March 1982

CIS-TR-82-01

A SESSION WITH THE LITTLE META
TRANSLATOR WRITING SYSTEM

by
Jed B. Marti

Department of Comp. and Inf. Science
The University of Oregon
Eugene, Oregon 97483

ABSTRACT. The features of the Little Meta Translator Writing System
are presented by the development of a compiler through three stages,

KEYWORDS. Translator Writing System, Compiler-Compiler, Pattern

Matching.

A SESSION WITH THE LITTLE META
TRANSLATOR WRITING SYSTEM

Little META is a LISP based Translator Writing System. It is a
package of support routines and a complete translator designed to
support the programming language experimentor. Little META is
implemented in LISP, specifically the UOLISP subset 1 of Standard
LISP 2,

The system has evolved continuously from one implemented by
Loos 3, A very fine implementation was done by Jenks 4. A large
version of the system called META/REDUCE has been used on a number of
mainframes running Standard LISP °. A subset of Little META

implemented by Kessler is part of the Portable Standard LISP projecte.

The system differs from conventional translator writing systems in
several ways. It is implemented on a microcomputer and is small enough
to fit easily within the storage constraints of such a system. It is
implemented within the environment of an incremental programming
system. Consequently translators are modifiable without complete
recompilation. Thirdly, its input syntax closely resembles the context
free grammar with semantic actions used in 7, This feature is
particularly useful in demonstrating compiler construction in the
classroom sitvation. Except for a kernel of support routines, the
translator is implemented in its own syntax. Modifications to the
translator are very simple as its source is only three pages long, The
system is portable to the extent that only trivial modifications will

permit it to be moved to other versions of Standard LISP, Finally, the

J///// i
translators and compilers it produces can run standalone in the LISP

environment,

We will examine both the implementation of a compiler which
produces 286 assembly code and an interpreter of programs for the very

simple Little Programming Language (LPL).

The Little META Source Lanquage

Our strategy will be to first define the syntax and semantics of

LPL; and then to implement it piecemeal and test it as we go along.

A Context Free Grammar for LPL.

LPL has a bare minimum of control constructs and no variable
declarations. The semantics of the language hold no suprises and are

the ones normally associated with the constructs,
1. <LPL program> -> <statement list> END;
2. <statement list> -> <statement>; <statement list> l €
3. <statement> -> <unlabelled statement> | <labelled statement)
4, <labelled statement> ~> <identifier>: <unlabeled statement>

5. <unlabeled statement)> ->
<{assignment statement> |
<compound statement> |
<conditional statement> |
<transfer statementd> |

<input/output statement>

6. <assignment statement> ->

LET <identifier> —> <arithmetic expression>
7. <arithmetic expressiond> -> <primary> <expression>

8. <expression> -> + {primary> <expression> |

- <{primary> <expression> | &€

9. <primary> -> <identifier> | <integer> |

(<arithmetic expressiond)
19. <compound statement> -> BEGIN <statement list> END

»11. <conditional statementd> -> IF <relational expression>

THEN <unlabeled statement>

12, <relational expression> ->

<arithmetic expression> <operator> <arithmetic expression®
13. <operator> -> = | < | >
14, <transfer statement> -> GO TO <identifier>
15. <identifier list> -> {identifier>, <identifier list> | €

16. <input/cutput statement> —> INPUT <identifier 1ist)> |
QUTPUT <identifier list>

There are two purposeful omissions from the BNF description, that of
<integer> and <identifier>. We will assume that these are defined as
simple unsigned integers and standard LISp style identifiers (any
number of alphanumeric characters the first of which must be

alphabetic, non-alphanumeric characters are prefixed with).

The procedure we will follow in the development of the LPL compiler

is to build three successive programs.

1. A syntax scanner. This program will verify that the syntax of the

source program is correct.

2. The syntax scanner will be augmented to form an interpreter. This
program will accept a complete LPL program and translate it into

LISP for immediate execution.

3. The interpreter will be further augmented to implement the
compiler, This program will accept LPL programs and produce 280

assembly code,

The strategy in constructing each one of these programs will be to
build the lowest 1level pieces first. This includes the arithmetic
expressions, and the relational expressions. The next step will be to
build the individual statements and then all the pieces will be drawn
together to form the complete program. Working from the bottom up
serves tutorial purposes only and is not the recommended way of

implementing translators.

Little META Syntax

Just as a CFG description of syntax is made up of phrases, a Little
META implementation of a programming language is made up of rules. A

Little META rule is:
<{META rule> -> <identifier>: <rule body> ;

That 1is, a <META rule> is an identifier followed by a colon followed by

the rule body. The identifier is the name of the rule and the body

describes the syntax which the rule recognizes and actions to take when

this occurs.

The <rule body> consists of one or more alternatives which are
possible forms which the piece of language being described can take,
These alternatives are separated by slashes (/). The alternatives are
formed from tests which are different forms of syntax which must occur
in the source language for the rule to succeed, One of the simplest
tests is for terminal symbols. When a such a symbol is to occur in the
source text, it is given in the Little META rule prefixed by an
apostrophe ('). 1In Little META the <cperator> phrase is implemented in

the following fashion:

OPERATOR: '= / i< / > ;

For the most part, Little META syntax analysis will be almost the same

as the CFG syntax phrasing.

Tests can succeed or fail. A test succeeds when the source program
contains an instance of the test at the position currently being

scanned. A test fails if there is no such instance.

The last symbol in a program is a special case. Normally Little
Meta parsers scan one token ahead. The last token of a program is not
usually followed by another. So that an end of file condition does not
occur, a special terminal symbol test is implemented, the final symbol

prefixed by €.

In addition to the terminal symbol tests, a test can be the name of
some other rule. The name of the rule appears without the brackets that

surround the phrase name. Thus the <arithmetic expression> phrase is

coded:
ARITHMETIC-EXPRESSION: PRIMARY EXPRESSTION;

That is, an ARITHMETIC-EXPRESSION is a PRIMARY followed by an

EXPRESSICN,

The structure underlying the alternative matching and

concatenations of tests closely resembles the AND/OR programs of Harel 8.

Rather than try to implement a Little META rule which matchesé%,a
special syntax is implemented which permits a rule to succeed when
none of its alternatives do. When a rule has one or more alternatives,
one of which is ¢ the alternatives are enclosed in brackets ¢ NaG

». Thus the <{expression> phrase is implemented:
EXPRESSION: < '+ PRIMARY EXPRESSION / '- PRIMARY EXPRESSIOND ;

The €& phrase does not occur. To paraphrase EXPRESSION: an EXPRESSION
is either + followed by a PRIMARY and another EXPRESSION, or a -
followed by a PRIMARY and another EXPRESSION. Note that EXPRESSION
always succeeds no matter where the lexical scanner is in the current

input string.

We can now define the entire <arithmetic expression» phrase set in

META syntax:

ARTTHMETIC~EXPRESSION: PRIMARY EXPRESSION;
EXPRESSION: < '+ PRIMARY EXPRESSION / '- PRIMARY EXPRESSION >;
PRIMARY: ID / NUM / '{ ARITHMETIC-EXPRESSION oF:

The ARITHMETIC~EXPRESSION program will produce a yes or error answer:

yes the source string is a valid LPL arithmetic expression, or an error

message if it is not. The following are LPL expressions which
ARTTHMETIC-EAPRESSICN will recognize:

VARL

A+ B

A-B+C
(A+B) - {C- (D+E))

The following expressions will not be recognized:

)A - B)
(a +)
-1 - -3
A*B

A task which frequently arises in the code of compilers and
translators is the parsing of lists of things separated by punctuation
marks, Two such forms occur in LPL, a list of identifiers separated by
commas and the list of statements separated by semicolons. Little Meta
provides a built in test for this task, the repetition construct. Its

general form is:
<test>—<{punctuation>-

where <test> is a test for the things which are to be repeated and
<punctuation> is the punctuation mark which separates them. The
repetition test succeeds when at least one <test> appears. If the
<test> item is followed by the punctuation mark <punctuation> then
another <test> must occur. Using repetition notation the <identifier

list> phrase is implemented:
IDENTIFIER-LIST: ID-,~ ;

We are now in a position to code the entire LPL syntax scanner. In the

text of the scanner, comments are prefixed by % and run until the end

of the line. The rules of the LPL parser will exactly parallel those of
the CFG description with annotation corresponding to the CFG phrase

number.

(META 'LPL~SCANNER T) % Invoke Little META Translator.
LPL~SCANNER: STATEMENT-LIST REND ; % 1.
STATEMENT-LIST: STATEMENT-;- ; 2.
STATEMENT: UNLABELLED-STATEMENT / LABELLED-STATEMENT : 3 3.
LABELLED-STATEMENT: ID ': UNLABELLED—-STATEMENT; 3 4.
UNLABEILLED~STATEMENT: ASSIGNMENT-STATEMENT / % 5.
COMPCUND-STATEMENT /
CONDITIONAL~STATEMENT /
TRANSFER-STATEMENT /
INPUT-OUTPUT-STATEMENT ;
ASSTGNMENT-STATEMENT: 'LET ID *:= ARITHMETIC-EXPRESSION H % 6.
ARITHMETIC—~EXPRESSION: PRIMARY EXPRESSION H % 7.
EXPRESSION: < '+ PRIMARY EXPRESSION / % 8.
'~ PRIMARY EXPRESSION > ;
PRIMARY: ID / NUM / '(ARITHMETIC-EXPRESSION ') $ 9.

COMPCUND~STATEMENT: 'BEGIN STATEMENT-LIST 'END ; % 140.

CONDITIONAL-STATEMENT : % 11.
'IF RELATIONAL~EXPRESSION 'THEN UNLABELLED-STATEMENT ;
RELATIONAL~EXPRESSION: $ 12.

ARITHMETIC-EXPRESSION OPERATOR ARITHMETIC-EXPRESSION ;
OPERATOR: '= / '<¢ / > ; % 13.

TRANSFER-STATEMENT: ‘GO 'TO ID ; % 14.
INPUT-CUTPUT-STATEMENT : % 16.

'INPUT IDENTIFIER-LIST /

*OUTPUT IDENTIFIER-LIST ;

FIN

The first line of the translator is the invocation of the Little Meta
system. Little Meta is a large LISP program of which the main program
is called META, It has two arguments, the first is the root rule of

the translator being implemented. The second argument is T if the

translator is being defined, or NIL if this is a modification being

made to an old one.

The LISP code resulting from the Little Meta translation of
LPL~-SCANNER can be executed with the help of the INVOKE function.
INVOKE does the initialization required for the operation of a Little
Meta generated program. The following sequence is an execution of the
LPL-SCANNER syntax scanner., The LPL source program accepts two numbers
from an input device and computes their quotient and remainder and
displays them. Output from the system is in upper case, input lower

case.

{invoke 'lpl-scanner)
ENTERING LPL~-SCANNER ...
input dvdnd, dvsr;
let g := 8;
loop: if (dvdnd - dvsr) < 6 then go to done;
let g :=qg + 1;
let dvdnd := dvdnd - dvsr;

go to lcop;
done: output q, dvdnd
end

. EXITING LPL-SCANNER

A feature of Little Meta is that the translators it generates have
built in error detection and automatic error message generation. For
example, the LPL~SCANNER rule body has a STATEMENT-LIST followed by the
terminal symbol END. If the STATEMENT-LIST is parsed correctly, but the
END keyword is not found then an error message will be displayed and

the translator will stop.

{invoke 'lpl-scanner)

ENTERING LPL~SCANNER ...

input a;
output a
emd

**k4*% ((DELIMITER END) LPL-SCANNER)

All error messages are prefixed with five asterisks. Note that the name
of the rule in which the error was detected also appears. A different
message is generated when the syntax error is detected during the

repetition test. For example:

{invoke 'lpl-scanner)
ENTERING LPL-SCANNER ...
input a, b, ;

x%%#% ((ID REPEATED SEPARATED BY ,) IDENTIFIER-LIST)

In this case, the missing item (an identifier) is named, what it is
supposed to follow, and the rule name in which the error was detected.
This is the most important reason for using descriptive rule names
{some of which get very long) as they will be used in error messages.
The messages are compiled from the structure of the test using a method
closely allied to that of Hartmann described by Pemberton 9. To keep
the size of translators and the Little Meta system within limits the

complete error recovery scheme has not yet been implemented.

11
The LPL Interpreter

The second program in the construction regime is an LPL
interpreter. The strategy is to convert LPL programs into LISP and
then to execute them using the LISP interpreter. One of the advantages
of LISP over other languages used to implement translator writing
systems is that creation of LISP programs by LISP programs and their

immediate execution is well supported.

The LPL syntax scanner will be augmented to construct a LISP
program as it scans the LPL source program. There are a number of
features of Little Meta which are specifically applicable to the

construction of intermediate LISP and prefix forms.

The .Semantic Stack

A Little Meta rule considered as a LISP function returns T or NIL
to indicate success or failure in recognition its construct in the
source program. To communicate more than just success or failure, the
semantic stack is used. When a rule succeeds it normally leaves one or
more items on the top of this stack. Other rules can remove this
information or use it to create larger expressions to be placed on the

stack.

Any element on the stack can be accessed by its position relative
to the top of the stack. Thus ##1 is the item on the top of the stack,
##2 the second element, ##3 the third and so on. There is no
restriction on the size of the stack except the number of LISP free
cells available at any given time. To access an item and remove it

from the stack at the same time, the syntax is #1 for the first

12

element, #2 for the second and so on. These forms most commonly appear

as part of the stack constructor form which has as a syntax:

<stack constructor> -> +<constructor item> |
+{<constructor list>)
<constructor list> -> <constructor itemd<constructor list> [
<nothing>
{constructor itemd ->
=<LISP S-expression> |
-<{constructor item> |
##dinteger> |
#dinteger> |
$<integer> |
$<identifier> |
<identifier> |
<integer> |
<stringd |
{ <constructor list))

Rather than explain all of the forms they will be examined as they come

into use in different parts of the translator.

The code for converting an LPL <arithmetic expression> into an
executable LISP form is as follows:
ARITHMETIC-EXPRESSION: PRIMARY EXPRESSION;
EXPRESSION: <'+ PRIMARY +{PLUS #2 #1) EXPRESSION /
'~ PRIMARY +({DIFFERENCE #2 #1) EXPRESSION> ;
PRIMARY: ID / NUM / '(ARITHMETIC-EXPRESSION D
The only difference between this rule set and that used in the syntax
scanner are the two extra constructors in the EXPRESSION rule,
Examining the rule set from PRIMARY upwards is the best way to
understand the operation of ARITHMETIC-EXPRESSION. In PRIMARY, which
ever of the three alternatives succeeds leaves an item on top of the
semantic stack. The built in lexical rules ID and NUM leave their
corresponding tokens on top of the stack. We will assume that the
ARITHMETIC~EXPRESSION rule leaves a complete translated expression on

top of the stack.

13

The EXPRESSION rule is tried only after the ARITHMETIC-EXPRESSION
rule or after a previous use of EXPRESSION. When it is entered there is
either a PRIMARY on top of the stack (from ARTTHMETIC~EXPRESSION), or a
completely translated EXPRESSION (from a recursive EXPRESSION call). If
a + sign is found in the source string, and a PRIMARY is found there
will be two items on top of the stack, the first being the last PRIMARY
found, and the second what ever was there when EXPRESSION was entered.
The constructor forms a new expression representing the sum of these
two elements without evaluating them. The same is true if - is found,

except that the DIFFERENCE of the two forms is constructed.

* Note that, identifiers, numbers, and strings which occur without
prefixes in constructors are copied as is into the constructed forms,
References to the semantic stack either by # or ## are replaced by the

values retrieved from the stack.

Let us trace the execution of this rule set on a LPL source string

and watch the contents of the stack at various points.

14

At: Source String and pointer Stack
ARITHMETIC-EXPRESSION é + B {empty>
PRIMARY A+B <empty>
exit: PRIMARY A+B l:A
EXPRESSION A f B 1:aA
PRIMARY A+ § 1:A
exit:PRIMARY A+ B‘ 1:B, 2:A
eyit:EXPRESSION A+ B. (PLUS A B)
exit :ARITHMETIC~EXPRESSION A + BA (PLUS A B)

Some LPL expressions and their translated equivalents are given in the

following table,

LEL Expression Translated Expression
VAR VAR
VARL + VAR2 + VAR3 (PLUS (PLUS VARL VAR2) VAR3)
(A + B) - (C+ D) (DIFFERENCE (PLUS A B) (PLUS C D))
1 - BACK - TWOX (DIFFERENCE (DIFFERENCE 1 BACK) TWOX)

To further illustrate the use of the ¥ construct, consider the code for
conditional expressions. The goal of the translation is to produce the
LISP equivalent of an IF statement, this being the COND function. The
first argument of the COND function is the relational expression, the

second the statement to perform if the expression is true.

e

CONDITIONAL-STATEMENT: 'IF RELATIONAL~EXPRESSION 'THEN

UNLABELLED-STATEMENT +(COND (#2 #1)) ;
RELATIONAL~EXPRESSION:

ARITHMETIC-EXPRESSION RELATIONAL~OPERATOR ARITHMETIC-EXPRESSION
m;émg&mn '= +BQUAL / '< +LESSP / ‘> +GREATERP ;
The RELATIONAL-OPERATOR rule succeeds on any of the defined relational
operators, =, <, or >, and loads onto the top of the stack the LISP
function name corresponding to the operator. The RELATIONAL~EXPRESSION
rule parses two arithmetic expressions and the relational operator.
Before the constructor is executed there are three items on the
semantic stack: 1) the second ARITHMETIC-EXPRESSION, 2) the relational
operator LISP function name, 3) the first arithmetic expression. The
t;o #2's in the constructor reflect the fact that the execution of the
first one causes the third item in the stack to become the new second
item. In the CONDITIONAL-STATEMENT rule, two items are on the stack,
the top element being the LISP form of the UNLABELLED-STATEMENT and the
second being the LISP form of the RELATIONAL-EXPRESSION. These are
combined into a complete LISP conditional. Note that the extra

parentheses in the constructor actually become part of the created

structure, The following IF statement:
IF (A + 12) < @ THEN GO TO HELLO;
would be translated into:

(COMD ((LESSP (PLUS A 12) 8) (GO HELLO)))

16

The repetition construct test-x- leaves a list of the items created

by the test on the semantic stack. Thus the rule:

IDENTIFIER-LIST: ID-,- ;

leaves a list of the identifiers it found on top of the stack. The same

is true for the STATEMENT-LIST function which will be defined later.

Often it is required that something be done with the list of items
Created by the repetition form. The FOR EACH construct implements

actions on lists of things. Its format is:

<for each clause> ::=
FOR EACH $<identifier> IN <expression-1>
DO <expression-2>
The meaning of this clause is that <expression-2> is evaluated for each
element of <expression-1> with the <identifier> being set to

consecutive elements of <expression-1>. The <identifier> can occur in
Xp

<{expression-2>,

The $<identifier> form is a way of introducing local variables into
rules. Local variables may occur almost anywhere, in constructors,
LISP S-expressions, tests, and so on as long as they are prefixed by a
dollar sign. The usval rules of LISP local variables apply to their

use,

We combine these two constructs to implement the INPUT and OUTPUT
statements in LPL. The INPUT statement is to be translated into a
number of assignments to the variables of the list using the built in

LISP READ function. For instance:

L7

INPUT COFACT, BANGER;

will be translated to:

(SETQ COFACT (READ))
(SETQ BANCGER (READ))
The OUTPUT statement will be converted to a number of calls on the LISP

PRINT function. For example:

CUTPUT TWELVE, FREEP;

will be translated into:

= (PRINT TWELVE)
{PRINT FREEP)
Using the code from the LPL syntax scanner as a guide the following
rule set will generate the appropriate SETQ's and PRINT's.
IDENTIFIER-LIST: ID-,~ ; % 14, No change from LPL scanner.
INPUT-COTPUT-STATEMENT ¢ % 15. Build READ's and PRINT's.
'INPUT IDENTIFIER-LIST
FOR EACH $X IN #1 DO +{SETQ $X (READ)) /
'"OUTPUT IDENTIFIER-L,IST
FOR EACH $X IN #1 DO +(PRINT $X) ;
The two FOR EACH clauses will repeatedly execute +({SETQ SX (READ)) and
+(PRINT $X) to load items onto the stack. The original list of
identifiers is removed. The +-;- repetition that is used in

STATEMENT-LIST will do the correct thing and not make all the generated

LISP forms into one list.

It is often the case that we wish to concatentate two or more lists
together before they are placed on the stack., This is the case of the
LPL program. An LPL program will be built into a LISP PROG function

which contains a list of all the variables used in the program, and all

18

the statements which are parsed into LISP by the individual statement
routines., The constructor function + has a modifier which permits one
list to be concatenated (appended) to another. A minus sign is prefixed
to the form to.be appended. If STATEMENT translates a single statement
into a LISP form the rule XPROGRAM will build the proper PROG form out
of it (ignoring variables for the moment).

XPROGRAM: STATEMENT-;— @END

+(PROG NIL -#1) ;

Remember that the ~;- construct builds a list of STATEMENTs, this 1list
is appended to the (PROG NIL) list before it. Thus if ((SETQ A 12)
(5ETQ B 34)) was on the stack, the PROG loaded ontoc the stack will be
(PROG NIL (SETQ A 12) (SETQ B 34)) and pot (PROG NIL ({SETQ A 12}

(SETQ B 34))) which would be the case if the - prefix was not used.

In order for the variables used in the LPL program to be collected
and placed into the PROG form, a global variable will accumulate them
when they occur on the left side of an assignment statement or in an
INPUT statement. This global variable must be declared before its use.
Little Meta permits any LISP function to be called by placing a pericd
in front of the form and a semicolon after it. This construct is used

in place of what would normally be a rule.

The value of a variable or any LISP expression can be obtained by
placing an = sign in front of the expression. This very powerful
feature permits you to use LISP when the Little Meta syntax is not
complete enough to accomplish some task., To place the 1list of
variables in the PROG form, the global variable name prefixed by = is
placed in the + constructor form. Likewise, the = prefix can be used to

convert any LISP function into a test.

19

The dot prefix (.) causes an expression to be evaluated, but its
result to be ignored. This form can be used in rules much in the same
way as a simple test, but one that always succeeds. In the
LPL~INTERPRETER rule this form will be used to initialize the global
variable which will contain the list of variables used in the final
constructed PROG form. It will also be used to cause the evaluation of
the constructed PROG. The complete LPL-INTERPRETER rule and associated
functions looks like this:

. {GLOBAL ' (VARIABLES)):
LPL~INTERPRETER: .({SETQ VARIABLES NIL)
STATEMENT-LIST-;- @GEND
+{PROG =VARIABLES -#1)
. (PRINT ##1)

(EVAL #1)
STATEMENT-LIST: STATEMENT-;- ;

P oP of OP dP oP de
~l U L RO
- L]

Line 1 is the declaration of the global variable VARIABLES. The First
line of the LPL~INTERPRETER rule, line 2, causes this "symbol table" to
be emptied before the LPL program is translated. The dot prefix causes
the result of this assignment to be ignored (remember that NII means
failure and NIL is the value of this clause). Line 3 invckes
STATEMENT-LIST repeatedly as 1long as there are semicolons between
statements and until the first keyword of a statement is END. All the
statements so parsed are combined into one list and placed on the top
of the stack. Line 4 builds the final PROG form to be evaluated. The
list of LPL variables will have been placed in rules. The - prefix on
#l causes the list of statements to be appended to the list of two
elements (PROG VARIABLES), Since VARIABLES will already be a list there
is no need to enclose it in parentheses. Line 5 causes the PROG form to
be displayed. This is just a trace feature so that we can determine

that the correct internal form of the LPL~program was created. Line 6

20

causes the evalvation of the form. This evaluation is the execution of

the LPL program. Line 7 is the definition of a list of statements.

With the addition of a UNION function the entire LPL interpreter
can be defined. The UNION function is used to add variables to the

VARIABLES list so that no variable will appear more than once.

(META 'LPL~INTERPRETER T) % Invoke Little META Translator.
. (GLOBAL '({VARIARLES)); % Declare global variable,
.(DE UNION (A B) % Define UNION function in LISP.

(OOD ((NULL A) B)
({MEMQ (CAR A) B) (UNION (CDR A) B))
(T (OONS (CAR A) (UNION (CDR A) B})))) ;

" LPL~INTERPRETER: .(SETQ VARIABLES NIL) % 1.
STATEMENT-LIST @END
+(PROG =VARIAELES -#1)
. (PRINT ##1)
(EVAL #1) ;

STATEMENT-LIST: STATEMENT-;- ; % 2.
STATEMENT: UNLABELLED-STATEMENT / LABELLED-STATEMENT ; 3 3.
LABELLED-STATEMENT: ID ': UNLABELLED-STATEMENT ; % 4.

UNLABELLED-STATEMENT: ASSIGNMENT-STATEMENT / % 5.
COMPOUND-STATEMENT /
CONDITIONAL~STATEMENT /
TRANSFER-STATEMENT /
INPUT-QUTPUT-STATEMENT ;

ASSIGNMENT-STATEMENT: 'LET ID ':= %6.
. {SETQ VARIABLES (UNION (LIST ##1) VARIABLES))
ARITHMETIC-EXPRESSION
+(SETQ #2 #1) ;

ARITHMETIC~-EXPRESSION: PRIMARY EXPRESSICN ; 7.

EXPRESSION: < '+ PRIMARY +(PLUS #2 #1) EXPRESSION / % 8.
'~ PRIMARY +(DIFFERENCE #2 #1) EXPRESSICN > ;

PRIMARY: ID / NUM / '(ARITHMETIC-EXPRESSION '} ; $ 9.

CCMPOUND—-STATEMENT: 'BEGIN STATEMENT-LIST 'END
+{PROG NIL -#1) ; $ 18.

CONDITIONAL~-STATEMENT: % 11.
'IF RELATIONAL~EXPRESSION 'THEN UNLABELLFD~STATEMENT
+{COND (£2 #1)) ;

RELATIONAL~-EXPRESSION: $ 12,

21

ARITHMETIC~-EXPRESSION OPERATOR ARITHMETIC-EXPRESSION
+(#2 2 #1) ;

OPERATOR: ‘= +BQUAL / '< +LESSP / '> +GREATERP ; $ 13.
TRANSFER-STATEMENT: 'GO 'TO ID +(GO #1) ; % 14.
IDENTIFIER-LIST: ID-,- ; % 15.

INPOT-OUTPUT-STATEMENT : $ 16.

'INPUT IDENTIFIER-LIST

. {SETQ VARIABLES (UNION #4#1 VARIABLES))

FOR EACH $X IN #1 COLLECT +(SETQ $X (READ)) /
'QUTPUT IDENTIFIER-LIST

FOR EACH $X IN #1 COLLECT +{PRINT $X) ;

FIN

Let us now try the demonstration LPL program, We will divide the number
15 by the number 6 which should give us 2 with remainder 3 as the

output.

{invoke 'lpl-interpreter)
ENTERING LPL-INTERPRETER ...

input dvdnd, dvsr;
let q := 8;
loop: if (dvdnd - dvsr) < @ then go to done;
let g := g+ 1;
let dvdnd := dvdnd -~ dvsr;
go to loop;
done: output g, dvdnd
end

{PROG (DVDND DVSR Q)
(SETQ DVDND (READ))
(SETQ) DVSR (READ))
(SETQ Q 9)
LOOP (COMD ({LESSP (DIFFERENCE DVDND DVSR) 8) (GO DONE}))
(SETQ Q (PLUS Q 1))
{SETQ DVDND (DIFFERENCE DVDND DVSR))
(GO LCoP)
DONE (PRINT Q)
(PRINT DVDND)}

15 <~ input.
6

(]

«.. EXITING LPL~INTERPRETER

”,f 22
The first output £ollowing the LPL-source program is the translated
LISP version which will be interpreted. The execution of the program
follows. The dividend and the divisor are read in and the quotient and
remainder are printed out. Notice that division by zero will manifest
itself as an infinite loop and that division where large quotients are

involved is none too efficient.

The LPL Compiler,

The organization of the LFL compiler will follow very closely the
template provided by the LPL syntax scanner and interpreter. The
compiler we are constructing will in a single pass produce 288 assembly
code and storage locations for the varjables. This code will be dumped
to a disk file which when concatenated to a library of I/O routines can

be assembled and executed.

The code produced will be symbolic %88 instructions in the Zilog
format 10, All storage locations, registers, and arithmetic will use

16 bit quantities,

Formatted Qutput

Rather than output the numerical wvalues of 28¢ machine
instructions, assembly code will be generated as character strings.

This indirect approach has a number of advantages:
1. If need be, the code can be edited and optimized by hand.
2. It is easier to debug the compiler code generators.

3. We don't have to keep track of addresses or know the size of

23
machine instructions.

4, We don't have to write an assembler.

The assembly output will be produced with the help of the Little
Meta formatted output routines. An output clause has the £ollowing

structure:
=»>{item{6), ..., item[l])
where the items are any of the following:
QQL;n ~ causes the output pointer to skip to column n.
SPACE:n — causes n spaces to be skipped.
/ — causes a skip to a new line.

Any LISP Expression — The value of the expression is displayed by the

LISP PRINZ function.

Perhaps the simplest form to generate code for is the GO TO
statement. Once the GO, TO, and identifier have been parsed, a Z89
long jump instruction will be generated with its destination address
the label name.

TRANSFER~STATEMENT :
'GO 'T0 ID
=>(COL:7, "JP", COL:15, #1, /) ;
The instruction and operands are in fixed columns for cleaner output.
There 1is no check made that the label is defined, multiply defined, or
a variable name. Any such checking will be left to the assembler. It is

not our purpose to implement a production compiler, rather an

44

experimental one. Once the language features are fixed, the compiler
Can be implemented in its own syntax and include more detailed error

checking.

For the input and output statements there w1ll be two library
routines, READ and PRINT. READ will accept a single 16 bit numeric
value from some I/0 device and return it in the HI, register pair. PRINT
takes a value in the 1g bit register HL and displays it on some 1/0
device. The implementation of the compiler INPUT-QUTPUT-STATEMENT
parallels that of the interpreter rule.

INPUTLCUHPUTLSTATEMENT ' INPUT IDENTIFIER-LIST
. (SETQ VARIABLES {UNION ##1 VARIABLES))
FOR EACH $X IN #1 COLLECT
=>(COL:7, "CALL", QOL:15, "READ*, /
COL 7 nLDn COL 15 tl(u' $X, u]Ln /) /
'OUTPUT IDENTIFIER—LIST
FOR EACH $X IN #1 COLLPCT
=>{C0L:7, “LD", COL:15, "HL,(", $X, ") Y /s
O0L:7, "CALL", COL:15, "PRINT", /) ;
Notice that the / inside the cutput clause is different than the / used
to separate the two alternative, Each variable in the 1list parsed

generates two separate 780 instructions,

The Pattern Matcher

Rather than generating code during the parsing of arithmetic
expressions, the expression will first be converted into the prefix
form (LISP S-expressions) and then these will be matched against
various patterns to produce different output code sequences, We now
describe the patterns ang actions in relation to the preparation of

arithmetic expression assembly language code.

The advantages of using patterns over direct generation of code

L

during parsing are not clear. Since it does separate code generation
from parsing, each of these pieces is easier to complete as a
progranming task and can be tested in isolation from the other. Cur
experience has been that writing complex patterns based on the parse
tree is nuch easier than including code generation in the parser. Much
of this code replicates what the pattern matcher provides for us

already.

A pattern sequence is a set of patterns which are matched in order
against a single LISP S-expression for both structure and content. The

syntax of a pattern sequence is as follows:

-

{pattern name> =
<pattern[B]> -> <action[B}> ,
<pattern{l]> -> <action[l]> ,

<pattern[n]> -> <action[n}]>

~e

The object of a pattern sequence is to match a single S-expression
against the patterns one at at time until one match succeeds. Then the

corresponding action is taken.

A pattern is a template against which the actual parameter of the
pattern sequence is matched, Patterns are either atomic entities or

expressions formed from pattern primitives.

Occurrences of atoms in a pattern must exactly match the source

against which the pattern is being matched. Thus the pattern:

{NOW WE ARE 6) -> ...

will match only the list (NEW WE ARE 6) and no other.

26

To match an arbitrary S-expression, the &n construct is used. ‘'n'
is an integer from 1 to 4095 which serves to identify this particular

expression. Thus:
(NOW WE ARE &1) ->

will match any S-expression which has as its first elements NOW, WE,
ARE in that order, and any LISP expression as its last element. Thus
{NOW WE ARE 1), (NCW WE ARE GONE), and (NOW WE ARE (IN A LIST)) will
all succeed when matched against this pattern. Furthermore, the piece
of the expression which corresponds to the &n will be available on the

action side.

Then &n can be made more selective by allowing it to match an
expression only if the value of some function in relation to the

expression is true. The form is:
&<{{predicate}>n

where <predicate> is an expression which returns NIL or not based on
the expression being matched. Thus to match only numbers, the LISP

predicate NUMBERP is used:
&<{NUMBERP &l1)>1

This pattern succeeds only if its corresponding expression is a
number. The &l inside the expression corresponds to the piece of the

expression to be matched.

The action side of a pattern is executed when its antecedent is
successfully matched to the source expression. The action side is a

list of forms which at the top level are any of the following:

27
1. The stack reference and access functions # and #%.
2. Quoted LISP S-expressions.
3. Expressions prefixed with = for evaluation.
4. §$ prefix local variables,
5. & pattern pieces.
6. Atoms.
7. Combinations of the above in expressions.

A very simple implementation of the patterns to generate code from the

LISP form of the LPL arithmetic expression is as follows:

ARTTIMETIC—CODE =
&<{(NUMBERP &1)> 1 ~> =>(COL:7, "LD", COL:15, "HL,", &1, Y. % 1.
&({IDP &1)>1 -> =>(COL:7, "LD", COL:15, "HL,(", &1,)", /), % 2.
(PLUS &1 &2) ~> =(ARITHMETIC-CODE &2) % 3,
=>(C0L:7, "PUSH", COL:15, "HL", /)
=(ARITHMETIC-CODE &1)
=>(coL:7, "POP", COL:15, "DE", /,
CoL:7, "ADD", COL:15, “HL,DE", /),
(DIFFERENCE &1 &2} —> =(ARITHMETIC-CODE &2) % 4.
=>(C0L:7, "PUSH", COL:15, "HL", /)
= (ARITHMETIC~CODE &1)
=»(COL:7, "POP", COL:15, "DE", /,
CoL:7, "OR", COL:15, "A", /.
coL:7, "seC", COL:15, "HL,DE", /) ;
This very simple pattern sequence generates correct though inefficient
code for arithmetic expressions with addition and subtraction. Patterns
1 and 2 work on the primitive values and output code to load register

HL with integer wvalues or variable locations. Rules 3 and 4 work on

forms constructed from the primitives and generate the code to do 16

28

bit addition and subtraction.

The LPL expression

A+B-12

generates the following intermediate LISP form:

(PLUS A (DIFFERENCE B 12))

We can follow this form through the patterns and actions.

Expression Matches Pieces Quiput
being matched Rule No. /¥alues
1. (PLUS A (DIFFERENCE B 12))

3 &l:A, &2:(DIFFERENCE B 12)

Rule number 3 has two recursive matches o be made, first on
&2, and then on &1 to generate code for the two operands of
PLUS.

2, (DIFFERENCE B 12) 4 &1:B, &2:12

Rule 4 also has two recursive matches to be made. Only when
the first has completed will some code be output.

1 §1:12 ID HL,12
Rule 1 outputs code immediately. This completes the first
recursion from match number 2 above. Some code is output now
and the second recursion of part 2 commences.
PUSH HL

2 &1:B LD HL,(B)

Both operands of the DIFFERENCE have been generated. The
second argument is on the stack, the first is in HL. The code
for the 16 bit subtraction is now generated. Note that all
actions generate code which leaves their results in register
HL.

POP DE

CR A

SBC HL,DE

At this point the first recursion of match 1 has completed.
The second now commences after the result of the first is
pushed onto the stack.

FUSH HL

2 &1l:A LD HL,(A)
The final recursive match has completed and the addition can
be completed.
POP DE
ADD HL,DE

29

To make the code generation more efficient requires a few more patterns
and code output sequences. For instance one could have the pattern:
(PLUS &<(NUMBERP &1)>1 &<{NUMBERP &2)>2) -5
=>{C0L:7, "LD", COL:15, "HL,", =(PLUS &l &§2), /) .,
This pattern recognizes the sum of two numbers, Rather than output code

to compute the sum, they are added at “compile time" and their sum is

placed in register HL.

Occasionally it is npecessary to generate local labels or
“identifiers, those which are used within a translated program but are
not seen by the user. Within a Little Meta rule the $n construct
causes automatic generation of a label which is guaranteed to be
unique. The label associated with the number will remain constant
during a single execution of the rule but will change for every new
execution, The code generated for the conditional statement requires a
label at the end of the code for the statement which is the object of a
jump instruction. The jump will be made if the relational expression is
not true. The complete code for the conditional statement is as

follows:

38

CONDITIONAL~STATEMENT: 'IF RELATIONAL-EXPRESSION ‘THEN
=>(COL:7, “JP", COL:15, #1, ".", 81, /)
UNLABELLED-STATEMENT
=>($1, COL:7, "EQU", QOL:15, "$", /) :

RELATIONAL-EXPRESSION
ARITHMETIC-~EXPRESSION =(ARITHMETIC~-CODE #1)
=>(COL:7, "PUSH", COL:15, "HL", /)
RELATIONAL-OPERATOR
ARITHMETIC~EXPRESSION =(ARITHMETIC-CODE #1)
=>{C0L:7, "POP", COL:15, "DE", /,

CoL:7, "OR", COL:15, "aA", /,
coL:7, "sec", COL:15, “HL,DE", /} ;

RELATIONAL-OPERATOR: '= 4Nz / ‘< +M / "> +P ;

The RELATICNAL-EXPRESSICN rule leaves on top of the stack, the
condition code for the jump statement. The label on the jump statement
is the same one as will be generated on the BQU after the

UNLABELLED-STATEMENT code.

An alternative way of compiling the RELATIONAL-EXPRESSION code
would be to generate the LISP expressions in the interpreter and then
use a pattern to create code. With appropriate patterns this approach

will generate much better code.

The entire compiler can now be implemented.

(META 'LPL!-COMPILER T)
. (GLCBAL '(VARIABLES)) ;

. (DE UNION (A B)
(COD ((NULL A) B)
({(MEMQ (CAR A} B) (UNION (CDR A) B))
(T (CONS (CAR A) (UNION (CDR A) B)}))) ;

LPL-COMPILER: .({SETQ VARIABLES NIL) % 1.
=>(§1, COL:7, "BQU", COL:15, "$", /)
STATEMENT-LIST @END
=>(COL:7, "HLT", /}

FOR EACH $X IN VARIABLES DO
=>{$X, COL:7, "W", COL:15, "@", /}
=>(COL:7, “END", COL:15, $1, /) ;

STATEMENT-LIST: STATEMENT-;- ; $ 2.

STATEMENT: UNLABELLED-STATEMENT / LABELLED-STATEMENT 7 % 3.

LABELLED-STATEMENT: ID ': $ 4.
=>(#1, COL:7, "BEQU", COL:1S5, "$", /)
UNLABELLED-STATEMENT ;

UNLABELLED~-STATEMENT: ASSIGNMENT-STATEMENT / % 5.
CCMPCUND-STATEMENT /
CONDITIONAL~STATEMENT /
TRANSFER-STATEMENT /
INPUT-CUTPUT-STATEMENT ;

ASSIGNMENT-STATEMENT: 'LET ID % 6.
. (SETQ VARIABLES (UNION (LIST ##1) VARIABLES))
ARITHMETIC-EXPRESSION ={ARITHMETIC~CODE #1)
=>(CO0L:7, "LD", COL:15, “(", #1, "),HL", /) ;

ARITHMETIC-EXPRESSION: PRIMARY EXPRESSION ; 7.

EXPRESSION: < '+ PRIMARY +(PLUS #2 #1) EXPRESSION / % 8.
'~ PRIMARY +(DIFFERENCE #2 #1) EXPRESSION > ;

PRIMARY: ID / NUM / *{ ARITHMETIC-EXPRESSICN ') ; $ 9.

ARITHMETIC-CODE = ¥ Patterns for arithmetic code generation.
&C(NUMBERP &1)>1 —> =>(QOL:7, "LD", COL:15, "HL,", &1, /),
&<{IDP &1)>1 => =>(COL:7, "LD", COL:15, "HL, (", &1, ") ", /),
(PLUS &l &2) -> =(ARITHMETIC-CODE &2)

=>(Q0L:7, "PUSH", COL:15, "HL", /)
=(ARITHMETIC-CCDE &1)
=>{C0L:7, "POP", COL:15, “DE", /,
QOL:7, "ADD", OOL:15, "HL,DE", /),
(DIFFERENCE &1 &2) -> =(ARITHMETIC~CODE &2)
=>(C0L:7, "PUSH", COL:15, "HL", /)
=(ARITHMETIC-CODE &1)
=>(COL:7, “POP", COL:15, "DE", /,
CoL:7, "OR", COL:15, "A", /,
COL:7, “"SBC", COL:15, "HL,DE", /) ;

COMPOUND-STATEMENT: 'BEGIN STATEMENT-LIST 'END ; % 10.

CONDITIONAL~STATEMENT: 'IF RELATIONAI~EXPRESSION % 11.
'THEN
=>{COL:7, "JP", COL:15, #1, ", 81, /)
UNLABELLED-STATEMENT
=>(%1, COL:7, "EQU", COoL:15, "$“r /)
RELATIONAL-EXPRESSICN: ARITHMETIC-EXPRESSION $ 12.
=({ARITHMETIC-CODE #1)
=>{COL:7, "PUSH", COL:15, "HL", /)
REI ATTONAL~OPERATOR
ARITHMETIC~EXPRESSION
=(ARITHMETIC-CODE #1)
=>(COL:7, "POP", COL:15, "DE", /s
COL:7, "OR", COL:15, "a", /,
COL:7, "SBC", COL:15, "HL,DE", /) ;
RELATIONAL~OPERATOR: '= +NZ / "< +M / '> 4P o $ 13.

TRANSFER-STATEMENT: 'GO 'TO ID % 14.

32

=>{C0L:7, "JP", COL:15, %1, /) ;
IDENTIFIER-LIST: ID~,- ; % 15.
INPUT-OUTPUT-STATEMENT: 'INPUT IDENTIFIER-LIST % 16.
. (SETQ} VARIABLES (UNION ##1 VARTIABLES))
FOR EACH $X IN #1 DO
=>{CoL:7, "CALL", COL:15, "READ", /,
COL:7, "LD", COL:15, "(", $X, "),HL", /) /
'CUTPUT IDENTIFIER-LIST
FOR ERCH SX IN #1 DO
=>{C0L:7, "LD", COL:15, "HL,(", $X,)", /,
COL:7, "CALL", COL:15, "PRINT", /) ;

FIN

The simple division program will generate the following code. The
statements are listed with the code that they generate to help follow

the compilation process.

(invoke 'lpl-campiler)
ENTERING LPL~CQOMPILER ...
Gepgl BQU $

input dvdnd, dvsr;

CALL READ

ID (DVDND) , HL

CALL READ

LD (DVSR) ,HL
let g :=

LD HL,8

LD (Q) (HL

loop: if (dvdnd - dvsr) < 6 then go to done;
LOOP EQU $

LD HL:, {DVSR)
PUSH HL

D HL, (DVDND)
POP DE

OR A

SBC HL ,DE
PUSH HL

LD HL,@

OP DE

OR A

SeEC HL,DE

JP M,GBog2

JP DCNE

G8ge2 BQU §

let g :=q + 1;

LD HL,1
PUSH HL

8) HL, (Q)
POP DE

ADD HL,DE
b {Q) (HL

let dvdnd := dvdnd - dvsr;

LD HL, (DVSR)

PUSH HL

LD HL, (DVDND)

POP DE

OR A

SBC HL ,DE

LD {DVDND) , HL
go to loop;

JP LoOP

done: output q, dvdnd
DONE BEQU $

LD HL, {Q)
CALL PRINT
ID HL, (DVDND)
CALL PRINT
end
HLT
Q oW 5
DVSR W B
DVDND DW g
END GPGe1

+«+ EXITING LPL-COMPILER

33

34

fhy Use a Translator Writing System

One of the problems with Translator Writing Systems is that they

- are generally slow and produce compilers that are not much faster.
Though there is considerable research being carried out to improve

this situation, translators and compilers produced by Little Meta are

fairly slow., The place of Little Meta in the overall scheme of things

is as an initial implementation tool. The steps that are usually

followed run somewhat like this.
1. A language is defined in some form or other.
2. An interpreter is built for the language using Little Meta.

3. Many programs implemented in the language are implemented and
debugged using the interpreter. During this process new features

are added, removed, and old ones clarified as the need arises.,

4. A compiler is implemented in Little Meta. The code produced runs

stand alone or with a library on the host machine.

5. A compiler is implemented in the new language to run stand

alone,

6. Little Meta compiles this compiler. The new compiler is capable
of compiling itself and will probably run much faster. The Little
Meta compiler and translator can be discarded. Certainly LPL 1is
not sufficient as it stands to implement a compiler, but a few
very simple modifications would provide enough of a language for
this to be accomplished, The PILOT language is a well done example
of this kind of project 11_ its compiler implemented in PILOT

. is only a few hundred lines long and can be implemented in a week

35

or S0,

This process is a particularly useful way of bringing up a
compiler for a new machine which has few utilities and no readily
available compilers of its own. With a machine capable of running
Little Meta it is possible to bring up large amounts of software

on a machine which has nore.

Meta in Meta

Just as compilers for a language are implemented in the
language, Little Meta is implemented in Little Meta. This process
has been going on for a number of years with the first version
hand implemented a 1long time ago. The system consists of 3

parts.

1. A support package to make Little Meta run. This consists of
the lexical scanner, lexical primitives, parsing control,

semantic stack operations, and error control.

2. A support package for Little Meta produced translators. This
includes the table set up, symbol table primitives, formatted

output, and the pattern matcher.

3. The Little Meta translator. This section of code is
implemented in Meta itself and converts the Little Meta
syntax into LISP object code, This code is only 3 pages
long.

The total length of code is 1less than seven hundred 1lines

including comments.

20

More Features

There are a number of other facilities provided by the system
which were not covered in this report., These include the ability
to "back up" the lexical scan when a rule only partially succeeds
so that some other rule can be tried; a complete block structured
symbol table package; complex patterns; the ability to interface
to LISP and packages; and finally the ability to interact and

medify a translator in a piecemeal fashion.

This last feature separates Little Meta from most non-LISP
based translator writing systems. It is particularly attractive
during the debugging of a translator. The suspect rule can be
traced in the usual LISP fashion and then redefined if it is in
error all without retranslating the entire rule set. One can stop
the translator at various points and examine the semantic stack,
global and local variables, the symbol table, and other state

information.

Conclusions

Little Meta and is an attractive program development tool for
microcomputers. The examples presented in this paper were run on
a microcomputer with only 48k bytes of main storage., The
compilation of the division program took less than one minute. The
translation and compilation of the LPL~COMPILER took less than 3

minutes. To date the system has been used to:

1. Experiment with various syntaxes for a computer graphics

programming language.

Rl

2, Compile itself.
3. Help students master the basics of compiler implementation.
The immediate projected uses for the system include:

1. To build cross compilers for the newer 16 bit microcomputer

systems,

2, To build a special purpose language for implementing

software for a local computer network.

.Acknowl edgements

The author would 1like to thank, Rudiger Loos, Richard Jenks,
Cedric Griss, Robert Keller, and most of all Martin Griss and

Robert Kessler for implementing the pattern matcher.

38

List of References

l. J. Marti, 'LISP for the TRS-B8', to appear in 80
Microcomputing.

2, J. Marti, A, C. Hearn, M. L. Griss, C. Griss, ‘'Standard LISP
Report' SIGPLAN Notices, 14 18 48-68 (October 1979).

3. R. Loos, private communication.

4. R. D. Jenks, 'META/LISP: an interactive translator writing
system' IBM Corporation, Thomas J. Watson Research Center,
Yorktown Heights, New York.

5. J. Marti, 'The META/REDUCE translator writing system' SIGPLAN
Notices, 13 18 (October 1978) 42-49.

6. Utah Symbolic Computation Group, 'The portable Standard LISP
users manual', Department of Computer Science, University of
Utah, Salt Lake City, Utah, January 1982.

7. A. V. Aho and J, D. Ullman, 'Principles of compiler design',
Addison-Wesley Publishing Company, 1977.

8. D. Harel, 'And/or programs: a new approach to structured
programming', ACM TOPLAS, 2 1 1-17 (January 198@).

9. 8. Pemberton, ‘'Comments on an error-recovery scheme by
Hartmann', Software—Practice and Experience, 18 231-248
(1984} .

1. "Z88-CPU Technical Manual”, Zilog, Los Altos, California,

1976.

39

11. M. H. Halstead, 'A laboratory manual for compiler and
operating system implementation', American Elsevier Publishing

Company, Inc., New York, 1974,

