October 1981

CS=TR=81=6
LITTLE META TRANSLATOR WRITING SYSTEM
by
Jed B. Marti
Department of Comp. and Inf. Sclence

The University of Oregon
Eugene, Oregon 97403

ABSTRACT

Described is the syntax and operation of the Little META
Translator Writing System, an environment for the
implementation of translators, interpreters, and compilers.
The system is designed to operate with the Little Big LISP
system.

Page

LITTLE META TRANSLATOR WRITING SYSTEM

The Little META translator writing systenm operates as
program on top of the LISP {interpreter. As a language 1
supports: BNF like syntax, recursive des<ent parsirg rchemes
lexical primitives, pattern directed code generation an
optimization and automatic syntax error message generation
This chapter describes the operation of the system.

1.0 INTRODUCTION

The META II compiler writing system conceived by Schorre 1
was improved and implemented {n LISP by Jenks [2) and calle
META/LISP. The system was reimplemented by Loos €3] in LISP
The system was greatly modified ang enhanced by the author C4
with Martin and Cedric Griss, and Robert R« Kessler. Kessle
i..plemented the pattern matching structures £5]. The subse
system is derived from the larger one and does not implemen
features relying on COMPRESS and EXPLODE.

The intended use of Little META is in languag
experimentation with eaphasis on features most required by th
translator implementor. The goal of the system 1s to produce
program capable of translating one language into another an
possibly to assign meaning to the result by execution.

A translator from a gource language to an ghiect laoguagq:
is described by a set of tules. Rules consist of tests ti
match strings of the source language, geperators for thi
generation of the object language, and laperatiyes to affect
the internal state of the translator. One rule serves as the
reot of the language.

The structure of a rule set resembles a BNF description of
2, language. Each rule generally deals with a specific
syntactic construct consisting of one or more @ltarnatives.
each alternative being a possible form of the entity describec
by the rule. Each alternative {s a gcoocatanation of the
aforementioned tests, generators, and i{wmperatives which are
processed in the order of their appearance.

Page

2.0 AN EXAMPLE

The use of Little META {is typified by a recursive descen
parser which analyzes simple arithmetic expressions wit
addition, subtraction, multiplication, and divisfon in thei
left associative forms and exponentiation in a righ
assoclative form. The usual operator precedence applies a
well as modification by the use of nested parentheses. In BYN
this language is described by the grammar in Figure 1.

Cexpression> 13= <term> ;

<term> :i= <factor> | <term> + {factor> | <termd - <factor>

<factor> ::= <secondary> | <factor> * <secondary) |
<factor> / <secondary> :

<secondary> ::= <{primary> } <primary> ** <(secondary>

<primary> ::= <numberd | (<termd)

Eiqure 1 BNF for a simple arithmetic expression language.

The rule set which defines an interpreter for this grammar 1.
given in Figure 2.

EXPRESSION: TERM @; .(PRINT (EVAL #1)) ;
TERM: FACTOR TERMP
TERMP: < °+ FACTOR +(PLUS #2 #1) TERMP /

“= FACTOR +(DIFFERENCE #2 #1) TERMP >)
FACTOR: SECONDARY FACTORP 3
FACTORP: < °* SECONDARY +(TIMES #2 ¥1) FACTORP /

*/ SECONDARY +(QUOTIENT #2 #1) FACTORP > ;

SECONDARY: PRIMARY <°** SECONDARY +(EXPT #2 #1)>
PRIMARY: NUM / °(TERM ") ;
FIN

Eigure 2. Implementation of a simple arithmetic language.

The four rules EXPRESSION, TERM, FACTOR and PRIMAR)
correspond to the four rules of the BNF notation. The tuwe
rules TERMP and FACTORP are added to implement left associatior
for +, -, *, and /. Little META translates all the rules intc
LISP functions with the corresponding names to form a recursive
descent parser for simple atithmetic expressions. Tc
p~raphrase each rule: the EXPRESSION rule parses a TER}
followed by the grammar terminating symbol, a semicolon. It
the expression has been properly parsed, the parse tree 4is
evaluated by LISP°s EVAL function and the value printed.
TERM is a FACTOK followed by a set of FACTDR®s separated by ¢
or =, The TERMP rule forms this expression by recursing on
itself. WNotice that + and =~ are changed into PLUS and
DIFFERENCE by this rule. A FACTOR is a set of SECONDARY’s
separated by * or /. Like TERMP, FACTORP forms the left
associative form of the expression. A SECONDARY is a PRIMARY

e

Page .

possibly followed by ** and another SECONDARY. Using this for:
gives the wusual right associative parsing for exponentiation.
The brackets <...> are a way of factoring the PRIMARY out of
both alternatives. In Figure 3 some sample inputs, generatet
S-expressions, and their values are displayed.

JINRBUT S=EXPRESSION YALUE
12 12 12
3+4 (PLUS2 3 4) 7
2 +3 + 4 (PLUS2 (PLUSZ 2 3) 4) 9
2+3 -6 (DIFFERENCE (PLUS2 2 3) 6) -1
l1¢«2*6 (PLUS2 1 (TIMESZ2 2 6)) 13
(3+4)**2 (EXPT (PLUS2 3 4) 2) 49

Figure 3. Input, Generated S-expressions, and Output.

3.0 CONSTRUCTS

A rule has a name and a body describing the actions the ruli
takes. The rule name is separated from its body by a2 colon
The rule is terminated by a semicolon. Rule names should b
chosen carefully to represent the rule®s action as errol
messages in the generated translator make use of them.

A rule succeeds and returns T when one of its alternative:
has all of 1its tests succeed. A rule fails and returns NI|
when none of its alternatives succeeds

3.1 Tests

' A test succeeds or falls based on syntactic or semanti
information derived from the source language text. Th
s.mplest test is a quoted string which succeeds i1f the nex
token 1in the 1input string matches the given string. Quote:
strings are either identifiers called keyuwords (LISP styl
identifiers), single punctuation marks, or diphthongs made of
punctuation marks. Non-alphabetic characters in identifier
must be prefixed by the escape character ! 1in both the rul.
set and the source language. Diphthongs do not use the escap
character. Consequently they must be separated from othe
tokens in the META source text by at least one blank. Littl
META limits the length of diphthongs to 2 punctuation matrks.

The rule BLOCKI-START has a single test for the diphthon
consisting of two less than signs without intervening blanks
The RUNSTAT rule recognizes the keyword RUN followed by th
single punctuation mark period.

Page «

BLOCK{-START: “<< ;
RUNSTAT: “RUN *.

Note that the semicolons are separated from the rest of the
rule by a single blank to assure that they do not forn
diphthongs with the last character of the quoted test.

So that the last token of a source language program neec
not be followed by another token, the delimiter test 1:
implemented. The rule LASTI-TOKEN succeeds on the last toker
of a PASCAL program and does not require it to be followed by
any other token.

LASTI-TOKEN: @.

3e1lel Addind Diphthongs -~ The system automatically creates the
internal tables for keywords and delimiters for a translator.
Not so for diphthongs. There are several rules for the use of
diphthongs. First, diphthongs cannot have more than 2
characters in them the first of which must not be alphanumeric.
Second, no two diphthongs may have the same first character.
Finally, diphthongs must be declared manually by the user
before the execution of the translator built by Little META.
This is done in the following manner:

(PUT “<root-rule> °DPS
((a.(b . ab)) (c,(d . cd)) ...))

Here a and b are the two characters of the diphthong ab, ¢ and
d are the tuwo characters of the diphthong cd and so on.
Diphthongs and diphthong characters are always treated as
identifiers. To create two diphthongs => and **, the following
is necessary:

(PUT °“TEST1 °DPS
TCCI=,01> o I=15)) (I* (I* . 1*I%))))

The grammar TEST1 may now use these diphthongs and tests for
them in the usual manner.

3e2 Lexical Primitive Functions
Four primitive tests are built into the system for efficiency.

I - Recognizes an identifier and places it on the semantiec
stack (discus=ed later). Special characters in identifiers
must be prefixed by the escape character I. In BNF identifiers
are recognized by the grammar:

Page !

¢special-character> ::= 1<any-character>
<¢lead-character> ::= <special-character> | <alphabetic>
¢regular-character> $:= <(lead-character> | <digit>
¢1ast=partd ::= <regular~character> |
<last-part><regular-character>
<id>» ::= <lead-character> |
¢lead=character»{last-part>

NUM « Recognizes an unrsigned integer in the range 0 to 4095
The value is placed on the semantic stack. In BNF, numbers ar
recognized by the grammar:

<num> ::= <digit> | <num><digit>

STRNG - Recognizes a delimited string of characters., String:
are delimited by quotation marks as in “THIS IS A STRING™
Quotation marks are not permitted within the string. Thi
string is loaded onto the semantic stack if the rule succeeds.

ANYTQK =- recognizes any token (keywords and diphthong:
included) and places it on the stack.

3.3 Altercnatives

A rule consists of one or more alternatives separated b
slashes (/). The alternatives of a rule are tried one at ;
time until one succeeds. If all alternatives fail the rul:
fails. If part of an alternative succeeds then the whol:
alternative must succeed or an error is generated. If part o
an alternative may succeed but the remainder might fail,
special form of alternation must be used. In this contex’
alternatives are denoted by double slashes (//) implementin:
backup and allowing context sensitive features.

In the follouwing example, the rule VALUE succeeds whe!
either an identifier, an unsigned integer, or an asterisi
appears in the source stringe.

VALUE: 1ID / NUM / °* 3

Languages in which statement lzbels are identifiers have th
problem of determining whether or not an identifier is a labe:
or the first token of an assignment or expression. Thi:
problem 1is solved using the backup form of alternatives in th:
LABELLED]1=-STMNT rule:

LABELLED!-STMNT: ID “: LABELLEDI-STMNT // UNLABELLEDI-STMNT .

The rule recurses on i{tself until the ¢ test falls, at whic!
time the UNLABELLED!-STMNT rule takes over. However, th
UNLABE%LED!-STHHT starts at the last ID parsed rather than a
the colon.

Page 6

3.4 Concatenation

An alternative is a concatenation of items. The items of a
concatenation are tried one at a time until one fails, causing
the alternative in which the test occurs to fatl. If the first
test of a concatenation succeeds, the remainder must also or an
error is generated. The error will be ignored {if alternation

with backup is being used.

The rule PRIMARY recognizes part of a simple arithmetlc
expression: either an identifier, a number, or a concatenation
of a left parenthesis, an EXPRESSION, and a right parenthesis.

PRIMARY: ID / NUM / °(EXPRESSION ‘) 3

3.5 Grouping

1¢ part of an alternative need not succeed for the entir
alternative to succeed it is enclosed in angle brackets <...?
The Cess> group always succeeds no matter what happens inside
For example, an extended BASIC identifier would be recognize
by the rule BASICI-VAR:

D.GIT: 1/°2/°3/°41°5/°7/°81°91°0 ;

LETTER: “A/°B/“C/"D/°E/*F/*G/"K/°1]
377K/ "LIML "N/ "0/ P/ Q[*RI°SI
T/ Ul NI NI X1 V)T 3

BASICI-VAR: <°$>LETTERCDIGITY ;

Eiqure 4. Extended BASIC variable name parsing.

The leading dellar sign and trailing digit are optional
Recognized are A, A0, SR, $A0, and variants thereof.

A set of items may also be grouped using parentheses. Th
success or fallure of the group as a whole is determined t
what is inside it. The group does not always succeed like tk
Ceeed group. Compares

Pl: ‘X (°A /7 °B) “Y ;
P2: ‘X <"A [°B > °Y

aule P1 recognizes both X A Y and X 8 Y while rule H
recognizes X ¥, X A Y,and X B Y. Nesting of parentheses ar
brackets is permitted to any level, though too many al
illegible.

Page 7

3.6 Expressions

LISP S=-exprassions can occur in any of three different
contexts:

1. An expression can be loaded onta the semantic stack using
the + operator. The + operator is discussed in the next
section.

2. The value of an expression may pe used in any environment
when the expression is prefixed by =. When used as a test,
if the expression returns NIL the test fails, anything else
is considered a success.

3. The value of an expression may be computed for its effect
and the result ignored by using the dot operator.

The = operator is used to "fall into"™ LISP from the META syntax
for tests. For example:

INTEGERI~VARIABLE: 1ID =(EQ "INTEGER (GET ##1 °TYPE)) ;

succeeds only if the identifier detected has INTEGER as its
TYPE on its property list.

The dot operator is used to evaluate an expression for its
etfect.

MAIN: RULE .(PRINT ##1) .(PRINT (EVAL #1)) 3

In the rule MAIN, both the S-expression left on the stack by
RULE and the value of the expression as computed by EVAL are
printed.s Even if either of these has the value NIL, MAIN will
succeed as long as RULE does.

3.7 The Semantic Stack

The communication of semantic information between rules 1s most
often accomplished by the use of the semantic stack. When a
rule succeeds it generally places a value or generated
expression on top of this stack. Any item on the stack may be
referenced or removed provided that its position relative to
the top of ¢the stack is knhoun. The primitive rules ID, NUM,
STRNG, and ANYTOK each place their parsed token on top of the
stack.

R The unary operator § followed by an unsigned integer n,
causes the nth item from the top of the stack to be removed and
has the value of this rcmoved item. The unary operator #§
followed by an unsigned integer n has the value of the nth
position of the stack without removing it. The top element of
the stack is 1, the second element is 2 and so on.

Page ¢

The two operators may appear in any of the previously
defined contexts as well as in patterns. Thus:

« (SETQG A (PLUSZ #1 $1))

has the effect of setting the variable A to the sum of the tog
tuo elements of the stack.

The unary operator + has as its argument an expressior
which {s placed onto the top of the stack. The expression is :
template, a quoted list except where META operators appear.
These operators and their expressions are evaluated before the
completed structure is placed onto the stack. The rule NUMMPY
succeeds with two numbers separated by an asterlsk:

NUMMPY: NUM “* NUM «(TIMES $#2 #1)

If 35%*2 is the input expression, the semantic stack will have :
as the top element and 35 as the second element. Both these
are removed from the stack and the expression (TIMES 35 2)
replaces them. Since the order of evaluation is left to right,
the form (TIMES #1 #2) would remove the wrong item because the
#1 uncovered a new top of stack.

The - prefix within a + stack form provides a simple
concatenation operation for constructing lists to place ontc
the stack. Its effect is to strip off a layer of parentheses
during the formation of an item to place onto the stack. It
the rule COMPOUNDI-STATEMENT leaves on the stack a 1list of
parsed LISP statements, BEGIN!{=-END will construct a proper PRO(
form for it:

BEGINI-END: COMPOUNDI-STATEMENT +(PROG NIL -#1)

The = causes the list of statements to be concatenated to the
1ist (PROG NIL) to create the correct result. Thus if:

((SETQ A 1) (PRINT A))

was on top of the stack, the following form would be created:

(PROG NIL (SETQ A 1) (PRINT A))

3.8 Local Variables And Generated Labels

Counters, lists, switches, and the like may be dintroduced ir
rules as local variables by prefixing their variable names witt
a § sign. Local variables within rules are equivalent to LISt
PRCG variables in the bedy of that rule. Their use must always
be prefixed with a § sign. These variables may be used across
recursive calls in the usual manner.

st 0 e S S = SR S ALt
Page 9

Unique symbols may be generated to serve as internal
labels, variables and so on by the use of the $n construct
where n is an integer. Each $n serves as a place holder for a
generated variable during the execution of the rule in which it
occurs. Other rules using $n constructs will have different
symbols generated.

Consider the PASCAL FOR 1loop with only a TO0O clause.
Generation of LISP code suitable for immediate execution
requires the construction of a PROG with a loop in it:

FORSTAT: °FOR 1D .(SETQ SINDEX #1) “:= EXPRESSION
“TO EXPRESSION °DO STATEMENT
+(PROG NIL
(SETQ SINDEX #3)
$1 (COND ((GREATERP SINDEX #2) (RETURN NIL)))
#1
(SETQ SINDEX (ADD1 SINDEX))
(G0 §1)) 3

Eigure 5. FOR loop translation into executable LISP.

The SINDEX variable contains the index variable of the FOR
loop. The $1 causes the generation of a unique label first on
the loop exit test and secondly as the object of the GO. The
following FOR statement:

FOR I2=1 TO0 A+B DO PRINT I
would be translated into:

(PROG NIL
(SETQ I 1)
G001 (COND (GREATERP T (PLUS2 A B)) (RETURN NIL)))
(PRINT 1)
(SETQ I (ADDl I))
(GO G001))

3.9 Repetitions

Lists of items can be parsed using recursive grammar
constructs, META provides two <constructs to simplify this
commonly occuring task.

' The * suffix permits zero or more repetitions of a tast or
group of tests, It creates a list on the top of the stack
formed from any items left by these rules. A phrase suffixed
by a * always succeeds.

Page 10

For example, the rule IDSET below recognizes a set of
{dentifiers enclosed in parenthesis and leaves this list on the

stack.
IDSET: °(ID* *) ;

The repeated ID test fails on the first occurrence of a right
parenthesis terminating the repetition. 1If the source language
input is (BING BANG BOOF) then upon completion of IDSET, (BING
BANG BOOF) is left on top of the stack.

The second iterative construct is one which parses {tems
separated by other items. The =x~ suffix following a rule
parses zero or more occurrences of the rule separated by single
occurrences of x. Errors occur only if the last x separator is
not followed by another occurrence of the rule. Several
examples follow:

IDLIST: “(IDLISY=-,~ ") ;

IDLIST recognizes a list of identifiers separated by commas and
parses 1t into a list of identifiers which it leaves on top of
the semantic stack

COMPOUND1=-STATEMENT: °“BEGIN STATEMENT-3- °“END ;

COMPOUNDI~-STATEMENT parses &8 BEGIN ... END block in most block
structured programming languages and leaves a 1list of the
parsed statements on top of the stack.

FUNCTIONI=CALL: ID °(EXPRESSION=-,- °) +(#2 -#l1) ;

FUNCTION!-CALL parses a function call and creates the prefix
L1sP form. If no arquments are present NIL is left on top of
the stack and the correct prefix form is generated.

3.10 Recursion

Rules may be self recursive or indirectly recursive to any
level. The WFF rule set parses well formed formulas into
prefix form for LISP evaluation or as the front end for a
theocrem prover. Note that AND, OR, and IMPLIES are parsed in
their left associative form.

WFF: TERM WFFP;
WFFP: <“IMPLIES TERM +(IMPLIES #2 R1) WFFP>;
TERM: SECONDARY TERMP;
TERMP: <"0OR SECONDARY (DR #2 #1) TERMP>;
SECONDARY: PRIMARY SECOUDARYP;
SECONDARYP: <“AND PRIMARY +(AND #2 #1) SECONDARYP> ;
PRIMARY: "“TRUE 4T | °FALSE #NIL | “C WFF *) |
ID <*(WFFC~, ") +(#2 -#1)> ;

Page 1}

Figure &. Predicate Calculus expression parsing.

The WFF and WFFP rules are the comnon way of parsing
expressions into their left associative forms. This is echoed
in TERM, TERMP and SECONDARY, SECONDARYP. The PRIMARY rule
parses the constants TRUE and FALSE, WFF”s in parentheses, and
identifiers as either variables, or function names with
argumentse.

4.0 THE SYMBOL TABLE.

To aid the user in storing attributes of identifiers a number
of functions beyond LISP°s simple GET and PUT are implemented.
These functions aid the storing of information in block
structured language variable declarations. The information so
stored is divided into single tablgs whicu in turn contain the
unique identifiers of a block. Associated with each identifier

are flags and attribute - yvalue pairs. Each table has a name
and is created before it is needed by the MKTABLE function.

(MXTABLE <table-name?)

The function creates an empty symbol table whose name is
{table-named>. If the table is no longer needed 1ts space can
be released to the system by the CLEAR function.

(CLEAR <table-name>)
To enter information in a table the ENTER function is used:
(ENTER <identifier~list> <attribute/flag> <table-name>)

Here <identifier-list> is a 1list of one or more unique
identifiers. Identifiers which are already in this particular
table have their attributes modified, those which are not in
the table are added with a single attribute or flag. If the
<attribute/flag> quantity is an identifier it is added as a
flag. If it is a dotted-pair, the CAR of the pair becomes the
attribute and the CDR becomes its value. The CAR part must be
an identifier, the CDR can be anything.

The code segment in Figure 7 parses simple PASCAL variable
declarations and creates a symbol table called GLOBAL which
will be accessible at all block levels.

Page 12

VARDEC: °VAR .(MKTABLE °GLOBAL)
VARS=2= 3}

VARS: ID=,- °3
C"ARRAY °C NUM °. “. NUM °] °OF
.(ENTER #4%3 (CONS “ARRAY (CONS #2 #1)) °GLOBAL)>
SIMPLE|=-TYPE
+(ENTER #2 #1 °GLOBAL) ;

SIMPLE{-TYPE: °*INTEGER +INTEGER / °CHAR +CHARACTER /
*BOOLEAN +BOOLEAN;

Figure I. PASCAL Global Variable Declaration Parsing.

The first rule creates a table named GLOBAL when the VAl
declaration is encountered. It then proceeds to parse all the
variable declarations separated by semicolons. Each wvartable
declaration (VARS) is a list of identifiers separated by conmma:
and followed by & colon. This list of identifiers might be ar
array 1in which case each identifier has the ARRAY attributq
which has as a value the lower and upper numeric bounds of thi
array(s). The type of the variables can be either INTEGER,
CHAR, or BOOLEAN. The type of the variable 1s entered as

flago

70 display the contents of any table, the DUMP functio!
can be used.

(DUMP <table-name>)

Each symbol in the table is listed once followed by its flag
and attributes indented two spaces. The symbols are not liste
in any particular ordere.

with the variable declarations in Figure 8, the GLOBA
symbol table is then displayed.

VAR I, J: INTEGER}
A: ARRAYLO0..10] OF CHAR;
INTVAR: ARRAYLS5..61 OF BOOLEAN}

I

INTEGER
J

INTEGER

(ARRAY 0 . 10)
* CHARACTER
INTVAR

(ARRAY 5 . 6)

INTEGER

Fiqure 8. Parsing of some declarations and DUMP output.

Page 1

Access to attributes and flags in a symbof table is restricte
to two functions. The ACCESS function retrieves the value o
an attribute.

(ACCESS <identifier> <attribute> <table~named)

ACCESS will return the value associated with the attribute o
the identifier if there 1s one and NIL otherwise.

The corresponding function for flags is ISIT which return:
T or NIL depending on the presence of a flag associated with ai
ilentifier.

(ISIT <identifier> <flagd <table-named)

The code section in Figure 9 parses simple arithmetic
expressions in the usual form. It also checks that the
identifier names used in the expression have been declared as
integers and signals an error if not.

IEXP: ITERM IEXPP;
IEXPP: <*+ ITERM +(PLUS2 #2 #1) 1EXPP>;
ITERM: IPRIM <°* ITERM «(TIMES2 #2 $1)>3
IPRIM: ID

(=(ISIT ##1 “INTEGER “GLOBAL)

<=(ACCESS ###1 °“ARRAY °*GLOBAL)
‘C IEXP 1 +(GETV §#2 #1)>
/ «(ERROR 0 “Not an integer variable"))
/ NUM
/ °C 1EXP *) ;

Eiguce 9. Integer Expression Parsing with Error Detection.

5.0 THE PATTERN MATCHER

An alternative to cede generation during parsing is to use the
constructed parse tree to control a pattern directed code
generator. This was first implemented in the TREE-META system
£61. The version used in META was implemented by Martin Griss
and interfaced with the system by Robert Kessler C[S3. The
inclusion of some pattern matching primitives for type
detection and an indeterminate length match have been added to
aid mixed mode expression analysis and peephole optinization.

!

Page 14

5.1 Pattern Sequences

A pattern sequence is a set of patterns which are matched ir
order against a single S-expression for hoth structure and
content. The syntax of a pattern sequence is:

pattern~name =
patternl[0] --> actionC031,
patternlll --> actionCil,

patternCnl] --> actionlnl }

To invoke a match against a pattern sequence the pattern name
with an S-expression as its argument is used:

=(GCODE "(PLUS2 1 3))

would invoke the pattern GCODE with (PLUS2 1 3) as the
S-~expression to match.

5.2 Pattern Primitives

A pattern is a template against which the actual parameter of
the pattern sequence 1s matched. If a match against a pattern
succeeds the corresponding action is taken. Patterns are
either atomic entities or expressions formed from pattern
primitives,

Occurrences of atoms in a pattern must exactly match the
source against which the pattern is peing matched. Thus the
pattern:

(NOW WE ARE 6) => ...

will match only the list (NOW WE ARE 6) and no other. The
atomic entities which may occur in patterns are identifiers,
strings, and integers.

To match an arbitrary s-expression the &n construct is
used. ‘n® 1s an integer from 1 to 4095 which serves to
identify this particular expression. Thus:

(NOR WE ARE K1) =

will match any S-expression which has as 1ts first elements
(NOW WE ARE and has as its last element any LISP S~expression.
Thus (NOW WE ARE 1), {NOW WE ARE GONE),
(NOW WE ARE (IN A LIST)) will all succeed when matched against
this pattern. Furthermore, the piece of the expression which
corresponds to the &n will be available on the action side.
pattern is matched.

Page 1

To permit alternatives within a pattern the followin
construct is implemented:

£(testl0] / testl1] / ... [/ testCnl)m

This pattern construct succeeds if any one of the subpattern
(tests) succeeds. The portion of the source expression bein
matched is available as &m in the action part of the rule. 1
a test {s an atom, it must exactly match the source expressio
atom. The matched atom will be available in &m on the actiol
side. If the test is an identifler preceeded by an = sign
then the function named by the identifier will be applied t
the s-expression in the source expression. If this functio
returns N¥IL, the test fails, any other value and the test wil.
succeed. Thus the following pattern:

(PLUS &(=IDP / =NUMBERP)1 £2) ->

will match lists in which the second element is an identifie:
or a nuaber. The third element can be any s-expression, th
first nust be the identifier PLUS, Thus (PLUS 1 2),
(PLUS NOW (PLUS “XXX" Y)), and (PLUS A B) are matched, bu!

(PLUS “BAD" 12) is not because the second element of the 1lis
is not an identifier or a number.

5.3 The Action Side

The action side of a3 pattern is executed when 1ts antecedent
successfully 1is matched to the source expression. The action
side 1s a list of imperative forms which at the top level are
any of the following:

l. The stack reference and access functions ¢ and ##.

2. Quoted expressions as in °(QUQOTED EXPRESSION).

3. Expressions prefixed with = as in ={EVAL *(THIS
EXPRESSION)).

4e § prefix local variables and generated symbols.
5. & pattern pieces.
6. atoms.

7. Combinations of the above in expressions.

]

Page 1

5.4 An Example.

The pattern set in Figure 10 does reduction of constants 1
LISP expressions uwith the arithmetic operations of addition an
multiplication.

REDUCE =
S(=NUMBERP)1 => +&1 T,
&(=IDP)1 ~> +&1 T,
(PLUS &(=NUMBERP)1 &(=NUMBERP)2) -> +=(PLUS &1 &2) T,
(PLUS &1 0) -> =(REDUCE &1) T,
(PLUS 0 &1) ~> =(REDUCE &1) 7,
(TIMES &(=NUMBERP)1 &(=NUMBERP)2) -> +=(TIMES &1 &2) T,
(TIMES &1 0) -> +0 T,
(TIMES 0 &1) => +0° T,
(TIMES &1 1) -> =(REDUCE &1) T,
(TIMES 1 &1) -> =(REDUCE &1) T,
(&1 &2 &3) =
=(REDUCE &2) =(REDUCE &3)
+(&1 #2 #1) T3

Eigure 10. Constant Reduction by Pattern Matching.

Notice the order of the patterns. The most specific cases ar
dealt with first. In this case single numbers and identifier:
are returned on the stack without evaluation. ¥%hen the sum o
two numbers 1s detected, it is replaced by the value of the su
of two numbers. If there is anything added to 0, the wvalu
loaded on the stack 1s the reduction of non-zero ite:
reflecting the identity property of zero. The same is true fo
multiplication except that 1 is the multiplicative identity ani
0 as either argument causes 0 to be returned. If none of th
patterns matches, the last pattern will match everything. 1
this case the arguments of either PLUS or TIMES are recursivel:
reduced and the result lcaded on the stack.

Page 1'

List of References

1.

2.

3.

5.

6.

Schorre, Do V., "META 1II: A Syntax Oriented Compile:
Writing System", Proceedings ACY 19th National Conference,
1964, p. D1.3.

Jenks, K. D., "META/LISP: An Interactive Translatoi
Writing System', IBM Corporation, Thomas J. Watso;
Research Center, Yorktown Heights, New York, 1971.

Loos, R., private communication.

Marti, J. B., "The META/REDUCE Translator Writing System",
SIGPLAN Notices, Vol. 13, No. 10, October 1978, pp.
42-49.

Kessler, Re Res "The PMETA Systea", Utah Symboli:
Computation Group, Operating Note No. XxX.

carr, Co Se, Luther, D. A., Sheridan, E., “"The TREE-MET/
Compiler-Compiler Systeam', RADC-TR-69-83, University o!
Utah, March 1969.

=)= 4 o e & ¢ ° o

, ¢ s ® ® @& & & @
II s 8 & ® 8 & @

ACCESS o« o ¢ o »
Alternatives . .

AnYtOk ¢ e o ® o @

Clear « ¢« » ¢ & =

Concatenation « « «

Context sensitive

Diphthongs « «
Dump = & e & @

ERter « ¢« ¢ » ¢ o
E~cape character

Gensym ¢ s re o @

Id - - [L] - - [
Isit [[] L L] L] L]

Keyuord e o & 8 o
Local variables .
Mktable s & o @& w
NUR « o ¢ ¢ a & &«
Pattern matching
Pattern sequence
Punctuation « « »

Quoted strings .

RUIQ - - [] L] L] -
Rule names . « «

* L] L] L] L J L] L L J [}

;CD w (o] O oo oo -

= o = i
W

pay

L S |

[od] (P4 Ll - 0o [N Lol 71 [,
[

=2
[y

tn

W

(AN [N] Cad b=t =2

Page 18

