CrS-TR-§)-4

GRAPH TRAVERSAL WITH MINIMUM STACK DEPTH

Terry Beyoer
sandira Hedetniomi
. Stephen Hedotniomi
fndrzej Proskurovskl

Cepartment of Cumputer and Informylion Seiepco
niversity of Oreqon
Eugene, CR 97403

Abstract

A vertex traversal of a graph is a sequence of open and close
operations applied io the vertices of the graph subjeci To the following
constrainis. Any wverdoex may be opened initially. Thereafter, only a
veriex which is adjaceni 1o o currently open vertex may be opened. A
vertex may be closed ab any time but may never be reopened. A shift
operation which simultancously closes ona vertex and opens an adjacent
vertex is also aliowed. The traversal is complele when all vertices
have been opened and closed. The depth of a traversal is the maximum
number of vertices open ot any moment during the traversal. The depth
cf a vertex is the minimun depth of any fraversal starting at that
vartex. A vertex of mininwum depth is called an optimal vertex.

We show the following: dhe problem of compuling the depth of a
vertes in an arbitrary jraph is NP-complete; ihe depihs of any fwo
vertices in a fTrec differ by ot most one; and an algorithm can be
consiructed for finding an optimal vertex in 2 1ree and its depth,
which is Iinear in the nuwber of vertices in the tree. We also

4

characterize the locations of optimal vertices in a Tree.

1. Introduction ' .

In most network theoretic computations it is necessary to examine
every vertex or edge of a network in some order. A standard method for
doing this is to employ a recursive procedure, due to Tarjan (37,
called depth-first search. In this procedure one visits (examines)

a vertex only if it has a previously visited, neighboring vertex. In
the process of visiting a new vertex the previously visited, adjacent
vertex is placed on a pushdown siack in order fto remember how the vertex
was reached. The process of visiting every vertex in this way creates

a traversal of the network. It Is natural to ask, among all depth-first
traversals of a given network, what is the minimum number of vertices
that must be placed on the pushdown stack?

This question has important practical consequences when performing
depth-first traversals of very large networks, since the number of ifems
on the pushdown stack determines a minimum amount of additional memory
which is required to carry out the computation. In one case in point,

a computation on a Galcis field with 108 elements involved the con-
struction of a coset graph. Each new verfex that was visited in this
coset graph required an additional 103 elemenis to be placed on the
pushdown stack,

In this paper we show that the problem of determining the minimum
number of vertices that must be placed on the pushdown stack in a depth-
first traversal of an arbitrary graph is NP-comptete. However, we
present a |inear time solution to this probiem when the graph is a tree.

In a somewhat related paper, Kemp [Z2] has considered the number

of registers needed o evaluaie a binary tree.

2. Definitions
A vertex is said to be open when it is placed on a pushdown stack;
it is said to be closed when it is removed from the stack. A traversa!l

of a graph G from an initial vertex v is a sequence of open and close

operations on the vertices of G such that:

i) the first aoperation is fo oﬁen v;

2) each vertex is opened and closed exactly once; and

3) a vertex may be opened only if

‘ a) it is adjacent to an open vertex, or

b) it is adjacent to a vertex which has just been closed.

We refer to the operation in 3b) as the slide operation. The motivation
for allowing a vertex to be cpened if it is adjacent to a vertex which
has just been closed comes from the coset application and corresponds
to the process of transforming one coset infto another by multipiying
each element on the right by a fixed group element. This simultaneously
closes the first coset and opens the second.

The (stack) depth of a traversal of a graph G is the maximum

number of vertices open at any tTime during the traversal. The depth

of a verftex v is the minimum depth of any traversal of G originating

at v. An optimal vertex is a vertex of minimum depth in G.

3. Preliminary results

Proposition |. Let G be an arbitrary graph. The problem of

determining if G has a vertex of depth k, for a fixed k& 1, is NP-complete.
Procf. It is easy tc see that a graph G has a vertex of depth 1 if
and only if G has a Hamiltonian path {(cf. T1, p.199)).

Although the problem of finding an optimal vertex in an arbitrary
graph is NP-complete, when resfricted to trees, it can be solved in
linear Time. In what follows we will resirict our attention to trees
and demonstrate this result. In Section 4 we present a linear algorithm
for tinding an optimal verfex in an arbitrary tree T. The results in
this section can be used to prove the correctness of this algorithm,

Note that given a ‘raversal of an arbitrary graph G, we may
extract a rooted, spanning Tree from the traversal by taking its
starting vertex as the root and by taking as the parent of any other
vertex v, that adjacent vertex p(v), which was open {(or just ciosed} at
the time v was opened, under condition 3) in the definition of a
fraversal. |f more than cne vertex is a candidate for p{v}, we arbi-

trarily choose the one most recentiy opened.

It can be proven, although it will be omitted here, Théf for any
traversal of depth d, there is an equivalent traversal of depth d or
less which is aiso a depth-first traversal of the corresponding spanning
tree. The proof proceeds by showing how to reorder the sequence of
open and close operations without increasing the depth of the traversal.

The problem of finding an optimal vertex» in a ftree which is a path
Is trivial. Each endvertex is optimal, of Jdepth 1, and every other
vertex is non-optimal, of depth 2. Therefore, we will consider only
trees T which are not paths.

Let u and v be adjacent vertices in a tree T and et Ts be The

maximat subiree of T containing v but not u (cf. Figure 1). The

influence of v on u, denoted inf(v,u), equals the depth of v in T:.

Figure 1.

The tollowing result relates the depth of a vertex v to the
maximum influence on v of its neighbors.
Theorem 2. Let v be a verfex in a tree T and fet m be the

maximum influence of any neighbor of v on v. Then the

depth of v in T = m if only one vertex adjacent to v
has influence m on v
mtl otherwise
Proot. in any traversal of G from the initial verftex v we must
hotd v open while traversing each of the neighboring subtrees except
the last, To which we may slide. Thus, if the maximum influence comes
from a unique neighbor, we may siide to that neighbor last and its depth

in its subtree will determine The depith of the optimal traversal from v.

However, if there are two or more neighbors exerting maximum influence
on v then we must hold v open during the traversal of one of these
subftrees and hence must add 1 to its infiuence. We assume of course

that all subtrees are traversed in an optimal way,

Corollary 3. Let u and v be two adjacent vertices in a tree T
and let inf{u,v) = d. Then every vertex in T: has depth in T not less
than d,

Proof. This foliows easily from the definition of influence and

Theorem 2.

Theorem 4. The depths of any two vertices in a tree T differ
by at most one.

Proof. Let d be the maximum depth of any vertex in T and let v
be a vertex of depth d. By Theorem 2 either v has two or more neighbors
exerting influence d-1 on v or v has a unique neighbor exerting an
influence of d. In the latter case, one can follow a chain of unique
maximum influences back until one reaches a vertex w having two or
more neighbors whose influence on w is d-i.

Now every vertex of T is under the propagated influence of at
teast one of these two vertices, and hence, by Corollary 3, can have

depth no fess than d-1.

A vertex of depth d is called critical if it has three or more

neighbors whose influence on it is d-1 or greater.

Theorem 5. A critical vertex is optimal and exerts the same
influence on each of its neighbors,

Proof. Let v be a critical vertex of depth d. Then v exerts an
influence of d on each of its neighbors, since no matter which neighbor,
say u, is chosen, v has at least two other neighbors whose influence
of d-1 or more combines in v to exert an influence of d on u. Since
v is of depth d it cannot exert an influence greater than d. The

result now follows from Corollary 3.

Theorem 6. Any tree T has at most two critical vertices,
Proof. Assume to the contrary that a tree T has three critical

vertices. By Theorem 5 they are all optimal and hence must all be of

the same depth d. |f they all lie on a commen path, then the critical
vertex in the middle will receive a propagated influence of d from each
of the other two critical vertices, and hence connot be of depth d.

I# the three vertices do not lie on a path then the propagated influence
of any two will combine at an intermediate vertex to form an influence
of d+1, which will raise tThe depth of the third critical vertex to

more than d. Thus, we have a contradiction in either case.

Theorem 7. Let v be a non-critical vertex of a tree T. Then v
is non-optimal if and only if there exist two critical vertices either
of which can be reached from v by a path not containing the other vertex.

Proof. Let d be the depth of an optimal vertex of T. If either
of two critical vertices is reachable from v wiihout passing through the
other, then their influence of d will combine to raise the depth of v
to d+i, making v non-optimal.

How suppose that only one critical vertex, say y, can be reached
from v without passing through another critical vertex. We must show
that v has minimum depth d. Suppose not. By Theorem 4 v must have
depth d+1. Without loss of generaiity we can assume that no vertex on
the path from v to y has depth d+1. Assume that vertex u is the
neighbor of v which is closer o {or is) the critical vertex y. Then
inf(u,v) = d, for otherwise u would have depth d+1, which contradicts
ouf assumption about v. Since the depth of v is d+1, there must exist
a second neighbor of v, say w, with inf(w,v) 2 d. But inf(w,v} < d+1,
for otherwise the influence of J+1 would propagate to the critical
vertex whose depth is only d¢. Thus, inf(w,v) = d. Since v is not
critical, all neighbors of v except u and w must have an influence
of less than d on v. Thus, inflv,w) = d.

¥We now focus our attention on the edge (v,w). |t has these
properties: (1) inf(v,w) = inf{w,v) = d, and (2) there is no critical
vertex in T:. Now choose an edge (v',w') having these two properties,
which is farthest from fthe critical vertex y reachable from v. Now
inf(w',v') = d and since w' is not critical, w' must have one other
neighbor x' such thai inf(x',w') = d. Furthermore, all other neighbors
of w' must have influence £ d-1 on w'. But fthen we know That

1
. . f P . v .
inflw',x') = d. Since fthere is no critical vertex in Tw" there is no

. .
critical vertex in T:,. Hence, we have found an edge satisfying the

two properties above, which is farther from a critical vertex than
(vl',w'), which contradicts our selection of (v',w') as the farthest

such edge,.

4, An algorithm for finding an optimal vertex in an arbifrary tree

We next describe an algorithm which prunes an arbitrary tree T,
one leaf at a time, reducing it to a single vertex. We then prove that
this vertex is critical in T. During the pruning process the reduced
tree consists of the set of vertices of T not yet pruned. The influence
of a leaf is its influence on its unique neighbor. We associate with
each vertex v enough information so that when v is pruned, we can compute
its influence. For this purpose it is sufficient to associate two
values, max and mult, with each vertex: for an interior vertex v,
max{v) is the maximum influence on v of all neighbors of v which have
already been pruned, and mult{v} is +the number of such maximum neigh-

bors; for each leaf of T, max and muit are initialized fo 1.

Pruning Algorithm € To reduce an arbitrary, non-path tree T to a critical

vertexl
{initialize)
For every interior vertex u of T, set max{(u} = mult(u} = Q0.
For every leaf v of T, set max(v) = multlv) = 1.
White T contains more than one verfex do
[Setect a leaf]
1f there was an immediately preceding pruning step and that step
created in the reduced free a new l{eaf whose infiuence equals
the minimum influence of any leaf in the reduced tree
then select that leaf
else select any leaf of minimum influence in the reduced tree
end if
{Compute the influence of the ieaf]
Lat the leaf selected be v and its unique neighbor in the
reduced ftree be u.

Set inflv,u) = (if mult{v) = 1 then max{v) else max(v)}+i)

[Update values for ul
1t inflv,u) > max(u)
then max{u) = inflv,u)
mulit(u) = 1
else if inflv,u) = max(u)
then mult{u) = mult{u)+1
end if
end if
[Prune the leaf]
Set T=T- v
end while

end algorithm

We observe, without proof, the following:

{13 The vertices of T are pruned in non-decreasing order of
their infiuence. This follows from the selection criteria
employed by the algorithm and the propagation of influence.

(2) At any given moment the leaves of the reduced free have at
most two values of inf. This is because of (1) above and
Theorem 4,

(3} The final vertex in T has depth > 1 and vertex degree = 3.
This follows from (1), the fact that T is a non-path free,
and the fact that the selection criferia prunes all vertices
of degree 2 in T as soon as they become leaves in the
reduced tree.

{4) The algorithm can be implemenied so that it executes in
linear time in the number of vertices of T. A double-ended
queue can be used to maintain the ieaves in the reduced tree
with all leaves of minimal inf preceding all vertices of

non-minimal influence.

Theorem 8. The vertex which remains unpruned at the termination
of the Pruning Algorithm is critical in T.

Proof. Let v be the vertex which remains at the end of the
Pruning Algorithm and let its depth in T be d. Let k be the degree
of v in T. By observation (3), we know that k2 3. Thus, d2 2. Let

where u, is pruned before u,

The neighbors of v in T be u Che

TLOYEERITIY
for all i. By observation (1), we know That inf(ui,v)'ﬁ inf(ui+],v),
for all i, 1% i < k-1,

Now assume that v is not critical. Then Inf(uj,v)‘ﬁ d-2, for

j % k-2. Since the depth of v is d we must have either

Inf(uk_i,v) = inf(uk,v) = ¢-1 or inf(uk_],v)-é-d—l and inf(uk,v) =d.
We will now show that in either case v must be pruned befors Uy due
to the selection criteria. In the first case, v must be pruned immed-
iatety after U _q» since inf(uk_],v) = d-1 = inf(v,uk) implies that
the Pruning Afgorithm is currenily pruning leaves with influence d-1
and v is the newest such leaf. In the second case, after Uk—t is
pruned we will have inf(v,uk) 4 d = inf(uk,v), and hence v must he

pruned before u Thus, v must be critical.

K
5. Summary

Combining Theorems 4 through &, we see tha! every non-path tree T
has either one or two critical vertices. All vertices are optimal if
T has only one critical vertex and if T has two critical vertices,
then the non-optimal vertices have depth only one greater than optimal
and lie in that portion of T which is reachabie from either critical
vertex without passing through the other.

Finally, the Pruning Algorithm can easily be extended so that

(1) the depth of every vertex in T can also be computed, by

backtracking, and

(Z) both critical vertices can be found if two of them exist.

Since the problem of finding tThe depth of a vertex in an arbitrary
graph is NP-complete, while in an arbitrary tree it can be found in
linear time, it would be inferesiing to find other classes of graphs

for which the depth can be computed in polynomial time.

6. Bibliography

C 11 Garey, M. R. and Johnson, D. 5., Computers and Intractability:
a guide o the theory of NP-completeness, W. H. Freeman and
Co., San Francisco, 1979.

L 2) Kemp, R., The average number of registers needed to evaluate
a binary tree optimatly, Acta Informatica, 11(1979), 363-372.

L 3 Tarjan, R., Depth-first search and linear graph algorithms,
SIAM J. Comput., | (1972), 146-160.

