December 1981

CIS-TR-81-16

AN INTRODUCTION TO THE LITTLE META
TRANSLATOR WRITING SYSTEM

by
Jed B. Marti

Department of Comp. and Inf. Science
The University of Oregon
Eugene, Oregon 97483

ABSTRACT. The features of the Little Meta Translator Writing

System are presented by the development of a compiler through
three stages.

AN INTRODUCTION TO THE LITTLE META
TRANSLATOR WRITING SYSTEM

Little META is a LISP based Translator Writing System. A Translator
Writing System (TWS for short) is a program or collection of routines
which aid@ the development of translators; programs which convert

programs in one source language to another. The microcomputer user

might use a TWS for the following reasons:

l. He is experimenting with programming lanquages and would 1like to

develop a new one,

2. He would 1like to build a preprocessor for his favorite compiler

to support programming constructs it does not support.

3. He would 1like to "front end"™ a complicated program with a

translator which will accept programming language style input.

Little META is a package of support routines and a complete
translator designed to support these activities, Little META is
implemented in the LISP programming language, specifically the UOLISP
variant previously described previously [1]. A manual describing all

of its features and its use has been prepared [2].

To fully appreciate what Little META does one needs to know the
various translations which are taking place. Computer Scientists have
developed a notation which helps to visualize the translation process

[31.

R T e S +
| source -> target |
| language language I
it A + Form of e +
| Expression |
o ————— e +

This I diagram depicts the function of a translator which takes
programs in the "source lanquage” and transforms them into programs in
the "target language". The "Form of Expression" indicates the form (or
syntax) of the source of the translator program. For example, the
compilation of LISP programs by a LISP compiler written in 280 assembly

code into executable Z806 instructions would be represented by:

B D ettt +
| LISP Compiler #1 I
+— - ———————— e e e e +
| LISP -> Z80 Machine |
| source Code |
: —_ + R +

| 286 Assembly |

+— +

This diagram states that LISP Compiler #1 translates LISP source code
into 2Z88 machine code., It also says that LISP Compiler #1 is
implemented in Z8¢ Assembly language. When two or more translations of
a program occur, a composite T diagram is used. Suppose that we have
written LISP Compiler #2 in LISP which produces LISP Assembly Code
(LAP). In order to get LISP Compiler #2 running we need LISP Compiler
#1.

| LISP Compiler #2 f | LISP Compiler #2 |
+ —————————— e e + o e +
| LISP -> LAP | | LISP -> LAP |
Fo————— + tm————— R Fom—e—— + fm——et
| LISP | LISP Compiler #1 | 280 Assembly |
Fomme e o ————————————————————— Fmm————————— +
| LISP ~> 280 Assembly |
o + o ———— +
| Execution |
F—————— +

This composite diagram depicts the steps necessary to get LISP Compiler
#2 into a form which can be executed. This is only possible with the
assistance of LISP Compiler #1. Later on we will show how to

"bootstrap" compilers using Little META,

The Little META system provides the basis for easy implementation
of compilers and interpreters. To understand how this works we will
examine the implementation of LPL (Little Programming Language). LPL
will have both a compiler which produces Z80 assembly code, and an
interpreter so that programs can be run without compilation. There are
two programs involved in the implementation of LPL, the Little META
system which converts the compiler description into LISP, and the LISP
compiler which converts LISP into executable code, in this case LAP.
Our task is the implementation of the LPL compiler in the syntax
accepted by the Little META system. The T diagram which defines the
process whereby we get an executable LPL compiler or interpreter from

our META implementation of LPL is given in the following T diagram.

i LPL | | LPL | | LPL |
e —————— + e e + +- _ +
| LPL -> Ass,| | LP. -> Ass.| | LPL. -> Ass.|
+==q e ———— == tm—m—————— +——+ s
| META | Little META | LISP | LISP Compiler]| LAP |
Form—————— et Fm———— + + -t
| META -> LISP | | LISP -> LAP |
==t +=+ Rt +—+
|Execution]| |Execution|
e — + e +

Simply stated, Little META translates the META description of LPL into
LISP, The LISP version of LPL is then translated by the LISP compiler
into LAP giving the LAP version of LPL which can be executed by the

280.

T diagrams might be seen as a lot of wasted effort for what on the
surface is a very simple translation process. The clincher is that
Little META is implemented in Little META. It has evolved to its
present form in a near continuous process since its first
implementation in 1970 or there abouts. This process will be described
later with the process of modifying Little META to suit your own needs.
To understand how this occurred and how modifications can be made is an

interesting study.

The Little META Source Language

We are now ready to approach the implementation of compilers and
interpreters using the Little META syntax. Our strategy will be to
first define the syntax and semantics of LPL, and then to implement it

piecemeal and test it as we go along.

The gyntax of a programming language is the form of commands,
statements, expressions and so on that the language compiler or
translator can understand. Code which does not conform to the syntax of
a language causes a syntax error to be detected by the compiler. To
define the syntax of a programming language a meta language called BNF
(Backus Nauer Form) was invented. It was first used to describe ALGOL
60 [4]. BNF is extraordinarily simple. The syntax of a programming
lanquage is defined by a number of named phrases. Things like:
program, if-statement, arithmetic expression, end-statement, variable,
integer and the like are phrases. Phrase names are enclosed in brackets
as in <program> or <if-statement>. If a particular phrase can have more
than one possible syntax, its alternatives are separated by vertical
bars (]). A complete phrase in a BNF description is a phrase name
followed by ::= followed by the names of other phrases of which the
phrase is composed. A phrase can also have terminal symbols. Terminal
symbols appear as is in the source language without the surrounding
brackets. Thus the keyword IF in an 1IF...THEN...ELSE statement is a

terminal symbol as are THEN and ELSE.

A BNF 'Example.

To make it fairly simple LPL is going to support only addition and
subtraction of integers, It will also permit parentheses to be used to
make the arithmetic expressions easier to read. To define the syntax of
arithmetic expressions in this form requires three phrases:

<arithmetic expression> ::= <primary> <expression>

{expression> ::= + <primary> <expression> |
- <primary> <expression> | <nothing>

<primary> ::= <identifier> | <integer> |
(<arithmetic expression>)
This is a definition of the kinds of expressions that LPL will accept
and translate, Nothing is said about what they mean or how they are

translated, that is for later.

To paraphrase these definitions: an <arithmetic expression> is
defined as a <primary> (defined later) followed by an <expression>. An
{expression> is one of three possible alternatives. An <expression> can
be the terminal symbol + followed by a <primary> and another
{expression>, or an <expression> can be the terminal symbol - followed
by a <primary> and another <expression>, or an <expression> might be
nothing at all., A <primary> is either an <identifier> (a variable
name), an <integer>, or an <arithmetic expression> enclosed in matching

parentheses.

What the phrases define is given by their structure and how they
are combined in the phrase set. An <arithmetic expression> is a primary
(a variable, number of expression in parentheses) followed by a string
of <primary>'s separated by + or - signs. This provides a syntax for

long sums of things like:
A+ B+ 12 - 34 - XYZ

The first <primary> is the <primary> in <arithmetic expression>, the
following <primary>'s are part of the <expression>. The <primary>
phrase recognizes the <identifiers>, <integers> and more <arithmetic

expressions> enclose in parentheses. For example:

(A + B) - {CCC + 34)

LPL in BNF

With this basis for describing the syntax of programming languages
we will now attempt a complete definition of LPL. Included with each
phrase of the definition will be and English description of the
construct that the phrase describes. Also included will be a definition
of the semantics of the construct, that is, what the construct actually
does when it is executed. The goal of this definition is to provide a

sound framework for the Little META implementation of the LPL

compiler.

BNF of LPL

1. <LPL program> ::= <statement list> END;
An LPL program is a list of statements (to be defined) the last of
which is the END statement which is terminated by a semicolon,
The first statement of an LPL program is the first one to be
executed. Statements are executed in order of their appearance
until the END statement is reached. Flow of execution can be

modified by transfer statements.

2. <statement list> ::= <{statement>; <statement list> | <nothing>
A statement 1list is any number of statements separated by

semicolons., A statement list might also be nothing.

3. <statement> ::= <unlabelled statement> | <labelled statement>
A statement can exist by itself, or it can have a label. Labelled

statements can be the objects of transfer statements.

4, <labelled statement> ::= <{identifier>: <unlabeled statement>

A labelled statement has an identifier as its first symbol. This

5.

7.

8-

9.

identifier is followed by a colon. The : is followed by the body

of the statement,

<unlabeled statement> ::=

<assignment statement> |

<conditional statement> |

<transfer statement> |

<input/output statement>
A statement is any one of the four types of statements implemented
in LPL. This includes an assignment statement for setting the
values of variables to other values, the conditional statement (an
IF statement) for altering the £flow of program execution, the
transfer statement for Jjumping to a labelled statement (a GO TO
statement) and an input/output statement for communicating with

the outside world.

<assignment statement> ::=
LET <identifier> := <arithmetic expression>
An assignment statement is the keyword LET followed by a variable
name in the form of an identifier., This is followed by the special
symbol := which means assignment. This is followed by the

expression which is to be assigned to the first variable.
<arithmetic expression> ::= <primary> <expression>

<expression> ::= + <primary> <expression> |

- <primary> <expression> | <nothing>

<primary> ::= <identifier> | <integer> |
(<arithmetic expression>)

Arithmetic expressions were defined earlier.

1#8. <conditional statement> ::= IF <relational expression>
THEN <unlabeled statement>
A conditional statement is the keyword IF followed by a relational
expression. If this expression is true, then the unlabelled
statement following the keyword THEN is to be executed. If the
expression 1is not true, then the statement which follows the
IF ... THEN ... statement is executed and the unlabelled statement

is skipped.

11. <relational expression> ::=
<arithmetic expression> <operator> <arithmetic expression>

Only simple relational expressions are implemented.

12, <operator> ::= = | < | >
Only three relations between arithmetic expressions are
implemented. Two arithmetic expressions can be equal or one can
be less than or greater than the other. The relational expression
used in the conditional statement is either true or false based on

the values of the arithmetic expressions computed.

13. <transfer statement> ::= GO TO <identifier>
A transfer statement is the keywords GO and TO followed by an
identifier which should appear as the 1label on some labelled
statement. The effect of executing a GO TO is to transfer program

control to the labelled statement.

14, <identifier list> ::

<identifier>, <identifier list> |
<nothing>
An identifier list is a 1list of variable names separated by

commas.

15. <input/output statement> ::= INPUT <identifier list> |
OUTPUT <identifier list>
The INPUT statement will accept a value from an I/0 device and
place that value in the variable(s) named. The OUTPUT statement
will display the value of a variable (or variables) on some I/0

device.

There are two purposeful omissions from the BNF description, that of
<integer> and <identifier>. We will assume that these are defined as
simple unsigned integers and standard LISP style identifiers (any
number of alphanumeric characters the first of which must be

alphabetic).

The procedure we will follow in the development of the LPL compiler

is to build three successive programs.

l. A syntax scanner. This program will verify that the syntax of the
source program is correct. It will use only a few features of

Little META.

2. The syntax scanner will be augmented to form an interpreter. This
program will accept a complete LPL program and translate it into
LISP. This translated form will be executed by the LISP

interpreter for immediate results.

3. The interpreter will be further augmented to implement the
compiler. This program will accept LPL programs and produce Z80

assembly code. It uses nearly all the features of Little META.

The strategy in constructing each one of these programs will be to

build the lowest 1level pieces first. This includes the arithmetic

expressions, and the relational expressions. The next step will be to
build the individual statements and then all the pieces will be drawn

together to form the complete program.

Little META Syntax

Just as as BNF description of a programming language syntax is made
up of phrases, a Little META implementation of a programming language
is made up of rules which are nearly the same as BNF phrases. A Little

META rule is described by the following BNF phrase:
<META rule> ::= <identifier>: <rule body> ;

That is, a <META rule> is an identifier followed by a colon followed by
the rule body. The identifier is the name of the rule and the body
describes the syntax which the rule recognizes and actions to take when

this occurs.

Like BNF, the rule body consists of one or more alternatives which
are possible forms which the piece of language being described can
take., These alternatives are separated by slashes (/). The alternatives
are formed from tests which are different forms of syntax which must
occur in the source language for the rule to succeed, One of the
simplest tests is for terminal symbols., When a such a symbol is to
occur in the source text, it is given in the Little META rule prefixed
by an apostrophe ('). The simplest BNF phrase in the LPL description is

that of the relational operators. In BNF it was:
<operator> ::= = | < | >

In Little META this phrase is implemented in the following fashion:

OPERATOR: '= / '< / '> ;

Notice the similarity. For the most part, Little META syntax analysis

will be almost the same as the BNF syntax phrasing.

Tests can succeed or fail. A test succeeds when the source program
contains an instance of the test at the position currently being

scanned., A test fails if there is no such instance.

The last symbol (token) in a program is a special case. Normally
Little Meta parsers scan one token ahead. The last token of a program
is not usually £followed by another. So that an end of file condition
does not occur, a special terminal symbol test is implemented. This is

the final symbol prefixed by @.

In addition to the terminal symbol tests, a test can be the name of
some other rule. The name of the rule appears without the brackets that
surround the phrase name in BNF. Thus the <arithmetic expression>

phrase in BNF is coded:
ARITHMETIC-EXPRESSION: PRIMARY EXPRESSION;

That 1is, an ARITHMETIC-EXPRESSION is a PRIMARY followed by an

EXPRESSION,

Rather than try to implement a Little META rule which matches
<nothing> a special syntax is implemented which permits a rule to
succeed when none of its alternatives do, When one or more
alternatives, one of which is <nothing>, the alternatives are enclosed

in brackets < ... >. Thus the <expression> phrase is implemented:

EXPRESSION: < '+ PRIMARY EXPRESSION / '— PRIMARY EXPRESSION>;

The <nothing> phrase does not occur. To paraphrase EXPRESSION: An
EXPRESSION is either + followed by a PRIMARY and another EXPRESSION, or
a - followed by a PRIMARY and another EXPRESSION, or an EXPRESSION
nothing at this point. Note that EXPRESSION always succeeds no matter

what is at the source string at this point.

We can now define the entire <arithmetic expression> phrase set in

META syntax:

ARITHMETIC-EXPRESSION: PRIMARY EXPRESSION;

EXPRESSION: < '+ PRIMARY EXPRESSION / '- PRIMARY EXPRESSION >;

PRIMARY: ID / NUM / '(ARITHMETIC-EXPRESSION ');

The ARITHMETIC-EXPRESSION program will produce a yes or no answer: yes
the source string is a valid LPL arithmetic expression, or no it is
not. The following are LPL expressions which ARITHMETIC-EXPRESSION
will recognize:

VAR1

A+ B

A-B+C
(A + B) - (C~- (D + E))

The following expressions will not be recognized:

JA - B)
(A +)
-1~ -3
A * B

A problem which frequently arises in the code of compilers and
translators is the parsing of lists of things separated by punctuation
marks. Two such forms occur in LPL, a list of identifiers separated by

commas which is the list attached to the Input/Output statements, and

the 1list of statements separated by semicolons that forms the body of
LPL programs, Little Meta provides a built in test for this kind of
construct, the repetition. In BNF its general form is:

<{test>-<punctuation>-

where <test> is a test for the things which are to be repeated and
<punctuation> is the punctuation mark which separates them. The
repetition test succeeds when at least one <test> appears. If the
<test> item is followed by the punctuation mark <punctuation> then
another <test> must occur. This is the situation which most often
occurs in programming languages where a single item may occur by itself
but the presence of more than one requires separation by a punctuation

mark.

Using repetition notation <identifier list> phrase is implemented:

IDENTIFIER-LIST: ID-,- ;

We are now in a position to code the entire LPL syntax scanner. In the
text of the scanner, comments are prefixed by % and run until the end
of the line. The rules of the Little Meta implemented parser will
exactly parallel those of the BNF description. Each rule is annotated

with the corresponding BNF phrase number.

(META 'LPL-~SCANNER T) $ Invoke Little META Translator.
LPL-SCANNER: STATEMENT-LIST Q@END ; % 1.

STATEMENT-LIST: STATEMENT-;- ; 2.

STATEMENT: UNLABELLED-STATEMENT / LABELLED-STATEMENT ; % 3.
LABELLED-STATEMENT: ID ': UNLABELLED-STATEMENT; % 4.
UNLABELLED~STATEMENT: ASSIGNMENT-STATEMENT / % 5,

CONDITIONAL-STATEMENT /

TRANSFER-STATEMENT /
INPUT-OUTPUT-STATEMENT ;

ASSIGNMENT-STATEMENT: 'LET ID ':= ARITHMETIC-EXPRESSION ; % 6.
ARITHMETIC-EXPRESSION: PRIMARY EXPRESSION ; 2 7.
EXPRESSION: < '+ PRIMARY EXPRESSION / % 8.

'-= PRIMARY EXPRESSION > ;
PRIMARY: ID / NUM / '(ARITHMETIC-EXPRESSION ') ; % 9.
CONDITIONAL-STATEMENT: % 10.

'IF RELATIONAL-EXPRESSION 'THEN UNLABELLED-STATEMENT ;
RELATIONAL-EXPRESSION: $ 11,

ARITHMETIC-EXPRESSION OPERATOR ARITHMETIC-EXPRESSION
OPERATOR: '= / '< / '> ; g 12.

TRANSFER~STATEMENT: 'GO 'TO ID ; % 13.
IDENTIFIER-LIST: ID-,- ; % 14.
INPUT-OUTPUT-STATEMENT : 15.

'INPUT IDENTIFIER-LIST /

'"OUTPUT IDENTIFIER-LIST ;

FIN

The first line of the translator is the invocation of the Little Meta
system. Little Meta is a large LISP program of which the main program
is called META. It has two arguments, the first is the root rule of
the +translator being implemented. The second argqument is T (which
stands for true) if the translator is being defined, or NIL if this is
a modification being made to an o0ld one. We will discuss the

interactive features of Little Meta later.

At this point the following translation is being made:

e +
| Little Meta |
I +
| Little Meta -> LISP |
| Syntax |
O + LISP 4=memmemeoe +

| Execution |

et e +

The LISP code resulting from the Little Meta translation of LPL-SCANNER

can be executed with the help of the INVOKE function. INVOKE does the
initialization required for the operation of a Little Meta generated
program. The following sequence 1is an actual execution of the
LPL-SCANNER syntax scanner. The LPL source program accepts two numbers
from an input device and computes their quotient and remainder and
displays them. Input to the system is prefixed by the * prompt

character, Output from the system has no such character.

* { INVOKE 'LPL-SCANNER)
ENTERING LPL-SCANNER ...
* INPUT DVDND, DVSR;
* LET Q := @;
*LLOOP: IF (DVDND - DVSR) < § THEN GO TO DONE;
* LET Q :=Q + 1;
* LET DVDND := DVDND - DVSR;
* GO TO LOOP;
*DONE: OUTPUT Q, DVDND
* END

+++ EXITING LPL-SCANNER

There certainly wasn't much output from the scanner. But this is as it
should be, the program has been accepted as a valid LPL program. We
have not as yet built the compilation or interpreter parts. If
something was wrong with the LPL source program, then an error should

be detected.

A feature of Little Meta is that the translators it generates have
built in error detection and automatic error message generation. For
example, the LPL-SCANNER rule body has a STATEMENT-LIST followed by the
terminal symbol END. If the STATEMENT-LIST is parsed correctly, but the
END keyword is not found then an error message will be displayed and

the translator will stop.

* (INVOKE 'LPL~SCANNER)
ENTERING LPL-SCANNER ...

* INPUT A;

* QUTPUT A

* EMD

k*xk%% ((DELIMITER END) LPL-SCANNER)

All error messages are prefixed with five asterisks (*). Note that the
name of the rule in which the error was detected also appears. Special
messages are generated when the syntax error is detected during the

repetition test. For example:

*{ INVOKE 'LPL-SCANNER)

ENTERING LPL-SCANNER ...

* INPUT A, B, ;

**%%* ((ID REPEATED SEPARATED BY ,) IDENTIFIER-LIST)
In this case, the missing item (an identifier) is named, what it is
supposed to follow, and the rule name in which the error was detected.
This 1is the most important reason for using descriptive rule names
(some of which get very long) as the rule names will be used in error

messages.

The LPL Interpreter

The second program in the construction regime is an interpreter for
LPL programs. The strategy is to convert LPL programs into an internal
form (LISP) and then to execute them using the LISP interpreter. Since
there already is a LISP interpreter there is no sense in trying to
execute the LPL source code directly as many BASIC interpreters do. One
of the advantages of LISP over other 1languages used to implement

Translator Writing Systems 1is that creation of LISP programs by LISP

programs and their immediate execution is well supported. While it is
possible for BASIC programs to create other BASIC programs, their
immediate execution is usually not possible. Some indirect means of

loading the created program must be found.

The LPL syntax scanner will be augmented to construct a LISP
program as it scans the LPL source program. There are a number of
features of Little Meta which are specifically applicable to the
construction of intermediate LISP forms., We now examine some of the

constructors and show how they are used by placing them in pieces of

the syntax scanner,

The Semantic'Stack

A Little Meta rule considered as a LISP function returns T or NIL
to indicate success or failure in recognition its construct in the
source program. To communicate more than just success or failure, the
semantic stack is used. When a rule succeeds it normally leaves one or
more items on the top of this stack. Other rules can remove this
information or use it to create larger expressions to be placed on the

stack.

Any element on the stack can be accessed by its position relative
to the top of the stack. Thus ##1 is the item on the top of the stack,
#%2 the second element, ##3 the third and so on, There is no
restriction on the size of the stack except the number of LISP free
cells available at any given time. To access an item gand remove it
from the stack at the same time, the syntax is #1 for the first
element, #2 for the second and so on. These forms most commonly appear

as part of the stack constructor form which has as a syntax (given in

BNF here) :

<stack constructor> ::= +<{constructor item> |
+(<constructor list>)
<constructor list> ::= <constructor item><constructor list> |
<nothing>
{constructor item> ::=
={LISP S-expression> |
-<{constructor item> |
##<integer> |
#<integer> |
$<integer> |
S$<identifier> |
<identifier> |
<{integer> |
<string> |
{ <constructor list>)

Rather than explain all of the forms they will be examined as they come

into use in different parts of the translator.

The construction of an object proceeds building the item to place
on the stack, removing items from the stack, creating new ones,
referencing variables, and so on. Only when the entire object has been

constructed is it placed on top of the stack.

As usual we will start with the ARITHMETIC-EXPRESSION rules and
proceed up. The code for converting an LPL <arithmetic expression>
into an executable LISP form is as follows:

ARITHMETIC-EXPRESSION: PRIMARY EXPRESSION;

EXPRESSION: <'+ PRIMARY +(PLUS #2 #1) EXPRESSION /

'~ PRIMARY +{DIFFERENCE #2 #1) EXPRESSION> :

PRIMARY: ID / NUM / '"(ARITHMETIC-EXPRESSION ') ;
The only difference between this rule set and that used in the syntax
scanner are the two extra constructors in the EXPRESSION rule.
Examining the rule set from PRIMARY upwards is the best way to
understand the operation of ARITHMETIC-EXPRESSION. In PRIMARY, which

ever of the 3 alternatives succeeds 1leaves an item on top of the

semantic stack. The built in lexical rules ID and NUM leave their
corresponding tokens on top of the stack. We will assume that the
ARITHMETIC-EXPRESSION rule leaves a complete translated expression on

top of the stack.

The EXPRESSION rule is tried only after the ARITHMETIC-EXPRESSION
rule or after a previous use of EXPRESSION. When it is entered there is
either a PRIMARY on top of the stack (from ARITHMETIC-EXPRESSION), or a
completely translated EXPRESSION (from a recursive EXPRESSION call)., If
a + sign is found in the source string, and a PRIMARY is found there
will be two items on top of the stack, the first being the last PRIMARY
found, and the second what ever was there when EXPRESSION was entered.
The constructor forms a new expression represents, in LISP, the sum of
these two elements without evaluating them. The same is true if - is

found, except that the DIFFERENCE of the two forms is constructed.

Note that, identifiers, numbers, and strings which occur without
prefixes in constructors are copied as is into the constructed forms.
References to the semantic stack either by # or #%# are replaced by the

values retrieved from the stack.

Let us trace the execution of this rule set on a LPL source string

and watch the contents of the stack at various points.

At: Source String and pointer Stack
ARITHMETIC-EXPRESSION A+ B <empty>
PRIMARY A+ B <{empty>

exit: PRIMARY

»
+
o
ja
b=

EXPRESSION A+ B 1:A

PRIMARY A+ § 1:A

exit :PRIMARY A+ B‘ 1:B, 2:A
exit :EXPRESSION A + Ba (PLUS A B)
exit :ARITEMETIC-EXPRESSION A + B (PLUS A B)

Some LPL expressions and their translated equivalents are given in the

following table.

LPL Expression Translated Expression
VAR VAR
VARl + VAR2 + VAR3 (PLUS (PLUS VARl VAR2) VAR3)
(A + B) - (C + D) (DIFFERENCE (PLUS A B) (PLUS C D))
1 - BACK - TWOX (DIFFERENCE (DIFFERENCE 1 BACK) TWOX)

To further illustrate the use of the # construct, consider the code for
conditional expressions. The goal of the translation is to produce the
LISP equivalent of an IF statement, this being the COND function. The
first argument of the COND function is the relational expression, the
second the statement to perform if the expression is true.
CONDITIONAL-STATEMENT: 'IF RELATIONAL-EXPRESSION 'THEN
UNLABELLED-STATEMENT + (COND (#2 #1)) ;
RELATIONAL-EXPRESSION:
ARITHMETIC-EXPRESSION RELATIONAL-OPERATOR ARITHMETIC-EXPRESSION
RELA%éggAizogééAéOR: '= +EQUAL / '< +LESSP / '> +GREATERP ;
The RELATIONAL~OPERATOR rule succeeds on any of the defined relational
operators, =, <, or >, and loads onto the top of the stack the LISP
function name corresponding to the operator. The RELATIONAL-EXPRESSION

rule parses two arithmetic expressions and the relational operator.

Before the constructor is executed there are three items on the

semantic stack: 1: second arithmetic expression, 2: relational operator
LISP function name, 3: the first arithmetic expression. The two #2's in
the constructor reflect the fact that the execution of the first one
causes the third item in the stack to become the new second item. In
the CONDITIONAL-STATEMENT rule, two items are on the stack, the top
element being the LISP form of the UNLABELLED-STATEMENT and the second
being the LISP form of the RELATIONAL-EXPRESSION. These are combined
into a complete LISP IF statement. Note that the extra parentheses in
the constructor actually become part of the created structure. The

following IF statement:
IF (A + 12) < 0 THEN GO TO HELLO:
would be translated into:

(COND ((LESSP (PLUS A 12) @) (GO HELLO)))

The repetition construct test-x- leaves a list of the items created
by the test on the semantic stack. Thus the rule:

IDENTIFIER-LIST: ID-,- ;

leaves a list of the identifiers it found on top of the stack. The same

is true for the STATEMENT-LIST function which will be defined later.

Often it is required that something be done with the list of items
created by the repetition form. The FOR EACH construct implements

actions on lists of things. Its format in BNF is:

<for each clause> ::=
FOR EACH $<identifier> IN <expression-1>
DO <expression-2>
The meaning of this clause is that <expression-2> is evaluated for each
element of <expression-1> with the <identifier> being set to

consecutive elements of <expression-1>, The <identifier> can occur in

{expression-2>.

The $<identifier> form is a way of introducing local variables into
rules. Local variables may occur almost anywhere, in constructors,
LISP S-expressions, tests, and so on as long as they are prefixed by a
dollar sign. The usual rules of LISP 1local variables apply to their

use.

We combine these two constructs to implement the INPUT and OUTPUT
statements in LPL. The INPUT statement is to be translated into a
number of assignments to the variables of the list using the built in

LISP READ function. For instance:
INPUT COFACT, BANGER;
will be translated to:

(SETQ COFACT (READ))
(SETQ BANGER (READ))

The OUTPUT statement will be converted to a number of calls on the LISP

PRINT function. For example:
OUTPUT TWELVE, FREEP;

will be translated into:

(PRINT TWELVE)
(PRINT FREEP)
Using the code from the LPL syntax scanner as a guide the following
rule set will generate the appropriate SETQ's and PRINT's,
IDENTIFIER-LIST: ID-,- ; % 14. No change from LPL scanner,
INPUT-OUTPUT-STATEMENT: $ 15. Build READ's and PRINT's.
VINPUT IDENTIFIER-LIST
FOR EACH $X IN #1 DO +(SETQ $X (READ}) /
'OUTPUT IDENTIFIER-LIST
FOR EACH $X IN #1 DO +(PRINT $X) ;
The two FOR EACH clauses will repeatedly execute +(SETQ $X (READ)) and
+(PRINT $X) to load items onto the stack. The original 1list of
identifiers is removed. The -;- repetition that is used in

STATEMENT-LIST will do the correct thing and not make all the generated

LISP forms into one list.

It is often the case that we wish to concatentate two or more 1lists
together before they are placed on the stack. This is the case of the
LPL program. An LPL program will be built into a LISP PROG function
which contains a list of all the variables used in the program, and all
the statements which are parsed into LISP by the individual statement
routines, The constructor function + has a modifier which permits one
list to be concatenated (appended) to another. A minus sign is prefixed
to the form to be appended. If STATEMENT translates a single statement
into a LISP form the rule XPROGRAM will build the proper PROG form out
of it (ignoring variables for the moment).

XPROGRAM: STATEMENT-;- QEND

+(PROG NIL -#1) ;

Remember that the ~;- construct builds a list of STATEMENTs, this list

is appended to the (PROG NIL) list before it. Thus if ((SETQ A 12)

(SETQ B 34)) was on the stack, the PROG loaded onto the stack will be
(PROG NIL (SETQ A 12) (SETQ B 34)) and not (PROG NIL ((SETQ A 12)

(SETQ B 34))) which would be the case if the - prefix was not used.

In order for the variables used in the LPL program to be collected
and placed into the PROG form, a global variable will accumulate them
when they occur on the left side of an assignment statement or in an
INPUT statement. This global variable must be declared before its use.
Little Meta permits any LISP function to be called by placing a period
in front of the form and a semicolon after it. This construct is used

in place of what would normally be a rule.

The value of a variable or any LISP expression can be obtained by
placing an = sign in front of the expression., This very powerful
feature permits you to use LISP when the Little Meta syntax is not
complete enough to accomplish some task. To place the 1list of
variables in the PROG form, the global variable name prefixed by = is
placed in the + constructor form. Likewise, the = prefix can be used to

convert any LISP function into a test.

The dot prefix (.) causes an expression to be evaluated, but its
result to be ignored. This form can be used in rules much in the same
way as a simple test, but one that always succeeds. In the
LPL~-INTERPRETER rule this form will be used to initialize +the global
variable which will contain the 1list of variables used in the final
constructed PROG form., It will also be used to cause the evaluation of
the constructed PROG. The complete LPL-INTERPRETER rule and associated

functions looks like this:

. (GLOBAL ' (VARIABLES)): $ 1.
LPL-INTERPRETER: . (SETQ VARIABLES NIL) % 2.
STATEMENT-LIST-;- @END t 3.
+ (PROG =VARIABLES -#1) $ 4,
. (PRINT ##1) $ 5.
. (EVAL #1) ; $ 6.
STATEMENT-LIST: STATEMENT-;- ; % 7.

Line 1 is the declaration of the global variable VARIABLES. The first
line of the LPL-INTERPRETER rule, line 2, causes this "symbol table" to
be emptied before the LPL program is translated. The dot prefix causes
the result of this assignment to be ignored (remember that NIL means
failure and NIL is the value of this clause). Line 3 invokes
STATEMENT-LIST repeatedly as long as there are semicolons between
statements and until the first keyword of a statement is END, All the
statements so parsed are combined into one list and placed on the top
of the stack. Line 4 builds the final PROG form to be evaluated. The
list of LPL variables will have been placed in VARIABLES by the
ASSIGNMENT-STATEMENT and the INPUT-OUTPUT-STATEMENT rules. The - prefix
on #1 causes the list of statements to be appended to the list of two
elements (PROG VARIABLES). Since VARIABLES will already be a list there
is no need to enclose it in parentheses. Line 5 causes the PROG form to
be displayed. This is just a trace feature so that we can determine
that the correct internal form of the LPL-program was created. Line 6
causes the evaluation of the form. This evaluation is the execution of

the LPL program. Line 7 is the definition of a list of statements.

With the addition of a UNION function the entire LPL interpreter
can be defined. The UNION function is used to add variables to the

VARIABLES list so that no variable will appear more than once.

(META 'LPL~INTERPRETER T) $ Invoke Little META Translator.
. {GLOBAL ' (VARIABLES)); % Declare global variable.

.(DE UNION (A B) $ Define UNION function in LISP,
(COND ((NULL A) B)
((MEMQ (CAR A) B) (UNION (CDR A) B))
(T (CONS (CAR A) (UNION (CDR 2A) B))))) ;

LPL-INTERPRETER: .(SETQ VARIABLES NIL) g 1.
STATEMENT-LIST QEND
+(PROG =VARIABLES -#1)
« (PRINT ##1)
« (EVAL #1) ;

STATEMENT-LIST: STATEMENT-;- ; $ 2.

STATEMENT: UNLABELLED-STATEMENT / LABELLED-STATEMENT ; : 3.

LABELLED-STATEMENT: ID ': UNLABELLED-STATEMENT ; % 4.

UNLABELLED-STATEMENT: ASSIGNMENT-STATEMENT / % 5.
CONDITIONAL-STATEMENT /
TRANSFER-STATEMENT /
INPUT-OUTPUT-STATEMENT ;

ASSIGNMENT-STATEMENT: 'LET ID ';:= %$6.
. (SETQ VARIABLES (UNION {LIST ##1) VARIABLES))
ARITHMETIC-EXPRESSION
+(SETQ #2 #1) ;

ARITHMETIC-EXPRESSION: PRIMARY EXPRESSICN ; £ 7.
EXPRESSION: < '+ PRIMARY +(PLUS #2 #1) EXPRESSION / % 8.
'~ PRIMARY +(DIFFERENCE #2 #1) EXPRESSION > ;
PRIMARY: ID / NUM / '(ARITHMETIC-EXPRESSION ') ; $ 9.
CONDITIONAL-STATEMENT: % 10.
'IF RELATIONAL~EXPRESSION 'THEN UNLABELLED-STATEMENT
+(COND (#2 #1)) ;
RELATIONAL-EXPRESSION: 3 11.
ARITHMETIC-EXPRESSION OPERATOR ARITHMETIC-EXPRESSION
+(%#2 #2 #1) ;

OPERATOR: '= +EQUAL / '< +LESSP / '> +GREATERP ; % 12,
TRANSFER-STATEMENT: 'GO 'TC ID +{(GO #1) ; $13.
IDENTIFIER-LIST: ID-,~ ; % 14,

INPUT-OUTPUT-~-STATEMENT : ¥ 15,

'"INPUT IDENTIFIER-LIST

. (SETQ VARIABLES (UNION ##1 VARIABLES))

FOR EACH $X IN #1 COLLECT +(SETQ $X (READ)) /
'OUTPUT IDENTIFIER-LIST

FOR EACH $X IN #1 COLLECT +(PRINT $X) ;

FIN

Let us now try the demonstration LPL program. We will divide the number
15 by the number 6 which should give us 2 with remainder 3 as the

output.

*(INVOKE 'LPL-INTERPRETER)
ENTERING LPL-INTERPRETER ...

* INPUT DVDND, DVSR:
* LET Q := @;
*LOOP: IF (DVDND - DVSR) < @ THEN GO TO DONE;
* LET Q :=0Q + 1:;
* LET DVDND := DVDND - DVSR;
* GO TO LOOP;
*DONE: OUTPUT Q, DVDND
* END
(PROG (DVDND DVSR Q)
{SETQ DVDND (READ))
(SETQ DVSR (READ))
(SETQ Q 0)
LOOP (COND ((LESSP (DIFFERENCE DVDND DVSR) #) (GO DONE)))
(SETQ Q (PLUS Q 1))
(SETQ DVDND (DIFFERENCE DVDND DVSR))
(GO LOOP)
DONE (PRINT Q)
(PRINT DVDND))

++« EXITING LPL-INTERPRETER

The first output following the LPL-source program is the translated
LISP version which will be interpreted. The execution of the program
follows. The dividend and the divisor are read in and the quotient and
remainder are printed out, Notice that division by zero will manifest
itself as an infinite loop and that division where large quotients are

involved is none too efficient.

If we consider this LPL-program as a translator of dividend and

divisor' into quotient and remainder, the following T diagram depicts

the'process of converting the program into LISP and executing it.

Fomm e e ——— T +
| LPL-INTERPRETER | LPL-INTERPRETER | LPL-INTERPRETER]
e e ———————————— +
| a,b ->a/b,rem.| a,b -> a/b,rem.| a,b -> a/b,rem.|
Fm————— + o —— Fm———— + t————— fm—————— + Fmm———— +
[Meta| Little Meta |LISP| UOLISP |Ex. |
R e ——— e ———— +———
| Meta -> LISP]| | LISP -> Ex. |
+—t +—+ +-+ =
|Execution| |Execution]|
Fmmm————— + F————————e +

By turning on the UOLISP compiler we could actually cause the
LPL-program to be converted from LISP into executable machine code. Our
goal, however, is to implement an LPL~compiler which produces code
capable of executing without the presence of the LISP interpreter. The
LISP compiler generates code with many hooks into the LISP

interpreter.

The LPL Compiler.

The organization of the LPL compiler will follow very closely the
template provided by the LPL syntax scanner and interpreter. The
compiler we are constructing will in a single pass produce 280 assembly
code and storage locations for the variables., This code will be dumped
to a disk file which when concatenated to a library of I/0 routines can

be assembled and executed.

The code produced will be symbolic ZB# instructions in the Zilog
format [5]. All storage locations, registers, and arithmetic will use

16 bit quantities.

Formatted Qutput
Rather than output the numerical values of z80 machine

instructions, assembly code will be generated as character strings.

This indirect approach has a number of advantages:
1. If need be, the code can be edited and optimized by hand.
2. It is easier to debug the compiler code generators.

3. We don't have to keep track of addresses or know the size of

machine instructions.
4, We don't have to write an assembler.
The assembly output will be produced with the help of the Little

Meta formatted output routines. An output clause has the following

structure:
=>{(item[B], ..., item[1])
where the items are any of the following:
COL:n - causes the output pointer to skip to column n,
SPACE:n — causes n spaces to be skipped.
/ - causes a skip to a new line,

Any LISP Expression - The value of the expression is displayed by the
LISP PRIN2 function,

Perhaps the simplest form to generate code for is the GO TO

statement, Once the GO, TO, and identifier have been parsed, a 2840

loné jump instruction will be generated with its destination address
the label name.
TRANSFER-STATEMENT:

‘GO 'TO ID

=>(COL:7, "JP", COL:15, #1, /) :
The instruction and operands are in fixed columns for cleaner output.
There is no check made that the label is defined, multiply defined, or
a variable name. Any such checking will be left to the assembler., It is
not our purpose to implement a production compiler, rather an
experimental one. Once the language features are fixed, the compiler
can be implemented in its own syntax and include more detailed error

checking.

For the input and output statements there will be two library
routines, READ and PRINT, READ will accept a single 16 bit numeric
value £from some I/O device and return it in the HL register pair. PRINT
takes a value in the 16 bit register HL and displays it on some I/0
device. The implementation of the compiler INPUT-OUTPUT-STATEMENT
parallels that of the interpreter rule.

INPUT-OUTPUT-STATEMENT: 'INPUT IDENTIFIER-LIST
. (SETQ VARIABLES (UNION ##1 VARIABLES))
FOR EACH $X IN #1 COLLECT
=>(COL:7, "CALL", COL:15, "REaD", /,
COL:7, "Lb", COL:15, "(", $X, "),HL", /) /
'OUTPUT IDENTIFIER-LIST
FOR EACH $X IN #1 COLLECT
=>(CcoL:7, "LD", COL:15, "HL,(", $X,)", /.,
coL:7, "CALL", COL:15, "PRINT", /) :
Notice that the / inside the output clause is different than the / used

to separate the two alternative. Each variable in the list parsed

generates two separate Z8F instructions.

The Pattern Matcher

Rather than generating code during the parsing of arithmetic
expressions, the expression will first be converted into the prefix
form (LISP S-expressions} and then these will be matched against
various patterns to produce different output code sequences. We now
describe the patterns and actions in relation to the preparation of

arithmetic expression assembly language code.

A pattern seguence is a set of patterns which are matched in order
against a single LISP S-expression for both structure and content. The

syntax of a pattern sequence is as follows:

{pattern name> =
{pattern[B]> -> <action{@]> ,
<pattern[l]> -> <action[l]>

<pattern[n]> => <action[n]>

-y

The object of a pattern sequence is to match a single S-expression
against the patterns one at at time until one match succeeds. Then the

corresponding action is taken.

A pattern is a template against which the actual parameter of the
pattern sequence is matched. Patterns are either atomic entities or

expressions formed from pattern primitives.

Occurrences of atoms in a pattern must exactly match the source

against which the pattern is being matched. Thus the pattern:

will match only the list (NEW WE ARE 6) and no other.

To match an arbitrary S-expression, the &n construct is used. 'n'
is an integer from 1 to 4895 which serves to identify this particular

expression. Thus:
(NOW WE ARE &l) ->

will match any S-expression which has as its £first elements NOW, WE,
ARE in that order, and any LISP expression as its last element. Thus
(NOW WE ARE 1), (NOW WE ARE GONE), and (NOW WE ARE (IN A LIST)) will
all succeed when matched against this pattern. Furthermore, the piece
of the expression which corresponds to the &n will be available on the

action side.

Then &an can be made more selective by allowing it to match an
expression only if the wvalue of some function in relation to the

expression is true. The form is:
&<(predicate)>n

where <predicate> is an expression which returns NIL or not based on
the expression being matched. Thus to match only numbers, the LISP

predicate NUMBERP is used:
&< (NUMBERP &1)>1

This pattern succeeds only if its corresponding expression is a
number. The &1 inside the expression corresponds to the piece of the

expression to be matched.

The action side of a pattern is executed when its antecedent is
successfully matched to the source expression. The action side is a

list of forms which at the top level are any of the following:

1. The stack reference and access functions # and #%.

2. Quoted LISP S-expressions,

3. Expressions prefixed with = for evaluation.

4, § prefix local variables.

5. & pattern pieces.

6. Atoms.

7. Combinations of the above in expressions,

A very simple implementation of the patterns to generate code from the

LISP form of the LPL arithmetic expression is as follows:

ARITHMETIC-CODE =
&< (NUMBERP &1)> 1 =-> =>(COL:7, "LD", COL:15, "HL,", &1, /), $ 1.
&<(IDP &l1l)>1 -> =>(COL:7, "LD", COL:15, "HL,(", &1, ™}", /), % 2.
(PLUS &1 &2) -> =(ARITHMETIC-CODE &2) % 3.
=>(CoL:7, "PUSH", COL:15, "HL", /)
=(ARITHMETIC-CODE &1)
=>(COL:7, "POP", COL:15, "DE", /,
coL:7, "aDD", COL:15, "HL,DE", /),
(DIFFERENCE &1 &2) =~> =(ARITHMETIC-CODE &2) % 4.
=>(COL:7, "PUSH", COL:15, "HL", /)
=(ARITHMETIC~CODE &l1)
=>(CcoL:7, "POP", COL:15, "DE", /,
con:7, "OR", COL:15, "a", /,
coL:7, "sBC", COL:15, "HL,DE", /) ;
This very simple pattern sequence generates correct though inefficient
code for arithmetic expressions with addition and subtraction. Patterns
1l and 2 work on the primitive values and output code to 1load register
HL with integer values or variable locations. Rules 3 and 4 work on

forms constructed from the primitives and generate the code to do 16

bit addition and subtraction.
The LPL expression
A+B-12
generates the following intermediate LISP form:
(PLUS A (DIFFERENCE B 12))

We can follow this form through the patterns and actions.

being matched Rule No. /yalues

l. (PLUS A (DIFFERENCE B 12))
3 &1:A, &2:{(DIFFERENCE B 12)

Rule number 3 has two recursive matches to be made, first on

&2, and then on &1 to generate code for the two operands of
PLUS.

2. (DIFFERENCE B 12) 4 &1:B, &2:12
Rule 4 also has two recursive matches to be made. Only when
the first has completed will some code be output.

3. 12 1 &1:12 LD HL,12
Rule 1 outputs code immediately. This completes the first
recursion from match number 2 above, Some code is output now
and the second recursion of part 2 commences.,
PUSH BHL

4. B 2 &1:B LD HL, (B)
Both operands of the DIFFERENCE have been generated. The
second argument is on the stack, the first is in HL. The code
for the 16 bit subtraction is now generated. Note that all
actions generate code which leaves their results in register

HL.
PCP DE
OR A
SBC HL,DE

At this point the first recursion of match 1 has completed.
The second now commences after the result of the first is
pushed onto the stack.

PUSH HL

5. A 2 &1:A LD HL, (A)
The final recursive match has completed and the addition can
be completed.
POP DE

ADD HL,DE

To make the code generation more efficient requires a few more patterns
and code output sequences. For instance one could have the pattern:
(PLUS &<(NUMBERP &l1)>1 &<{(NUMBERP &2)>2) ->
=>(CcoL:7, "LD", COL:15, "HL,", =(PLUS &1 &2), /) ,
This pattern recognizes the sum of two numbers. Rather than output code

to compute the sum, they are added at "compile time" and their sum is

placed in register HL.

Occasionally it is necessary to generate local labels or
identifiers, those which are used within a translated program but are
not seen by the user. Within a Little Meta rule the $n construct
causes automatic generation of a label which is guaranteed to be
unique. The label associated with the number will remain constant
during a single execution of the rule but will change for every new
execution. The code generated for the conditional statement requires a
label at the end of the code for the statement which is the object of a
jump instruction. The jump will be made if the relational expression is
not true. The complete code for the conditional statement is as

follows:

CONDITIONAL-STATEMENT: 'IF RELATIONAL-EXPRESSION 'THEN
=>(CoL:7, "JpP", COL:15, #1, ",", $1, /)
UNLABELLED-STATEMENT
=>{$1, COL:7, "EQU", COL:15, "s", /) ;

RELATIONAL-EXPRESSION

ARITHMETIC-EXPRESSION =(ARITHMETIC-CODE #1)
=>(COL:7, "PUSH", COL:15, "HL", /)
RELATIONAL-OPERATOR
ARITHEMETIC-EXPRESSION =(ARITHMETIC-CODE #1)
=>(COL:7, "POP", COL:15, "DE", /,

CcoL:7, "OR", COL:15, "a", /,

CoL:7, "sBC", COL:15, "HL,DE", /) ;:

RELATIONAL-OPERATOR: '= +NZ / '< +M / '> +P

The RELATIONAL~EXPRESSION rule leaves on top of the stack, the
condition code for the jump statement. The label on the jump statement
is the same one as will be generated on the EQU after the

UNLABELLED-STATEMENT code.

An alternative way of compiling the RELATIONAL-EXPRESSION code
would be to generate the LISP expressions in the interpreter and then
use a pattern to create code. With appropriate patterns this approach

will generate much better code.

The entire compiler can now be implemented.

(META ‘'LPL!-COMPILER T)
. (GLOBAL ' (VARIABLES)) ;

. (DE UNION (A B)
(COND ((NULL A) B)
((MEMQ (CAR A) B) (UNION (CDR A) B))
(T (CONS (CAR A) (UNION (CDR A} B))))) ;

LPL-COMPILER: ,{SETQ VARIABLES NIL) 2 1.
=>{($1, CoL:7, "EQU", COL:15, "s", /)
STATEMENT-LIST @END
=>{COL:7, "HLT", /)

FOR EACH $X IN VARIABLES COLLECT
=>($X, COL:7, "DW", COL:15, "@", /)
=>{COL:7, "END", COL:15, $1, /) :

STATEMENT-LIST: STATEMENT-;- ; % 2.

STATEMENT: UNLABELLED-STATEMENT / LABELLED-STATEMENT ; $ 3.

LABELLED-~-STATEMENT: ID ': % 4,
=>(#1, COL:7, "EQU", COL:15, "s", /)
UNLABELLED-STATEMENT ;

UNLABELLED-STATEMENT: ASSIGNMENT-STATEMENT / % 5.
CONDITIONAL-STATEMENT /
TRANSFER-STATEMENT /
INPUT-OUTPUT-STATEMENT ;

ASSIGNMENT-STATEMENT: 'LET ID $ 6.
. (SETQ VARIABLES (UNION (LIST ##1) VARIABLES))
ARITHMETIC-EXPRESSION =(ARITHMETIC-CODE #1)
=>(coL:7, "Lb", COL:15, "(", #1, "),HL", /) :

ARITHMETIC-~-EXPRESSION: PRIMARY EXPRESSION : % 7.
EXPRESSION: < '+ PRIMARY +(PLUS #2 #1) EXPRESSION / % 8.
'— PRIMARY +(DIFFERENCE #2 #1) EXPRESSION > ;
PRIMARY: ID / NUM / '(ARITEMETIC-EXPRESSION ') ; % 9.
ARITHMETIC-CODE = % Patterns for arithmetic code generation.
&< {NUMBERP &1)>1 -> =>(COL:7, "LD", COL:15, "HL,", &1, /),
&<{IDP &1)>1 -> =>{COL:7, "LD", COL:15, "HL,(", &1, ™", /),
(PLUS &1 &2) => =(ARITHMETIC-CODE &2}
=>(COL:7, "“PUSH", COL:15, "HL", /)
=(ARITHMETIC-CODE &1)
=>(COL=7' “POP", COL:]—S' “DE“, /,
coL:7, "ADD", COL:15, "“HL,DE", /),
(DIFFERENCE &l &2) -> =(ARITHMETIC-CODE &2)
=>(COL:7, "PUSH", COL:15, "HL", /)
=(ARITHMETIC-CODE &l)
=>(COL:7' "POP“, COL:lS; "DEn, /,
coL:7, "OR", COL:15, "a", /,
coL:7, "sBC", COL:15, "HL,DE", /) ;

CONDITIONAL-STATEMENT: 'IF RELATIONAL-EXPRESSION % 10.
"THEN
=>{COL:7, "JP", COL:15, #1, ",", $1, /)
UNLABELLED-STATEMENT
=>($1, COL:7, "EQU", COL:15, "$", /) ;
RELATIONAL-EXPRESSION: ARITHMETIC-EXPRESSION $ 11,
={ARITHMETIC-CODE #1)
=>{COL:7, "PUSH", COL:15, "HL", /)
RELATIONAL-OPERATOR
ARITHMETIC-EXPRESSION
=(ARITHMETIC—-CODE #1)
=>{COL:7, "POP", COL:15, "DE", /,
COL:7, "OR", COL:15, "A", /,
CcoL:7, "SBC", COL:15, "HL,DE", /) ;
RELATIONAL-OPERATOR: '= +NZ / '< +M / '> +P ; g 12.

TRANSFER-STATEMENT: 'GC 'TO ID % 13,
=>(COL:7, "JP", COL:15, #1, /) ;

IDENTIFIER-LIST: ID-,- ; $ 14.

INPUT-QUTPUT-STATEMENT: 'INPUT IDENTIFIER-LIST $ 15,
. (SETQ VARIABLES (UNION ##} VARIABLES))
FOR EACH $X IN #1 COLLECT
=>(COL=7' nCALL"' COL:lS' nREAD“' /'
COL:7, "LD", COL:15, "(", $X, "),HL", /) /
'OUTPUT IDENTIFIER-LIST
FOR EACH $X IN #1 COLLECT
=>(COoL:7, "“iLD", COL:15, "HL,(", $X, ")", /.
COL:7, "CALL", COL:15, "PRINT", /) :

FIN

The simple division program will generate the following

code.

The

statements are listed with the code that they generate to help follow

the compilation process,

* (INVOKE 'LPL-COMPILER)
ENTERING LPL-COMPILER ...
G@epsl EQU $

* INPUT DVDND, DVSR;
CALL READ

LD (DVDND) , BL
CALL READ
LD (DVSR) ,BL

L LET Q := 0;

LD HL,®
LD (Q) (HL

*LOOP: IF (DVDND - DVSR) < § THEN GO TO DONE;

LOOP EQU $
LD AL, (DVSR)
PUSH HL
LD HL, (DVDND)
POP DE
OR A
SBC HL,DE
PUSH HL
LD HL,0
POP DE
OR A
SBC HL,DE
JP M,GO8082
JP DONE
GBEP2 EQU $

* LET Q :=Q + 1;

LD HL,1

PUSH HL
LD HL, (Q}
POP DE
ADD HL,DE
LD (Q) ,HL

* LET DVDND := DVDND - DVSR;

LD HL, (DVSR)
PUSH HL

LD HL, (DVDND)
POP DE

OR A

SBC HL,DE

LD (DVDND) , HL

i GG TO LOOP;
JP LOOP

*DONE: OUTPUT Q, DVDND

DONE EQU [
LD HL, (Q)
CALL PRINT
LD HL, (DVDND)
CALL PRINT
* END
HLT
Q DW @
DVSR DW @
DVDND DW @
END GAAg1
ee.« EXITING LPL-COMPILER
Why Use a Translator Writing Svstem

One of the problems with Translator Writing Systems is that they

are denerally slow and produce compilers that are not much faster.

Though there is considerable research being carried out to improve this

situation, translators and compilers produced by Little Meta are fairly

slow. The place of Little Meta in the overall scheme of things is as an

initial implementation tool. The steps that are usually followed run

'soﬁewhat like this.
l. A language is defined in some form or other.
2. An interpreter is built for the language using Little Meta.

3. Many programs implemented in the lanquage are implemented and
debugged using the interpreter. During this process new features

are added, removed, and old ones clarified as the need arises.

4. A compiler is implemented in Little Meta. The code produced runs

stand alone or with a library on the host machine.

5. A compiler is implemented in the new language to run stand

alone.

6. Little Meta compiles this compiler. The new compiler is capable
of compiling itself and will probably run much faster. The Little

Meta compiler and translator can be discarded.

The process of "bootstrapping” a compiler using this method is depicted
in the following T-diagram. The final result is an LPL compiler written

in Z80 assembly language.

Fo—— e + e +
| LPL compiler in LPL | | LPL compller in LPL |
e e + + - ————
ILPL ~> Z80 Assembler | | LPL -> 780 Assembler|
=t e o ————————————— R + - + +—+
|ILPL| LPL-COMPILER | LPL-COMPILER | LPL~COMPILER |Z80 Asm. |
R s L L E ST o —————— —tm— e Fmm————— +
| LPL -> Z80 Asm.| LPL -> %860 Asm | LPL -> Z80 Asm.]
+——— + -4 -t + + +-—+
IMeta| Little Meta ILISP! Llsp System |Exec. |
Fo—m— e ————— e e e et e +
| Meta -> LISP| ILISP -> Exec.|
+———+ tom—vt ot +———t
|Exec. | |Exec. |

Certainly LPL is not sufficient as it stands to implement a compiler,
but a few very simple modifications would provide enough of a language
for this to be accomplished. The PILOT language is a well done example
of this kind of project [6]. 1Its compiler implemented in PILOT is only

a few hundred lines long and can be implemented in a week or so.

This process is a particularly useful way of bringing up a compiler
for a new machine which has few utilities and no readily available
compilers of its own. With a machine capable of running Little Meta it
is possible to bring up large amounts of software on a machine which

has none,

Meta in Meta

Just as compilers for a language are implemented in the language,
Little Meta is implemented in Little Meta. This process has been going
on for a number of years with the first version hand implemented a long

time ago. The system consists of 3 parts.

l. A support package to make Little Meta run, This consists of the
lexical scanner, lexical primitives, parsing control, semantic

stack operations, and error control.

2. A support package for Little Meta produced translators. This
includes the table set up, symbol table primitives, formatted

output, and the pattern matcher.

3. The Little Meta translator. This section of code is implemented
in Meta itself and converts the Little Meta syntax into LISP

object code. This code is only 3 pages long.

The total length of code is less than seven hundred lines including

comments.

More Features

There are a number of other facilities provided by the system which
were not covered in this report. These include the ability to "back up"®
the lexical scan when a rule only partially succeeds so that some other
rule can be tried; a complete block structured symbol table package;
complex patterns; the ability to interface to LISP and packages; and
finally the ability to interact and modify a translator in a piecemeal

fashion.

This last feature separates Little Meta from most non-LISP based
translator writing systems. It is particularly attractive during the
debugging of a translator. The suspect rule can be traced in the usual
LISP fashion and then redefined if it is in error all without
retranslating the entire rule set. One can stop the translator at
various points and examine the semantic stack, global and 1local

variables, the symbol table, and other state information,

Conclusions

Little Meta and is an attractive tool for the serious programming
language enthusiast, With a small amount of practice translators can be

built to perform most any task. To date the system has been used to:

l. Experiment with various syntaxes for a computer graphics

programming language.

2. Compile itself.

3. Help students master the basics of compiler implementation.

The projected uses for the system include:

l. To build cross compilers for the newer 16 bit microcomputer

systems,

2, To build a special purpose language for implementing software for

a local computer network.

3. To implement translators from very high 1level languages into
LISP. These lanqguages will permit concurrent execution on multiple

processors, and very high level operations on data structures.

Acknowledgements

The author would like to thank, Rudiger Loos, Richard Jenks, Cedric
Griss, Robert Keller, and most of all Martin Griss and Robert Kessler

for implementing the pattern matcher.

'List of References

1.

J. Marti, "LISP for the TRS-88", to appear in 86 Microcomputing and
"UOLISP", CIS-TR-86-18, U. of Oregon, Department of Computer and
Information Science, Eugene, Oregon 974@3, latest revision December

1981.

J. Marti, "Little Meta", CIS-TR-81-86, U. of Oregon, Department of
Computer and Information Science, Eugene, Oregon 97483, latest

revision December 1981.

Mckeeman, W. M., Horning, J. J., Wortman, D. B., "A Compiler

Generator", Prentice-Hall, Inc., Englewood Cliffs, N, J., 1978.

Nauver, P., et al., "Revised Report on the Algorithmic Language

ALGOL 66", Communications of the ACM, 3 {1966), 299,

"Z88-CPU Technical Manual”, Zilog, Los Altos, California, 1976.

Halstead, M. H., "A Laboratory Manual for Compiler and Operating
System Implementation", American Elsevier Publishing Company, Inc.,

New York, 1974.

