September 1981

CS-TR-81-7

DETECTION OF AVAILABLE CONCURRENCY
IN LISP PROGRAMS

by
Jed B. Marti

Department of Comp. and Inf. Science
The University of Oregon
Eugene, Oregon 97403

ABSTRACT A method for monotonic global data flow analysis in LIS
programs is presented. It is shown how this analysis can be used t
identify available concurrency in the presence of global sid
effects, aliasing, and the run time creation of variables.

Key Words and Phrases: data flow analysis, LISP, concurren
programming

14
CR CATEGORIES: 5.24, 4.32, 4.12, 4.13

1.0 INTRODUCTION

In most functional and near functional lénguaqes, availabl
concurrency can be classified into three categories: jterative
compositional and horizoptal. Iterative concurrency 1s generall
indicated by a repetitive data structure. Several processors may b
applied, one or more to each element of the structure.
composition of several functions may be evaluated concurrently b
instantiating several copies on different processors and streamin:
data through them. This is most often possible when the compositiol
is the repeated part of an iterative control construct. 1In anothel
mode, each function is instantiated on 2 separate processor and dat:
1s streamed through in a pipelined fashion. If two or more formal
parameters of a function {nstance have mutually exclusive side
effects they may be evaluated concurrently and acheive the sanme
machine state as a sequential evaluation. This will be known as

2
horizontal CONCULrency.

‘This paper presents a formalism by which horizontal concurrency
gan‘ be detected in LISP programs which have global variables and
'arbitrary side effects. Any execution model which permits some fornm
df explicit sequentialization and permits global variable access and
arbitrary side effects can use this method to map functional forms

onto their evaluation strategy.

_ Page

2.0 PRELIMINARIES

There has been much work on data flow analysis in procedur:
lanquages. For the most part these methods are predicated on fl«
graph semantics in which state is affected by assignment and contre
flow by simple conditionals. The formalisms used in these previot
work. ([1-6, 9, 111 are modified to fit into the function:
programming environment of LISP. The model used is the definitic
of the LISP -evaluator, that 1is, function evaluation in tt
environment of a2 run time symbol table, formal-actual paramete

bindings, and arbitrary binary tree structures.

We define the global LISP environment in terms of its symbc
table and then provide informal semantics of the LISP evaluator
The LISP system that is the subject of this analysis is Standar
LISP [73 without PROG, ERROR/ERRORSET, vectors, and floating poir

numbers.

2.1°The LISP Symbol Table

7
A function jinstance is a source language occurrence representing th
invocation of a function and the bindipg of its actual paramete
values to its formal parameter names. A function definitio
instantiates the applicétion of functions in the environment of th

formal-actual parameter bindings.

A LISP identifier i1s a place holder for three entities.
global y¥alue can be associated with an identifier and is accessibl

by name no matter at what lexic or evaluation level which it occurs

Page

A function may be associated with an identifier and as such is
global entity. The semantics we define allow global wvariabl
bindings and function definitions to coexist. The pLoperty list 4
a structure of indicators with associated yaluggs. The property lis
may also include flags which are indicateb by the presence o
absence of the identifier by which the flag 1is knoun. Flags ma
have the same names as indicators but with undefined results. Thes

global attributes of an identifier are treated in what follows as

attributed identifier which is expressed as:

Cindicator : identifier] or Cflag : identifier)

The local environment of an extended variable determines its globa
binding. If the use is as a glgbal variable, the indicator *BIND
will be wused. If the identifier names a function, then th
indicator *FUNCTION* is used instead. When the property list of a
identifier is being accessed, the indicator is the indicator fror

the property list.

2.2 A Logic For Property Lists

S 1s the set of identifiers in the LISP system at any given time.
In many systems this corresponds to the OBLIST. The set S° is
defined to be the set (S, *BIND*, *FUNCTION*) to prevent *BIND* and
FUNCTION from being fdentifiers in their own right. The possible
bindings (that is identifier and indicator) at any given time is the

set G* with the set G & G* being the current set. G* is the set of
G

Page 4

elements formed by the cross product S° x 5 whose elements will be
given in the form Ca:bl, where a is the indicator selected from S°
and b is an jidentifier 1n S. G* 1is divided into equivalence

classes:
Va,b e §87, V c,d € S, Laicl = Cb:dl 1iff c=d.

These equivalence classes correspond to the property 1lists of

identifiers which can include both a function and global value.

A particular identifier ¢ determines an equivalence <class
G &£ 6*., The operation d induges a partial ordering on the set T.
When the indicator being accessed by ¢ 1is unknown the special

indicator I ¢ 5 is used. o induces the following relations:
V a, b&s”:
1. ¢ = d(a,®)

2. d{a,®) = o(a,t)

3. d(a,8) = o(b,0)
4, d(a,E) = d(I’E)
5. &(I,G) = o(1,G)

A minimal representation of o(x[E) is:

Vi, 0< i< n, aril € s*,
¢o(at01,G), 0(all3,C), ..., 0(alnl,)3 3

Vi, 0 <1 < n,

Page !

V3, 03 ¢n, 143, 0alid,® # o(ar33,0.

Thus any such set containing 0(I,G) will contain only o¢(I,G). Othe:

sets will contain no redundant elements.

Given a minimal set B = {d(bEOJ;E3; A00 &(btn],ﬁ}) the unio:

of it with a singleton set A = g, or A={0(a,6)) is defined as:

AYB ::=
1f B = ¢ then A
else if A = d(br03,G) then B
else if Ji, 0 ¢ i < n 2 6(a,G) = 6(bCi3,T) thep B
else €6(a,6), d(bC0I,E), ..., o(bCnl, B)}.

Note that A U B is minimal. Set union for two general minimal sets:

A = (6(af03,G), ... , d(alnl,T))
B = {d(bC0I,C), «e. , 0(bTnI,T)}

is defined:

AU B 3i= (6(al03,G) U (.i. U ({S(afm1,T) U B) «..)}

For two sets H, L € G* we define set union in terms of equivalence
classes of H and L which are HCO0J...HInJ and LLO0J)...LCnl where HC12

and LLi] are corresponding equivalence classes.
HUL 3= (HCOJ U LEOI, +.. , HCn) U LCAT}

Set intqrsection between a singleton set A = &, or A=(d(a[§)} and B

as above is defined as:

if B = o then ¢
else if A = o(bC02,G) then A
else if 31, 0 <1 < n, @ 0(a,t)

n

0(bCi3,6) theg A

else #.
For the two minimal sets A and B above:
AN B iz ((6(aL01,) N B), ... , (d(atn1,) O B))
And for H and L € 6* as before:
HAL 3= (HCOI D LLOI, ee. , HCn1 O\ LLRIY
Finally, with L being set complement with respect to G*:
H-L st=H O L.

To permit fixed indicator, arbitrary 1dentifier access the

special set notation Ca:1) is defined:
Ca:Id s:= Y1, 0 <1 < n, BLIJE S, (C2:bL0II, ..., CatbCnil)

hﬁere n = |S]. Arbitrary indicator and identifier access is

permitted but is handled as a completely non-computable side effect.

2.3 Sequential LISP Semantics.

The following is an informal model of sequential LISP similar to the
semantics of Standard LISP C€81. The concurrency detected by the
global data flow analysis will preserve the semantics of LISP

encapsulated in this definition.

Page

The definitions are predicated on the definitions of local anc
global scope. The global scope refers at Sny time to the set 5%,
There is a set A* which is the current local scope. A A* is the
current most local bindings. A can be thought of as the top mosi
frame of the stack of frames A*. The frames are stacked anc
unstacked by two internal state effectors GLOCAL and UNGLOCAL

(discussed with LAMBDA). There is a restriction that:

Vs, c*51n0*:a3 € A%, Vb, c*BIND*:bI € G, & £ b.

and

Va, C*DEFINITION*:2] e A=, Vb, C*DEFINITION*:b] £ G*, a # b.

That is, all 1local wvariables may not be global wvariables or

functions.

The value associated with an attributed identifer i{s retrieved

by the access function ¢,

For atoms a, b, and f, for i an identifier, for S-expressions

Sy aﬁd for x, y list structures the following are defined:

1. CONSTANTP(a) ::= an item which when evaluated vyields itself.

This includes numertc values, strings, and function pointers.

2. 1DP(a) ::i= if a € S then frue else false
IDP 1s true if a is an identifier. An identifier is an {tem
which when evaluated gives the value currently bound to it,
either the current GLOBAL value or the value from the nmost

recent local parameter binding.

5.

6.

9.

10,

11.

Page

CODEP(2) i:= an item which 1{is a link to a function whos

interral form s not a LISP S-expression.

GLOBALP(a) ::= if C*BIND*,al &€ G* iheb true else false
GLOBAL(a) ::= £ [*BIND*:al

LOCAL(a) ::= 1f C*BIND*:a] & A then geC*BIND*:al
DEFINED(a) ::= if C*FUNCTIUN*:231 € G* Lthen irue else false

TYPE(f) ::= for a DEFINED function f, TYPE(f) 1s the type, EXPR,

or FEXPR of the function.

DEFINITION(Ef) ::= the body of the definition of the function

whose name is f.

EVAL(a) ::= if CONSTANTP(a) thep a
else if IDP(a) thep
if GLOBALP(a) then GLOUBAL(a)
£lse LOCAL(a);

- #
.

The evaluation of an atom 1is either that of constants, or

retrieval of the global or local value bound to the variable.

(EVAL (f . x)) ::=
1f “DEFINED(f) then (ERROR - undefined function)
else if TYPE(f) = EXPR then APPLY(DEFINITION(f), EVLIS x)
else if TYPE(f) = FEXPR then APPLY(DEFINITION(L), LIST(x))>

]
The evaluation of a function 1invocation is by applying the

function definition to the evaluated list of arguments {(an EXPR)

1z.

13.

14.

15.

Page ¢

or to the unevaluated arquments collected into a 1ist and bounc

to the single darameter of the FEXPR.
EVLIS(NIL) ::= NIL
EVLIS(x « y) ::= EVAL x . EVLIS y

APPLY(f, x) ::=
if IDP(f) then
1f not DEFINED(f) then
{ERROR -~ undefined function}
else if TYPE(f) = EXPR then
APPLY(DEFINITION(CE), x)

else {ERROR - Can’t be evaluated by APPLY)}

If the function to be applied is a defined function, apply its

definition to its arguments.,

APPLY(((LAMBDA . ¥x) . s), y) :=

1) PUSH(A). Stack the current local environment onto Av,

1) A = {C*BIND*:xC011, ..., C*BIND*:xCm1J3J2. EC*BIND*:xL0J] =
y{o3, ..., EL*BIND*:xfm1J = yCmI. Bind the values in y to the
corresponding local variable names in x.

ii1i) Compute EVAL(s).

iv) A = POP(A*). FRedefine the current set of local variables to
its previous contour.

V) APPLY(((LAMBDA . x) . 5}, ¥) = value from step iii.

LAMBDA functions cause the instantiation of LOCAL type variables

for the 1lexical scope of the LAMBDA expression (that is, s).

Page

The current LOCAL binding is not accessible outside of t
lexical scope’of the LAMBDA as it is in many LISP interpreter
The semantics of local variables are that used by most LI

compilers.

2.4 Variables And Their Use.

The following terms are defined assuming the sequenti

interpretation of evaluation of function instances.

Qefinitions: An gxtended variable in a function F is a fr
variable in F. An extended gccurrence of a variable in
function instance f 1s a free occurrence of the variable in

An extended variable occurring in a function F is a gour;
variable 1ff the evaluation of F is not affected by the initi;
value of the variable when the function is invoked. An extend:
variable occurring in a function F is an access variable iff £«
no possible execution of F is the variable rebound. An extends
variable occurring in a function F is a changed variable if the:
exists an execution of F in which the evaluation of F depends ¢
its value and then modifies its value. A hard function has

nonlocal effect which cannot be determined by our method excer
by evaluation in its environment. A anti function has no suc

effect.

Page 11

The following sets of variables of a given function F are definéd:

SF - the set of source variables
AF - the set of access variables
CF - the set of changed variables

As a consequence, SF, AF, and CF are pairwise disjoint for any

function F. There is a boolean value associated wivh each function:
HF - is true if function F is hard

An R guadryple, RF, 1s defined as the ordered quadruple (SF, AFf, CF,
HF}. Also defined are the standard quadruples Reg = (2, 9, &, false)
and Rt<= (g, @, @, true). It is assumed that for any function F, RF

is known.

2.5 Data Flow In Single Rooted Directed Trees.

Ajsef of operations on R quadruples are defined with which to
determine whether or not two functional instances can be evaluated
concurrently without affecting their sequential semantics. The two

operators <--> and ~-> are the basic data flow equations for LISP.

The operator <--> maps two function instance R quadruples {nto
a resultant R quadruple representing the semantics of the sequential

evaluation. For two functional instances a and b:

Page 1

Ra <--> Rb = (Sc, Ac, Cc, Hc), where:

Sc = (5a U Sb) - (Ca U Cb) - (ha U Ab)
Ac = (Aa U Ab) - (Sa U Sb) - (Ca U cb)
Cc = (Ca U Cb) UV ((sa U sb) N (ra U b))
Hc = Ha v Hb

The <~-> operator defines what happens to extended variables in th
sequential evaluation of a and b. The set of source variables in R
is the union of the source variables in Ra and Rb less any whic
appear as changed or access variables in either. The set of acces
variables in Rc is the union of the access variables in Ra and R
less any that appear as changed or source variables. The set o
changed variables in Rc is the union of the set of changed variable
in Ra and Rb and any that appear as both source and acces:

variables. If either a or b has a hard effect, Rc will also.
Note that the symmetry of set operations implies that:
Ra <~=> Rb = Rb <¢--> Ra

Consequently no matter what order the actual parameters are
evaluéted in, the R quadruple of the result is the same. It is most
often the case that the sequential semantics dictate a "first tc
last' evaluation and thus the (Rb <~-> Ra) case will never occur (it
this sequential order can be determined). The restriction of <=-=>
to sequential order is the =--> operator defined over two R

quadruples Ra and Rb such that Ra --> Rb 1is defined as the R

Page

quadruple of evaluating “a“” before “b-.

Ra ==> Rh = (Sc, Ac, Cc, Hc) where:
Sc = sa VU (Sb - (aa U ca))
Ac = (ha - (S5b U Cb)) U (Ab - (Sa U Ca))
Cc = CaU ((cb - sa) U (ra N Sb))
Hc = Ha v Hb

The =--~> operator removes variables from the changed class that :
first set and the accessed to the source class. Variables which :
accessed, then set, are removed from the access class and added

the <hanged class.

The defined evaluation of a LISP EXPR function instar
(f aC0] all} ... alnl) is left to right. That is, first al03
evaluated, then aCll, and so on. To compute the R quadruple of ¢
instance of F, the --> operator 1s applied across the argquments of
by the RSPREAD function to create an R quadruple for the 1instanc

For the function instance f, RSPREAD is defined:

1. RSPREAD(f . NIL) ::= Rg

2. RSPREAD(f . (x « ¥)) ::= RQUADRUPLE(x) --> RSPREAD(v)

The construction function RQUADRUPLE wused above maps functi
compésition to R quadruples. Assume that RSEMANTIC(f) a

RSEMANTICP(f) are known for all functions 1in the system. For

function instance f and atom a:

1. RQUADRUPLE(a) ::= if CONSTANTP(a) thenm Re

else (g, {{*BIND*:al} o, false)

2. RQUADRUPLE(f . x) 2:=
1L RSEMANTICP(Lf) then APPLY(RSEMANTIC(E)Y, x).
else RSPREAD(x) ~--> Rf

APPLYrcauses evaluation of evaluation of a function with argquments.
In this case, the semantic definition associated with a function
which does not have its arguments evaluated is applied to the
argument list. Note that the 1last 1line of the definition of
KQUADRUPLE defines function composition as a sequential process.
That is, the actual parameters are evaluated first, then the

function is zpplied to their values.

The RSEMANTIC function used in the definition of RQUADRUPLE 1is
a selector of special forms in which the sequential evaluation is
not strictly left to right, or ones which are primitive and have
side” effects. It returns a semantic function used to define the
_eyaiﬁation sequence in terms of applications of --> and <--> which
is applied to the argument 1list of the instance. Some of these

semantic functions will appear later.

Two relations are introduced defining the order of evaluation
of functional argquments which preserves the sequential semantics of
LISP. For two functional instances "a' and "b" in a sentential form

(f ese A wsse b ooo)’ let:

Page

A = RQUADRUPLE(a) and B = FQUADRUPLE(D)

If "a" js evaluated before "b" in the sequential mode then ¢

of the following is true:

1. (SaVU (Sb U Ab Uy Cb) # g) v
(Ra U (Sv {Jch) # g v
(Ca (1(Sb U Ab U Cb) ¥ ¢) v Ha
If true we say "a << ", "“a" must be evaluated before '

because the effect of "a" affects the evaluation of "b'.

2. (Sa 0 (Sb U Ab UCb) = g) A
(ha N {(Sb U Cb) = @) A
(Ca (1 (Sb U aAb UV Cb) = #) A ~Ha A ~Hb
If true we say "a == b", "a" and "b™ may be evaluat
concurrently because the evaluation of "a%" does not affect t
evaluation of "b" and the evaluation of "b"™ does not affect t

evaluation of "a',

yheﬁ the sequential order of evaluation cannot be determined th

cne of the following is true:

l. a <<{ b or a >> b then sequential evaluation 1is 1indicated

preserve the semantics.
'

4. a ==b, "a" and "b" can be evaluated concurrently becau

neither can affect the other.

Page

2.6 Semantics Of Madifiers And Access Functions.

A clacs of functions called modlfiers have nonlocal effec

upon their environment. I1f the location of this effect can

exactly computed before the evaluation of the fuynction instance, t
effect is known. If the location cannot be computed except by t
evaluation of the instance in 1ts environment, the effect 1s n

known. These two possibilities are known as s0ft modifiers and ha

modifiers respectively.

The computation of the R quadruple for each modifier occurren
is performed by a semantic function associated with it. T
semantic functions take as parameters the formal parameters of t
function being modeled. A few semantic functions assoclated wi

modifiers are presented here.

RSEMANTIC(SET a b) t:= Rt
RSEMANTIC(SET (QUOTE a) b) ::=

({C*BIND*:a3]}, o, ¢, false) --> RQUADRUPLE(b);

if the argument of SET is a quoted variable name then the effe
of SET is known (a soft modifier). Otherwise, SET is a ha
modifier with the R quadruple indicating a non~computable si

effect.

RSEMANTIC(SETG a b) ::=
({C*BIND*:al}, ¢, @, false) --> RQUADRUPLE(D);

r

Here "a" is & source variable combined by =-> with the

quadruple of the secohd argument '"b".

Page

RSEMANTIC(RPLACA a b) ::= Rt

RSEMANTIC(RPLACD a b) ::= Rt
Because of aliasing problems, RPLACA, RPLACD and functions wh:
use them are always hard functions and instances. Since a h:
function forces complete sequentialization, the R quadruple
“"h'" need not be computed for this instance. The evaluation
“b" may have available concurrency, but it must all be compled

before the RPLACA or RPLACD is started.

RSEMANTIC(PUT (QUOTE a) (QUOTE b) c) ::=

({Cb:al}, ¢, #,false) =--> RQUADRUPLE(c);
RSEMANTIC(PUT (QUOTE a) b c) ::=

((C1:a1}, ¢, #, £alse) --> RQUADRUPLE(bL) ==-> RQUADRUPLE(c);
RSEMANTIC(PUT a (QUOTE b) c¢) :i:=

“RQUADRUPLE(a) --> ({Cb:I11}, ¢, ¢, Lfalse)).-=-> RQUADRUPLE(c)

RSEMANTIC(PUT a b c) i:= Rt

There are four possible cases for PUT. 1In the first, both t
{dentifier being modified, and its indicator are precisely knc
“and the R quadruple has the Cb:al pailr as a source variabl
TQis is combined by the action of --> with what ever happens
the evaluation in "c¢". 1In the second case, we know that "a©
the identifier being accessed, but the indicator
non-computable giving rise to the CI:al form. 1In the third cas
the 1identifier 1is non-computable, but the indicator is know
consequently the CI:bl form. 1In the final case, nothing can
computed about the instance and a complete segquentialization

forced.

Page

The definition of the data flow semantics of PUT 1is

prototype for the very similar functions PUTD, FLAG, and REMFLA

RSEMANTIC(DE f name args body) ::=
((C*FUNCTION*:f21}, g o, false)
RSEMANTIC(DF f name args body) ::=
((C*FUNCTION*:£13, &, ¢, false)
DE and DF are FEXPR’s, and they don”t evaluate their argument
The only effect 1is to define the function and the R quadrup!:
need not be computed for each of the arguments.
RSEMANTIC(REMPROP (QUQTE a) (QUOTE b)) ::=
(¢, $,(Cbzal}, false)
RSEMANTIC(REMPROP (QUOTE a) b) ::=
(g, o,(C1:a1}, false)
RSEMANTIC(REMPROP a (QUOTE b)) ::=
RQUADRUPLE(a) -=-> (#, #,(Cb:ill}, false)
RSEMANTIC(REMPROP a b) ::= Rt
REMPROP removes the indicator "b™ and its value from the prope
list of "a". It returns the value assoclated with the indica
."b" so "a' becomes a changed variable rather than a source.
function REMD for removing functions is similar. The funct
REMFLAG is like PUT because 1t does 'not reference the f£1

before removing them.

RSEMANTIC(GET (QUOTE a) {(QUOTE b))

as
an
]

(g, {Cbtall}, 4, false)
RSEMANTIC(GET (QUOTE a) b) 1i:i=

(g, €CItal), @, false) =--> RQUADRUPLE(D)

Page

RSEMANTIC(GET a (QUOTE b)) ::=
RQUADRUPLE(a) --> (¢, ([b:I1}, g, false)

RSEMANTIC(GET a b) :i= Rt
GET simply accesses a portion of the property 1list of
identifier. In most systems GET is not perhitted to access t
global binding or the function definition. In this case
similar function 1is defined for these two special cases (t:
functions GLOBAL, and DEFINITION were used in the exposition
EVAL APPLY earlier). 1I have chosen to incorporate the semanti
of global and local variable access in the RQUADRUPLE functi
rather than at this level. The reasoning is that variable acce
in any form is important enough to hide the access functions fr

the user.

The functions GETD, GLOBALP, and FLAGP are very similar

GET and are not defined here.

2.7 Other Functions

.-
7

. There are a large number of primitve EXPR type functions which fo
the basic processing capabilities of the System. For the most pa
they have R quadruples of Rg. The few which do not or are suprisi

are presented here.

RSEMANTIC(COMPRESS x) ::= R#
COMPRESS does little more than create atoms of various sort

When the attributes of these atoms are accessed by oth

Page .

functions the identifiers are added to the.R quadruple, usual.

in the form of ét.

RSEMANTIC(EXPLODE x) ::= Rg
EXPLODE does not reference the quantity it is. creating nor tl

characters of the list it c¢reates.

RSEMANTIC(GENSYM) $:=
(¢CI:gensyml) , ¢, (C*BIND*:gensym~counterl}, false)

GENSYM both changes a global variable which contains a counter -

cause creation of unique symbols. Likewise it is 2 source f:

the property list of the created symbol.

RSEMANTIC(INTERN x) ::= ({CI:x3}, s, &, false)
INTERN augments the current set of symbols S and also destro:

any property list associated with x. Thus it is a source for a

of x.

RSEMANTIC(EVAL x)} t:= RQUADRUPLE(x)

The EVAL function performs no modifications on the global stat

, rather it relies on its argument for this effect. The same

-

true for APPLY.

2.8 Recursive Functions

r
The problem of data flow analysis of recursive functions consists
two subproblems: functions which are directly recursive, and tho.

which are indirectly recursive. The 1indirect recursive functi

Page 2

problem will not be solved here. Rather the ad hoc solution o
having the user directly specify the R quadruple of at least on

element of the recursive chain will be adopted.

Directly recursive functions can be analyzed by recognizin
that they always involve the computation of Rf -> Rf for th
recursive function f. It is easy to show that Rf -> Rf = Rf b
appropriate substitutions into the -> equation. Likewise it ca
also be shown that Rg -> Rf = Rf. Consequently, directly recursiv
calls 1in functions can be treated as Ro instances without affectin
the outcome of the analysis. .Since the implementation of availabl
concurrency happens after the computation of Rf, Rf for th

recursive instance will be known.

2.9 FEXPR’s

Most LISP“s permit the definition of functions with an arbitrar
number of arguments in which the order of evaluation 1s defined b
the function itself. For arbitrary functions the implementor mus
sdBply an appropriate RSEMANTIC function as in general, the proble
-0of machine definition of such a function appears to be ver

difficult.

RSEMANTIC functions compute the "worst case"™ instance ©
evaluation, that 1is, the one with the least amount of concurrenc
that evaluates the most arguments. We define some of the mos

imporiant LISP functions here.

Page
¢

RSEMANTIC(AND NIL) ::

R#

RSEMANTIC(AND (x . "y)) f:=
RQUADRUPLE(x) =--> RQUADRUPLE(AND ¥)
The AND function and OR, PROGN, MAX, MIN, TIMES, PLUS and othe
forms will in the '"worst case" evaluate all their argument
sequentially. To take advantage of a non-deterministic MAX, ar
MIN would require redefining their semantics because of thei

ability to deal with mixed mode arguments (integer and floatir

point).

RSEMANTIC(COND NIL) ::= R#g

n

RSEMANTIC(COND ((a . (c)) . x) &3
(RQUADRUPLE(a) --> RQUADRUPLE(c)) -->
RQUADRUPLE(COND x}
The data flow semantics of COND are very similar to AND. Ther
is available concurrency 1in individual antecedent-consequer

elements but none in the structure as a whole.

.

2310' Local References And Effects

' Functional forms that introduce local variables effect the detectic
of available concurrency within their scope by temporarily modifyir
the local environment. The computation of R gquadruples for thes
nested forms must include this contour information. Variables ¢
this sort can be reassigned in the current environment with SET ar
SETQ }emporarily introducing new binding values. Consequently thes
variables will be treated as temporary global variables, glogals, ¢

acronym for global and local. The variables are tagged as such t

Page

the effector functions GLOCAL and UNGLOCAL. The GLOCAL functi
pushes the crrent A into A* and creates a new set of local variabl
V. The UNGLOCAL function removes these and returns the previous s

of locals from A~*.

LAMBDA forms permit 1local modification of actual paramet
values. This modification is in effect only in the lexical scope
the LAMBDA form. To describe this effect requires an operation

description of the semantic properties of LAMBDA.

RSEMANTIC(LAMBDA v b) ::=
l. CLOCAL v;
2. x := RQUADRUPLE(b) -
({C*BIND*:vL03), «su , [*BIND*:vCnll},
(C*BIND*:vL013, ... , C*BIND*,vCnil},
(C*BIND*:vL013, ... , C*BIND*,vCnl1}, false)

3. UNGLOCAL v

The RSEMANTIC function for LAMBDA has the value of the second forn
The environment is affected after this value is computed. Note the
this definition of LAMBDA permits local modification of forme

bparameter values with the SET and SETQ functions.

3.0 CONCLUSIONS

Potential horizontal concurrency in simple LISP functions i
detected using global data flow analysis techniques. Application o
this knowledge to the creation of concurrently executable program

is dealt with in C731.

Page

The analysis has been simplified by two assumptions. Ti
analysis covers LISP functions whose flow graphs are single direct.
rooted trees. Secondly, it is assumed that the R gquadruples for a.
functions are known before they are needed. The first assumptic
can be removed by employing path expression analysis C[5, 101 1
permit the analysis of LISP PROG forms and other forms of flc
control. The second can be removed only if the incremental propert

of LISP systems 1s remcved and blocks of code can be treated :

single entities.

Page

Lisl of References

1.

2.

Se

7.

8.

9.

Aho, A, V., Ullman, J. D. Priocieles of Compller Desig
Addison-Wesley Publishing Company, Reading, Massachusetts, 197

429-438.

Allen, F. B, Interprocedural data flow analysis. IFIp 2

North-Holland Publishing Company, Amsterdam, 1974, 398-402.

Allen, F. E., Cocke, J. A program data flow analys

procedure. Comppun. ACM 192, 3 (March 1976), 137-147.

Barth, J. M. A practicél interprocedural data flow analys

algorithm. Commun. ACM 21, 9 (September 1978), 724-736.

Graham, S. L., Wegman, M. A fast and usually linear algorit

for global flow analysis. Jg AcM 23, 1 (January 1976

172-192.

Kam, J¢« B., Ullman, J. Da Global data flow analysis a

jterative algerithms. Js ACM 23, 1 (January 1976), 158-171.

Marti, J. Compilation techniques for a control-flow concurre

LISP System. Conferenge Record of the 1980 LISP Conferenc
1980, 203-207.

Marti, J., Hearn, A. C., Griss, M. L., Griss, C. Standa

LISP report. SIGPLAN Notices 14, 10 (October 1979), 48-68.

Rosen, B. K. High-level data flow analysis. Commun. ACM 2
10 (October 1977), 712-724,

#

10.

11.

Pagi

Tarjan, R. E. Fast algorithms for solving path problems.

ACM 28, 3 (July 1981), 594-614.

Weihl, W. E. Interprocedural data flow analysis in

presence of pointers, procedure variables, and label valt

Proceedings of Jth Annual Sympesium on Pringiples of Programs

Lanauages, 1980, B3-94,

