 3+x.p+y.p+z.p)
"+'&'-"'&'-': StabilityIndex:=min(x.p+y.m+z.m,
2+x.p+y.p+z.p, 2+x.m+y.p+z.m, 2+x.m+y.m+z.p)
'-'&'+'&'-"': StabilityIndex:=min(x.m+y.p+z.m,
2+x.pty.p+tz.p, 2+x.pty.m+z.m, 2+xX.m+y.m+z.p)
'-rg'-'8'+' ;. StabilitylIndex:=min(x.m+y.m+z.p,
2+X.pty.p+z.p, 2+x.p+y.m+z.m, 2+x.m+y.p+z.m)
'+'8'+'&'-*:  StabilitylIndex:=min(l+x.p+y.m+z.m,
T+x.m+y.p+z.m, V+x.p+y.p+z.p, I+x.m+y.m+z.p)
"#0&' &+ StabilityIndex:=min(l+x.pty.m+z.m,
T+x.m+y.m+z.p, VY+x.p+y.ptz.p, 3+x.m+y.p+z.m)
"-'&'+'&'+': StabilityIndex:=min(l+x.m+y.m+z.p,
T+x.m+y.p+z.m, V+x.p+y.p+z.p, 3+x.p+ty.m+z.m)
P&+ Stabilitylndex:=min{x.p+y.p+z.p,
2+x.pty.m+z.m, 2+x.m+y.p+z.m, 2+x.m+y.m+z.p)

Figure 2 Case analysis for processing of the root node.

We have implemented Algorithm 2 in the programming



language Pascal. Figute 3 illustrates execution of the
program on the associated tree of the mop in Figure 1.

Figure 3 Values associated with nodes of a tree during
execution of algorithm determining the stability index
(Algorithm 1).

3. CLonclusion

Algorithm 1 can be extended to apply efficiently to
graphs having bounded size of interior faces by generali-
zation of the case analyses. We are currently investigating
problems related to the Tine index of balance. The sign
index problem {minimum number of sign changes necessary
to balance a signed graph) is equivalent to the line index
problem, and thus NP-complete. Algorithm 1 can be modified
to solve it efficiently for maximal outerplanar graphs.

The vertex index problem (minimum number of vertices which

have to be removed to balance a signed graph) seems like-
wise to be difficult.
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