AN OPTINIZING COMPILER FOR LISP FOR THE Z8p

Jed Narti

University of Qregon

ABSTRACT This paper describes an optimizing
compiler for the 2ZBJ. Described are the compilation
mechanisms, optimization techniques, and perform-

ance statistics. %2,01L

UOLISP (1] is a subset of Standard LISP [2]
implemented for the 28p microprocessor. It runs in
a minimum of sixtegn thousand bytes of storage and
mast effectively in thirty-two thousand or more.
The system is more than just a basic LISP inter-
preter. The entlire facility consists of:

Introduction

a program to load precompiled "fast load” files.
a parser for a subset of RLISP ([3].
a function trace and break facility.
a LISP structure editor.
an online help facility and text formatter.
a pretty print facility.
the Little META translator writing system [4].
a compiler and optimizer.
arbitrary precision integer package.
This paper addresses the mechanisms of the

compiler and its optimizer.

The compilation process is divided into three
passes: the first translates LISP inte pseudo-
assembly code called LAP (for Lisp Assembly
Program), the second pass performs a peephole
optimization cn the LAP assembly code, the thixg
pass translates this LAP into absclute machine
code and places this in storage for executicn or
dumps it to a file for later restoration.

Overview

The LISP interpreter contains code for rea
functions into the LISP system and executing tl
interpretively much like other microprocessor
based systems. Unfortunately interpreted funct
require large amounts of storage and execute w
slowly.

A more afficient scheme reads functions in
interpretive form, and then compiles them to
machine code to be executed directly by the mi
processor. The interpreted version of the func
disappears, its storage becomes available for
at a later time.

For example, the function FACT, which comp
the factorial of a number recursively, is defi)
in UOLISP as follows:

(DE FacT (N)
(COND ({LESSP N 2} 1)
{T (TIMESZ (FACT (SUBl N)) N}}))

In UQLISP, dotted-pairs, of which this functio
composed, take 4 bytes each. 22 dotted-pairs a
used to define FACT for a total of BB bytes.
UOLISP's compller generates the following code
FACT:

lac. Code LAP INTEL

2aga ENTRY FACT,EXPR ;FACT:

29P@: CD96EBI CALL ALLOC H CALL ALl
#pg3: @2 DEFR 2 : .BYTE 2
2Pp4: DIFE STOX HL,-1 : *STOX HL
gpg6: 11p24@ LD DE,2 ; LXI DbE
pBpe: E7 RST LINK ; RST LI
gpga: 1728 DEFW LESSP $.ADDR LE!
ppac: 28g5 JREQ $1 ; JRZ $1
PPPE: 21pi4¢ LDI HL,L ; IXI HL
Pgli: 188D JR s$g 7 JHPR 5P
goL3 . $1: 181l:

g@13: CFBF LDX HL,-1 ; *LDX HL
go15: E7 RST LINK : RST LI!
agle: Bi2g DEFY SUBL ; .ADDR 5%
ggle: E7 RST LINK : RST LI}
#p19: aR2p DEFA FACT ; .ADDR FAC
PP1B: CF7F LDX DE,~l : *LDX DE,
¢@LD: E7 RST LINK i ®ST LId
PPLE: 1D21 DEFW TIMES2 ; .ADDR TI!
pp2a: $8: 150

#P2¢: CDPS8B4 CALL RDLLOC : CALL RDI
p@P23: FE DEFE -2 ; LBYTE -2

* means macro form.

Fifth SIGSMALL Symposium on Small Systems, August 2-3, 1982,

Colorado Springs, Colorado.

A total of 36 bytes are used, less than half the
gsize of the interpreted version. The compiled
version runs over 40 times as fast.

Compilation Mechanisms

Compiled programs move information between
registers and call subroutines to perform most
operations. In this section we describe how
important LISP constructs are implemented in LAP
and enumerate the various support functions
reguired.

Parameter Passing

Zero to three parameters may be passed to a
function. The first argument of a function {if it
has any) will always be in the HL register palr,
the second in DE, and the third in BC. Functions
with more than three arguments cannot be compiled.
This particular mode of execution is called the
register model as opposed to the more common
stack model. We believe that the register model is
inherently more efficient than the stack model
though perhaps more difficult to compile for.

Stacks

Function parameters and PROG type variables
are kept in a stack frame, sometimes called an
activation record, a contiguous block of locations
pointed to by the IX index register. then a
function is invoked it creates a new frame on the
top of the stack by calling the ALLOC support
routine. When & function terminates it calls the
DALLOC routine which subtracts the number of
locations used from IX, freeing the space for use
by the next functiom.

Storing and retrieving values from the stack
frame is accomplished by the two support routines
LDX and STOX. Since these operations occur
frequently in compiled code it is necessary that
they use as little storage as possible. Thersfore
the LDX and STOX routines are called using the
288 RST instruction with the following byte
containing which register pair is to be stored (or
loaded), and the displacement from the top of the
stack frame. The LAP instructions generated by the
compiler are also called LDX and S$7T0X and contain
the register pair name and what displacement is to
be used.

Both LAMBDA expressions and PROG forms
generate the ALLOC and DALLOC calls to handle
stack frames., Cne of the optimizations performed
is to substitute the appropriate mumber of
increment or decrement IX instructions, or for
larger frames, a sequence to add to IX. This has
the disadvantage of not checking for stack
overflow.

The Z8@ internal stack is used for saving
return addresses and intermediate values during
function evaluation. A call to a function FUN3
with three argquments stores the results of
evaluation of the first two arguments on the 2872
stack while the third is being computed. The
values are popped into the appropriate registers
just before the function is invoked.

(FUN3 (FUNA ,..) (FUNB ...} (FUNC ...))}
would generate the following code sequence:

... 8valuate FUNAR ...

PUSH HL ;Save result of FUNA.
... evaluate FUNB ...
PUSH HL ;Save result of FUNB.
... evaluate FUNC ...
LDHL BC iMove HL to BC.
POP DE ;FUNB is second argument.
POP HL ;FUNR is first argument.
RET LINK jCall FUN3.
DEFR FUN3

Function Invocation

The compiler will not always know the address
of a function being called because it might not
be defined yet. Even if the function is defined
the compiler does not know whether it will be
compiled or interpreted at run time. A special
internal subroutine called LINK is used to
transfer control at run time. Since both compile«
and interpreted functions can exist at the same
time, LINK will perform either of two functions.
If an interpreted function is being called from
compiled code the LISP intexpreter will be
invoked for that functien. If the function being
called is compiled or is a system function the
call to LINK will be replaced by a direct call t«
that function. The call to the LINK function mus
be an RST type link so that the three byte 289
CALL instruction will exactly replace the compil.
call. If the system global variable .*FLINK is N
the substitution will not take place and the slo
link form will remain. This is a useful debuggin
tool as it allows you to compile functions and
change their definitiens (for tracing) without
reloading the system.

Compiled as: Changed by LINK to:
RST LINK CALL function-address

DEFW function-name

The two byte DEFW attached to the LINK contains
the symbol table pointer of the function being
called. At execution time the LINK youtine looks
for either a compiled or interpreted function
attached to the name and either invokes EVAL,
generates the CALL, or if the !*FLINK flag is on
just transfers to the function. If no such
function is defined, an error will occur and the
name of the function will be displayed.

The LIST Function

The LIST function is compiled in a special w
to take advantage of the 28f¢ internal stack. The
arguments of the LIST function are compiled and
the results of each are pushed onto the stack.
When all have been computed the support function
CLIST is called.

(LIST (FL ...) ... (fn ...))

compiles to:

... @valuate F1 ...
PUSH HL

. ;Evaluate other arguments.

;Save result of ¥l for CLIST.

+.. evaluate ¥n ...

PUSH HL }Save result of Fn for CLIST.
MVL A,n- iNumber of values on stack.
CALL CLIST ;Call to CLIST xroutine.

COND Compilation

The LISP COND function is compiled into a
series of tests and conditional jumps. The CMPNIL
support routine compares the result of a predicate
to NIL and sets the 28f NZ and 2 flag bit which
controls the conditional branch instructians
generated. If the last predicate of the COND is T,
the predicate and jump will not be compiled {the
usual case).

(COND (ag E”) 500 (an cn))

genexrates the following code:

... evaluate a_ ...

RST CHPN%L iIs aﬂ NIL?

JPEQ Gppgl iYes, jump to next antecedent
+.. evaluate c_ ...

JP Gﬁﬂﬂg jFirst consequant done, quit.

GEgaL ; ;Come here if an not T.
:Evaluate other a - ¢ pairs.

GEggx: ;Try last predicate.

*... evaluate a_ ...

* rsT oMpRIL ;Is last one NIL?

L JPEQ Gpgg2
... evaluate cn ooo
GPP@E2 : ;Always come here when done.

iGo return NIL if yes.

Lines preceeded by an asterisk are not generated
if the last predicate is 7.

PROG, GO, and RETURN

The PROG function and the control constructs
GO and RETURN are compiled by plugging lablels and
values into a template.

(PROG (X}

LBL ...
.-+ (RETURN wvalue)

(GO LBL)

eee)
compiles to:
CALL ALLOC :1Space to save X allocated.
DEFB 2
LDT HL ,NIL iPROG variable set to NIL.
5T0X HL,-1

LEL: +A PROG label generated.

+v e evaluate value ..,

JP GApAL jJump to the end of PROG.
JP LBL ; (GO LBL)} generates Jp.
GPPgL : tPETURN's come here.

CALL DALLOC ;jDeallocate stack frame £
DEFB =2 t storage of X.

AND and OR Compiled.

AND and OR are compiled identically except
that the evaluation of the argquments of AND
terminates 1f one is NIL, and the evaluation o
terminates if one is non-NIL. The compilation
AND generates JPEQ instructions after a compar
to NIL, and the compilation of OR generates JP
instructicns.

{AND ag an)

compiles to:

... evaluate a_, ..,
RST CIIPN?L 1Is result of a_ NIL?
JPEQ GAPPL 1Stop evaluatiog if yes.
iEvaluate other arguments
.+. evaluate a ...
GEpaL . tAlways end up here.

Constants, Variables, and Quoted Values

These items are loadad directly into the
correct register for the function to which the:
are to be passed. Local and global variables m:
have values assigned to them with the appropri;
store Instruction.

Quoted items are saved on & list of compile
quoted values so that the garbage collector wi)
not remove them, The value representing the
quoted item is loaded into the appropriate
register.

Compiling FEXPR Calls

When compiling calls to user or system defi
FEXPR's the argqument 1list is passed as a list ¢t
the functicn for evaluvation. This interpreted
form interacts poorly with compiled code for tt
following reason. All local variable names
declared in a function are replaced with their
stack frame locations by the compiler. When the
FEXPR tries to evaluate its argument in the
environment of the calling routine, the variabl
name in the S-expression cannot be found. The
solutien is to declare any variables to be pass
to an FEXPR for evaluation as GLOBAL. This need
not be done for COND, PROGN, PROG, OR, and AND
because these forms are compiled inte object co
rather than as calls to functions.

The Optimizer

The optimizing phase is divided into two passes
and features two levels of optimization and a speed
or space choice. The first phase is an extepded
peephole optimization, the second removes function
prologs and epilogs from routines which do not need
stack frames. The three levels of optimization
include a “safe set", a set of speed optimizations
which increase code size, and a "dangerous set”
which removes some error checking.

The Closing Window

There has been considerable research on peep-
hole optimization for retargetable compilers [5-7].

" The version used in the UOLISP optimizer might be

more aptly called a “closing window" optimizer. The
hole examined by the ostimizer initially includes
the entire program. Each instruction is removed
from the window in turn. The advantage of this
mechanism is that the entire program may be
scanned for each instruction examined. Most of the
optimizations do not scan very far ahead.

Redundant Instructicn Removal

This optimization removes several forms of
instructions which replicate data already in
registers. For example:

STOX HL,-1 becomes STOX HL,-1
LDX HL,~1

The closing window method permits any nunber of
instructions between the STOX and LDX which do not
modify the contents of HL (or whatever register is
used).

A second optimization removes store instruc-
tions whose location is never referenced. This
optimization is very important in small sub-
routines. If all store instructions are removed,
the stack frame allocation prolog and epilog may
alsc be removed. Many very small routines can he
reduced in size by as much as B5%. Since a great
deal of time is spent in small youtines, this
optimization can be very important.

Jump Instructions

Several optimizations of this type are
performed. The simplest yemoves unresachable code.

All instructions between the JP instruction and the
first label (label) following it are removed since
they cannot be realghed from anywhere. The same
cptimization is performed when a subroutine is
called from which ne return can be expected.
Functions which always generate an error or use the
THROW function have this feature.

Another jump optimization removes worthless
forward jumps. Thus:

JP labela
labela:

results in the jump instruction being removed
completely.

Conditional expressions are examined for
multivle inversions. Thus:

CALL NOT becomes RST COPNIL
RST QPNIL JP=-not-cond. labe
Jpcond, label

The final jump optimization garners the most
savings of all optimizations. It determines the
distance jump instructions must travel and if i
is less than 127 bytes in either direction the
instructien is converted te its short form. Sin
most LISP functions are very short, most jumps
up in their short forms saving 1 byte. Unfor-
tunately short jumps are usually 20% slower.

Stack Frame Optimizations

Many times the end of a PROG form is also t
end of its corresponding LAIMBDA expression and
DALLOC calls will occur in a row. In this case
optimizer combines the two calls into one by ad
thelr sizes together. A further optimization
occurs i< the last CALL DALLOC is immediately
followed by a RET instruction. The call to DALL
is replaced by a call to the special routine
RDLLOC which automatically does the extra retur
The use of this routine saves 1 byte and about
5 microseconds (for the 4 mthz. ZB8PA) -n each
function exit.

Reduction in Strength

This class of optimizations replaces severa
long forn instructions (or sets of instructions
with a simpler 28¢ instruction. Thus moving HL
DE has an XCHG instruction substituted, saving
single byte. A 3 byte call to any of the CAAR,
CADR, CDAR, and CDDR is replaced with two singl
byte calls on CAR and CDR saving a single byte.
This optimization is disabled on machines which
not have the 1 byte calls on CAR and CDR. Final
the 4 byte version of the LHLD instruction is
replaced with its shorter and faster 3 byte
version.

Fast COptimjzations

The LDX and STOX stack frame referencing
functions take two bytes for each use. The
functions themselves take approximately 50 micr
seconds to execute. Approximately 50% of the
execution of compiled code is spent in these tw
routines. By open coding them as indexed MOV
instructions, the time is reduced to less than
microseconds at the expense -of 4 additional byt
This particular optimizatien can be turned on a
off by the user so that very impertant function
are optimized and less important ones, slower b
wuch smaller. In the factorial example, use of
this optimization results in a 24% speed improv
ment at a cost of a 3B% increase in size.

Dangerous Optimizations

This set of optimizations removes a number of
error checks to increase execution efficiency.
With selective use they cause no problems. Cne
such optimization replaces the stack frame zlloc-
ation routine calls by a string of increment or
decrement register IX instructions:

CALL ALLOC becomes INX

X

DEFB 4 INX X
INX X

INX X

Larger stack frames use a DADX instruction rather
than the increments.

CALL ALLOC becomes EXX

DEFB 16 LXI HL,16
DADY HL
EXX

The corresponding decrement forms are used for the
stack frame deallocation calls. The deallocation
is done as part of the fast optimization because
it is never dangerous.

The second optimizaticn is copen coding of the
ADD1l and SUBl functions. These are replaced by
INX HL, and DCX HL instructions. They are not
dangerous as long as the sign of the number does
not change. A sign change causes overflow into the
tag field of a number changing it into a bad
identifier or string pointer.

Second Optimizaticn Pass

The second optimization pass removes the
function prolog and epilog if no stack frame is
uged. Thus the function:

(DE CAARRR (X) (CARR (CAAR X)))
is compiled without optimizatien into:

ENTRY CAAAARR,EXPR
CALL ALLOC

DEFB 2

STOX HL,-1

HL,-1

CAAR

CAAR
DALLCC

DEFB -2
RET

S

This version uses 19 bytes. After the first
optimization pass the following code is produced:

ENTRY CAARAR,EXPR
CALI ALLOC

DEFBE 2

RST CAR
RST CAR
RST CAR
RST CAR
CALL RDLLOC
bEFB -2

This version takes 12 bytes. The second pass
notices that the stack frame is never used (there

are no STOX or LDX instructions). The final pa
produces;

ENTRY CAAAAR,EXPR

RST CAR
RST CAR
RST CAR
RST CAR
RET

The final version takes only 5 bytes, a saving
of about 75%.

Execution Statistics

We now examine the effect of the optimizer on
size and execution speed. A rough approximatic
two different types of programs and their size
execution statistics are given. The first prog
is the factorial example. 6! was computed 1p,.§
times on a 4 megahertz, 64k CP/M system. The
second test does a complete reversla to zll le
of a binary tree. It is also executed 19,200 t
and experiences 6 garbage collections.

(DE SUPER!-REVERSE (A)
(COND ({ATOM A) A)
{T (COMS (SUPER!~REVERSE {CDR A))
(SUPER!-REVERSE (CAR A))))

The tree ((A . B) . (C . D)) was reversed to
(b . . {(B.A.

Size A/B Time

Bytes Secon
No optimization 42 / 44 48 /
Safe optimization 37 / 38 45 7/
Safe and fast 51 / 56 34/
Fast and dangexous 49 / 56 27 /

At best the optimizer provides a 47% speed up
the expense of a 20% space increase.

To get a view of the effectiveness of each
the individual optimizations over a class of
programs, 8 different programs were compiled a
the number of bytes saved by each of the reduc
tion in size optimizations were tallied.

%t. Prﬂram

No. A B C D E F G H Total
1l 44 16 16 12 p 24 12 12 136
2 52 43 2p 5 13 16 7 42 198
3 34 34 38 2 26 28 8 98 268
4 18 28 8 2] 2 2 2 35 96
5 56 118 52 19 k] 4 2} 2 233
) 2] & P] 6 B g 15 27
7 12 54) 3 g 4] 6 33 114
8 47 8 26 4 18 21 18 77 211
9 16 64 16] 2 7 7 84 194
1p 22 g 36 2 8 8 2p 2 a8
1l 66 27 27 9 6 18 24 30 207
12 129 17¢ 75 2@ 33 55 &g 133 677
13 12 1 31 a 4 2 5 8 63
14 33 2%] 9 4 12 a g 79
% 12 12 13 19 14 12 14 14 12.5

The most important space optimization by far is the
short jump conversion, the second, the removal of
redundant load register instructions, the thixrd the
conversion of 4 byte LHLD instructions to 3 bytes,
the fourth, the conversion of 16 bit move HL to DE
instruction ({(actually two instructions) to an

XCHG instruction, the fifth, the inversion of
conditional jumps; and the sixth the use of the
RDLIOC stack deallocation routine. The least
important is the removal of dead code after
functions which do not return.

The average reduction in size achieved by the
optimizer is a little over 12.5%. This compares
very favorably with other peephole optimizers
which gather about 15 % (one of these has over
two hunderd separate optimizations).

A final test compares UOLISP generated compiled
code with that produced by various compilers for
mainframes.

Test A B c UOLISP
1 132 391 51 145¢
2 135 3502 1§37 4ppp
3 117 748 1173 15508
4 562 4692 2312 185p¢
5 2872 B313 2§23 37088
6 1§98 9231 12886 1p9p2p
7 1062 1972 136p 1379
8 1p19 18326 &Epp 49ppp

The 8 different programs tested were designed ta
exercise various features of compiled LISF code.
The tests for the first three LISP compilers were
taken from [8] and have been subsequently
improved. Machine A is a large DEC 2@6f running
LISP 1.6 with the Portable LISP Compiler [9},
machine B is a VAX 11/75f running Franz LISP,
machine C is a VAX 11/758 running Portable
Standard LISP Version 2 [18], and UOLISP runs

on a 64k ZBPA system with CP/M 2.2. A few of the
time tests reflect the relatively small amount of
space available and a large number of garbage
collectiong. The statistics show that compiled
UOLISP code is on the average cne fiftieth the
speed of a DEC 2p6§¢ running LISP 1.6, one seventh
the speed of Franz LISP, and cne tenth the speed
of Portable Standard LISP on the VAX 11/754.

Conclusions

The UOLISP compiler runs on almost any Z8@
based machine with a minimum storage configuratiom
of 32k bytes and a disk drive. The compiler and
optimizer have been tested under both CP/M and the
TRS~80 Model I and III with success. Turning on
all of the optimizations slows down compilation
by approximately 4@ percent. The UOLISP compiler
occuples 375@ bytes of storage and the optimizer
with statistics collection another 3gpg bytes.
Standard Use has debugging done without the
presence of the optimizer and the final run with
the optimizer enabled.

List of References

1. J. Harti, ‘UOLISP Users Manual', University
Oregon Department of Computer and Informatic
Science Technical Revort CIS-TR-88-18.

2, J. Marti, A. C. Hearn, M. L. Griss, C. Gris
‘The Standard LISP Report', SIGPLAN Notices,
Vol. 14, No. 1@, (October 1979), pp. 4B-68,

3. A. C. Hearn, 'REDUCE 2 Users Nanual', Utah
Symbolic Computation Group UCP-19, Universit
Utah, 1973.

4. J. Marti, 'A Session with the Little Meta
Translator Writing System', University of Ox
Technical Report CIS-TR-82-g1.

5. Jd. W. Davidson, C. W, Fraser, 'The Design a
Application of a Retargetable Peephole Optim
ACH TOPLAS, Vol. 2, No. 2, {April 1980),
pp. 191-2p2.

6. A. S, Tannenbaum, H. van Staveren, J. U.
Stevenseon, 'Using Peephole Optimization on
Intermediate Code', aCM TOPLAS, Vol. 4, No.
(January 1982}, pp. 21-36.

7. D. A, Lamb, ‘Construction of a Peephole Opt
izer', Software Practice and Experience, Vol
No. &, (June 1981), pp. 639-647.

8. M. L. Griss, PSL Interest Group Newsletter
February 1982,

9. M. L. Griss, 'A Portable LISP Compiler', So
ware Practice and Experience, Vol. 11, (June
1881), pp. 541-685,

1g. 'The Portahle Standard LISP Users Manual',
The Utah Symbolic Computation Group, Univers.
of Utah, January 1982,

