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Abstract

This survey reviews more than 50 papers concerning
the mathematical study of information dissemination pro-
cesses. Emphasis is given to the study of two of these
processes, called gossiping and broadcasting. In gossip-
ing, each person in a group has a unique item of informa-
tion and must transmit it to everyone else. Thus gossip-
ing is an all-to-all process. In broadcasting, only one
person has an item of information which must be transmitted
to everyone., Broadcasting is thus a one-to-all process.
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1. Introduction

In 1949 and 1950, Leavitt [38] and Bavelas [2], respectively,
studied the effectiveness of different communication patterns in
helping small groups of people solve common tasks. A typical task
studied was the following: each of five subjects is dealt five
'playing cards; the cards may not be passed around, but the subjects
may communicate with one another according to a given communication
pattern by writing messages; the task is considered finished when
each subject selects one of their five cards so that the five
cards selected comprise the highest ranking poker hand that can be
made by selecting one card from each person. (We assume that each
subject has a perfect knowledge of poker hand ratings.) For
communication patterns such as those indicated in Figure 1, Leavitt
and Bavelas considered such measures as the number of messages
required, the time required, the average number of errors made
and the ratings of morale and satisfaction in completing such

tasks.
Figure 1

In 1954 Landau [37] studied task-oriented groups in which
each individual, initially, has one piece of information which
must be transmitted to all the others in order to complete a task.
At every sending time, each individual sends all the information
they have acquired to one other individual. A typical example of
a task in this case is the following: "each individual is given
a set of colored marbles, only one color being common to all the

group. The members of the group must exchange messages about



their own colors and what they have learned about the colors of
the others, until finally everybody knows the common color.
Messages are sent only after everyone has indicated readiness to
transmit; the transmissions then take place simultaneously, each
individual sending to just one of their possible recipients. Each
member of grouﬁ knows initially to whom they can send messages,
but does not know to whom the others can send." {37] A major
assumption that Landau made was that each individual picks a
recipient at random from among those to whom they are permitted
to send messages, with equal probability of picking any oﬁe of
them. For a variety of communication patterns among three and
four people, Landau determined the expected value of the time it
would take to complete such a task.

A natural step in the progression of studies of communication
processes occured some eighteen years later when Hajnal, Milner
and Szemerédi(1972) [28] attributed to A. Boyd the following
problem: "There are n ladies, and each one of them knows an item
of scandal which is not known to any of the others. They communi-
cate by telephone, and whenever two ladies make a call, they pass
on to each other, as much scandal as they know at the time. How
many calls are needed before all ladies know all the scandal?"
[28]. This problem, which has become known as the Gossip Problem,
or the Telephone Preblem, has in turn been the source of more than
three dozen research papers that have studied problems concerning
the spread of information among a set of people, whether it be by
telephone calls, conference calls, letters or even computer net-

works.
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contained the following result.

(1) Let f(n) equal the minimum number of calls necessary to
complete gossiping among n people. Then f(n) satisfies
the following: £(1) = 0; £(2) = 1; £(3) = 3 and

f(n) = 2n=4, for n > 4.

This result was proved by R. T. Bumby [6] and J. Spencer
(unpublished) (cf. [281), Hajnal, Milner and Szemerédi (1972) [28],
Tijdeman (1971) [50] and Baker and Shostak (1972) [1]. Each of
the published proofs, varying in appreoach and length, provide
interesting perceptions on the nature of the Gossip Problem.

The proof by Hajnal, Milner and Szemerédi is a particularly
ingenious one that makes use of an interchange rule in complete
calling sequences. This rule considers conditions under which
calls in a particular sequence can be interchanged in time yet
still complete gossiping. Their proof also focuses on the posi-
tions in a calling sequence by which time an individual knows
everything. Let us call such an individual an expert. The
following two results can be used to prove the main result ( (1)

above).

(2) In any sequence of calls among n people there are no experts
after n-2 calls.

(3) In any calling sequence among n people, after ntk-4 calls,
there are at most k experts and if there are exactly k
experts, then there is an equivalent calling sequence in
which the last k calls are made exclusively between the

experts.



This is suggested by the observation:

"Suppose an additonal gossip g joins a group of n persons.
If g phones any one of the gossips first, the additional informa-
tion known by g will be transmitted in f(n) calls among the n
gossips. After this, one additional call is needed by g to obtain
all the gossip.™ [3].

One of the first variations of the Gossip Problem to be
studied restricted the communication patterns among the people,
as had Leavitt [38], Bavelas [2] and Landau {37]. Harary and
Schwenk (1974) [29] and Golumbic (1974) [27] considered the situ-
ation where an individual can call some but not all other people.
The original Gossip Problem, expressed in terms of the underlying
communication graph, where vertices represent people and edges
represent the allowable communication lines, assumes that the
communication graph is complete, i.e. a call can be made between
any two people. Harary and Schwenk, in placing restrictions on

the underlying communication graphs, obtained the following results.

(73 If the communication graph among a set of n people is a tree,
then f(n) = 2n-3, for n > 2.

(8) If the communication graph among a set of n people 1s a uni-

1]

cyclic graph, whose cycle is not a 4-cycle, then f(n) Zn-3,
for n > 2,

(9) For any connected, communication graph with n vertices,
2n-4 < f{n) < 2n-3, for n > 4.

(10) TFor any connected, communication graph with n vertices, which

contains a 4-cycle, f(n) = 2n-4%, for n > 4.
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(i) a-redundant if neither A nor B know everything before

the call;

(ii) 1l-redundant if either A or B, but not both, knows

everything before the call; and

(iii) 2-redundant if both A and B know everything'before

the call.

Cot was interested in the existence of a-redundant calling
sequences which complete gossiping in the minimum number (2n-4)
of calls. He found two cases for which this was possible, i.e.
when n = 4 and n = 8. Cot also considered briefly the case of
gossiping in which each call has associated with it a given cost,
depending on such factors as the distance between the two vertices
or the number of messages transmitted. In particular, one is
intergsted in finding a calling sequence which minimizes the total
cost of gossiping.

Another generalization of the Gossip Problem is obtained by
assuming that information is transmitted by 'conference' or
'k-party' calls. The following result was first proved by
Lebensold (1973) (391, then by Bermond (1976) [4] and still later
by Kleitman and Shearer (1980) [32], who reduced Lebensold's

13-page proof to an elegant 3-page proof.

{(14) Let f(n,k) equal the minimum number of k-party calls necessary
to complete gossiping among n people (in a complete commun-

ication graph). Then
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to any given individual. Landau proved the following result.
(16) tr(n) = [logr+ln]

Entringer and Slater (1976) [13] have considered the mini-
mum amount of time necessary to complete gossiping in complete
digraphs, under two different conditions. TFirst, let tz(n,k)
equal the minimum number of time units necessary to complete
gossiping subject to the constraint that during each period of
time each person can send all the information they know to each
of at most k other people and each of at most k other people can
send information to them. Second, let tl(n,k) equal the minimum
number of time units necessary to complete gossiping subject to
the constraint that during each time unit a person can either
send all the information they know to at most k other people or
they can receive information from at most k other people. No one
can both send and receive information during a time unit. They

obtained the following two results.

(17) For any complete communication graph with n vertices,
(i) tz(n,k) = [logk+ln]

(ii) [logk+ln] < tl(n,k) < 2 [1ogk+ln]

Still another variant of the Gossip Problem is obtained by
restricting the allowable calling sequences so that no one hears
their own information (cf. the paper by Baker and Shostak [11]).
That is, no one can call a person if the caller already knows the
unique piece of information originally known only by the person

called. West (1978) [56] has studied this problem by determining
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units required to complete broadecasting from vertex u?". We

define the broadcast time of vertex u, b{u), to equal this minimum

time. It is easy to see that for any vertex u in a connected
graph G with n vertices, b(u) > [logzn], since during each time
unit the number of informed vertices can at most double. We

define the broadcast time of a graph G, b(G), to equal the maximum

broadcast time of any vertex u in G, i.e. b(G) = max {b(u) lu € V(G)}.
For the complete graph Kn with n > 2 vertices, b(Kn) = [logzn],
yet Kn is not minimal with respect to this property. That is, we

can remove edges from Kn and still have a graph G with n vertices

such that b(G) = [logzn]. We define a minimal broadcast graph to
be a graph G with n vertices such that b(G) = [1og2n], but for
every proper spanning subgraph G'< G, b(G') > [logzn].

We define the broadecast function B(n) to equal the minimum

number of edges in any minimal broadcast graph on n vertices. A

minimum broadcast graph (mbg) is a minimal broadcast graph on n

vertices having B(n) edges. From an applications perspective,
minimum broadcast graphs represent the cheapest possible communi-
cation networks (having the fewest communication lines) in which
broadcasting can be accomplished, from any vertex, as fast as
theoretically possible.

We define a minimum broadcast tree to be a rooted tree with

n vertices and root u such that b(u) = [logzn]. In any connected
graph G, a broadcast from a vertex u determines a spanning tree
rooted at u. Thus, every vertex of a minimal broadcast graph is
the root of a minimum broadcast tree which contains all of the

vertices of G.
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(21) For 1 <n < 15, the values of the broadecast function B(n)
are as follows:
n : 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

B(n): 0 1 2 4 5 6 712110 12 13 15 18 21 24

Farley, Hedetniemi, Mitchell and Proskurowski [19] also
found examples of minimum broadcast graphs for each value of n,
1 < n < 15. These examples were extended by Mitchell and
Hedetniemi (1980) [42] who found all mbgs with n < 11 vertices
and presented the only known examples of mbgs with n < 15 vertices.
Their census was later augmented by Bermond (1981) [5] who found
a second mbg with 14 vertices. The number of mbgs is summarized

in the following result.

(22) .For 1 < n < 15, the number of mbgs with n vertices is as
follows:

n : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W L % ]

mbgs: 1 1 1 1 % 1 1 6 6 21 2 1 1 2 3,

%
where an indicates the number of mbgs known to exist.

The results of these studies suggest that mbgs are extremely
difficult to find; in fact, no procedure is known for constructing
an mbg with n vertices for any value of n > 18, except for the
values n = 2k, where mbgs are easy to construct. Figure U4
illustrates several examples of minimum broadcast graphs (with

the author's names indicated in parentheses).

Figure Uu
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To further illustrate these mbgs, we present in Figure 5
Bermond's demonstration [5] that vertices 1 and 2 in the Heawood
graph on 14 vertices in Figure 1 can broadcast to every other
vertex in [log2 14] = 4 time units, eg. at time 1 vertex 1 calls
vertex 2?2 (or vice-versa), and at times 2 and 3 vertex 1 calls

vertices 14 and 6, respectively.
Figure 5

In [15] Farley (1980) modified the local broadcasting
restriction by permitting 'long distance' calls, i.e. a vertex u
may call any vertex w if there exists a path from u to w, no edge
of which is being used in any other call. He obtained a construc-

tive proof of the following, rather nice result.

(23) - In any connected graph G with n vertices, every vertex can

complete long distance broadcasting in [logzn] time units.

Proskurowski (1981) [45] was the first to study minimum
broadcast trees (mbts). In particular, he designed an 0(n) algo-
rithm for deciding if an arbitrary rooted tree with n vertices is
and mbt; he designed an algorithm for generating all mbts with
n vertices; and he developed a recurrence relation to count a
number of subsets of mbts. By coincidence, all minimum broad-
cast trees with 2K yertices are binomial trees By (cf. Vuillemin
(1978) [53]), a class of trees which have the simple inductive
definition indicated in Figure 6. Figure 6 also illustrates
several binomial (or minimum broadcast) trees. (The tree in Figure

§, incidentally, is also a minimum broadcast tree on 14 vertices.)
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Binomial trees occur naturally in the study of various data
manipulation problems, in particular those involving priority

queues (ecf. [531).
Figure 6

The next work on broadcasting reconsidered the assumption
that each call requires one unit of time. In particular, if one
is broadcasting large files of information over the lines of a
computer network, then this assumption is not very realistic. It
was quickly realized that if one needed to broadcast more than one
message, then simple modifications of one-message broadcast schemes
would be too inefficient. For example, neither repeating a one-
message broadcast scheme k times, nor having each call take k time
units produces a very efficient k-message broadcast scheme. Iz
is easy, for example, to construct 'mixed' calling schemes which
complete multiple-message broadcasting in less time than either

of these two schemes (cf. Figure 7).
Figure 7

Consider the following functions:

P{m,t): the maximum number of people who can be informed of
m messages in t time units;

M(p,t): +the maximum number of messages which can be broad-
cast to p people in t time units; and

T(m,p): +the minimum number of time units necessary to broad-

cast m messages to p people.

Chinn, Hedetniemi and Mitchell (1979) [7] and Farley [16]
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C. SENDING BOTH MESSAGES AT THE SAME TIME

FIGURE 7. BROADCASTING Two MESSAGES IN A TREE BY THREE DIFFERENT
METHODS
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The next variant of local broadcasting to be studied consid-
ered the problem of determining the minimum number of message
originators necessary to complete broadcasting in a specified
amount of time. Hedetniemi and Hedetniemi (1979) {30} observed
that if broadcasting must be completed in 1 time unit in an
arbitrary communication graph, then the graph must be decomposed
onto a minimum number of subgraphs, each of which is either a
K, or a K, (this is equivalent to the Maximum Matching Problem).
If broadcasting must be completed in 2 time units, then the graph
must be decomposed into a minimum number of paths, each of which
is of length at most 3.

In [30] they present a linear algorithm for decomposing an
arbitrary tree into a minimum number of paths, each of which has
length < k, for arbitary values of k. Shortly thereafter, Farley
and Proskurowski (1980) [22] completely settled the question of
determining the minimum number of originators necessary to com-
plete broadcasting in an arbitrary tree in at most t time units,
for arbitrary values of t. They present a linear algorithm for
decomposing a tree into a minimum number of subtrees, in each of

which broadcasting can be completed in at most t time units.

L., Grid graphs

Grid graphs (cf. Figure 8) are a special class of graphs
which have received a lot of study from many different perspectives.
They have been used, for example, to model games on a checkerboard,
networks of city streets, telephone switching networks, geograph-
ical data bases, matrix manipulations, the cellular spaces of John

von Neumann, and parallel computer architectures, eg. the ILLIAC IV



29

SIMPLE WRAP-ARCUND [LL1AC-TYPE
GRID GRID

FicURE 8, EXAMPLES OF GRID AND GRID-LIKE GRAPHS
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their paper by conjecturing that the funection f(2,t), which equals
the maximum number of vertices which can be informed of a single
message originated by a given 'cell' in the infinite 2-dimensional
grid, after t time units, by any local broadcasting scheme, is
given by
£(2,t) = 2t% - 6t + 8, for t > 2.

This conjecture gave rise to several subsequent papers.
First, Cockayne and Hedetniemi (1978) [8] conjectured that in the
n-dimensional grid,

fin,t) = 2t, when t < 2n, and

f(n, 2n+k+l) = n o 3 n-jt+k \ , for other values
2 25;2 k of t.
]-
In his Ph.D. thesis (1979), Ko [3u4] and [35] later verified

the 2-dimensional conjecture of Farley and Hedetniemi and obtained

several other results as follows.

Let f(n,t) represent the maximum number of cells which can be
informed of a message originated by a given cell in an n-dimensional

grid graph, after t time units, by a local broadcasting scheme.

(3u) £(2,t) = 2t2 - 6t + 8, for t > 2.

n
2 n 2 - n2 n-1 1 1 n+l n-2
(35) fln,t) < — ¢ + — % . (4-n- S (277t -n2BT4)
n! (n-1) ! (n-2)!
¢ n2a™ Ly D=2 4 oYy,
b3 9 101
(36) £(3,t) = t - 11 t° + — t - 28, fort I 9.

3 3
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grid graphs obtained by whispering (in which a cell can only call
one neighbor per unit of time) and shouting (in which a cell can
simultaneously call all of its neighbors). Let s(t) denote the
number of cells informed by time t if information is spread from
one cell at time t=0 by shouting, and l=t w(t) denote the maximum
number of cells that can be informed by any whispering algorithm

by time t. Stout proved the following result.

(42) Whispering is asymptotically as efficient as shouting in

the sense that lim s(t)/w(t) = 1.

In another paper on grid graphs, Van Scoy (1979) [52]
considered broadcasting multiple mesages in complete grids Gm,n‘
In particular, she designed an algorithm for broadcasting k
messages in Gm,n in 2n + 2k - 4 units, where k < n-2 if n is odd

and k < n-1 if n is even.

5. Reliability studies

Recently a few papers have been written concerning préblems
of broadcasting in the presence of faults, i.e. the problems which
arise when one or more communication lines fail or one or more
communication sites (vertices) are inoperative. Liestman (1980)
fu0], for example, has studied several parameters related to
fault tolerant broadcasting. Let TO,k(n) equal the minimum time
required to broadcast in the presence of k faults in any graph

on n vertices. Liestman showed the following.

(43) TU,l(n)

{log,n} + 1.

(44) T (n) = {logzn } + 2, for n > S5, n # 4i + 3.

0,2
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6. Broadeasting in computer networks

Several papers have been published which are closely related
to the study of gossiping and broadcasting, but which consider
somewhat different models of information dissemination. Perhaps
the most notable of these is the work of Dalal (1977) [111,

Dalal and Metcalfe (1978) [12], Wall and Owicki (1980) [s5] and
Wall (1980) [543, who have considered special problems of broad-
casting in packet-switched computer networks, like ARPANET.

A fundamental problem with networks like ARPANET is that they

are not built with a mechanism to handle broadcasting. Conse-
quently, in order to carry out broadcasting from a given vertex
an individual message must be routed to each of the other vertices
in the network.

Dalal [11] and Dalal and Metcalfe [12] proposed several
different broadcasting algorithms for overcoming this deficiency.
A basic assumption in these algorithms is that once a vertex
receives a message along a given communication line, it can, in
effect, 'shout' that message (using Stout's terminology [491),
simultaneously to any of several other vertices to which it is
connected by communication lines. Their algorithms for broad-
casting can be described briefly as follows:

(i) transmission of separately addressed packets - this
is the simplest and perhaps most often used, broadcasting scheme,
whereby one copy of the message is routed to each of the n-1
other vertices;

(ii) multi-destination addressing - in this case fewer

total messages are sent, but each of them is routed -to a subset
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rise to their term "center based hroadcasting". The reader is
referred to the thesis of Wall [54] for an interesting discussion
of several instances where the need to broadcast arises in the

use of computer networks.

Finally, Santoro (1980) [u46] and Korach, Rotem and Santoro
(1980) [36] have designed a variety of algorithms for distributed
networks in which, in effect, some form of broadcasting and/or
gossiping is necessary in order to determine current topological
information about the network. For example, by carrying out some
form of broadcasting from each vertex, the center, the median,
the radius, the diameter and a spanning tree of a network can be
determined; inspite of the fact that each vertex has only local

information about the global topology of the network.

7. Fiuture studies

Although a moderate amount of work has been done to date on
gossiping and broadcasting in communication networks, a substantial
amount of work remains to be done, not only in extending the
results in each of the existing areas, but in exploring a number
of new areas. Tor example, the great majority of work-to-date has
adopted the constraint that a vertex can only place one call per
unit of time. Although a few papers have made the assumption that
a vertex can simultaneously call all of its neighbors (shout)
(eg. [111, C[13], [26] and [491), this variant is essentially
unstudied.

Virtually all of the work to date has been done on local
broadcasting and local gossiping, i.e. a vertex can only call a

neighbor. Although Farley [15] showed that long distance broad-
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vertices (one-to-many instead of one-to-all).

In conclusion, several things seem fairly clear relative to
this survey. First, the subjects of broadcasting, gossiping and
related information dissemination processes are terribly rich in
real-world applications. Second, as we enter the age of the
Information Society in which more than 70% of the work force will
be occupied in one way or another with information processing,
increasing degrees of sophistication will be required in our methods
of information dissemination. Third, the mathematics of infor-
mation dissemination has not yet been well developed, but it
appears that it will involve a blend of combinatorics, graph
theory, probability and computing. And finally, as the results
in this survey suggest, our understanding of this subject at

present is at best primitive.
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