FAST ENUMERATION, RANKING, AND UNRANKING
OF BINARY TREES

by

Andrzej Proskurowski and Ekaputra Laiman
Department of Computer and Information Science
University of Oregon, Eugene OR

ABSTRACT

A linear representation of binary trees proposed earlier
is analyzed with respect to the complexity of ranking and
unranking operations. Simple algorithms are given that
perform these operations in time proportional to the order of
the binary tree, provided that a table of values of certain
integer function is precomputed. Also, the complexity of
generating representations of all binary trees of given order
is discussed. An algorithm is given which updates the
representation of a tree to yield the representation of the
next tree in a time averaging to a constant over all generated
binary trees. The larger the order of the generated trees,
the smaller the constant.

Page 2
1. Introduction

Generayion of random data, or all possible data for a
given algorithm may be a way to test or analyze the algorithm
for its correctness, or computational complexity. In the past
few years the subject of generating combinatorial structures
in general, and trees in particular has been fairly
extensively treated in the 1literature [(1,5,6,7]. The fact
that trees are often enumerated in a certain order causes
consideration of functions ranking trees according to this
particular ordering. Also, the inverse function producing the
tree which occupies a given place in the ordered list of all
such trees would allow an easy random selection from the 1list
(3]. Thus, the computational complexity of algorithms

enumerating, ranking and unranking trees is of importance.

In this paper we deal with enumeration of binary trees
with n nodes. A binary tree is either empty or consists of a
root node and two subtrees, left and right, which are binary
trees. An extended binary tree is either a single external
node (a leaf), or consists of an (internal) root node and two
extended binary trees as left and right subtrees. There is an
obvious bijective correspondence between the set of all binary
tree with n nodes and all extended binary trees with n
internal nodes (and n+l external nodes). An ordering
Eraversal of an (extended) binary tree visits every node of

the tree exactly once thusly ordering the nodes of the tree.

A monotonic ordering traversal visits nodes of the root of a

Page 3

subtree before the nodes of its both subtrees, for all

subtrees of the traversed tree.

A binary tree T with n nodes will be represented by a
string of n 1's and n+l @'s reflecting a traversal of the
corresponding extended binary tree T' according to some fixed
monotonic traversal order. 1In this string, a 1 corresponds to
visiting an internal node of T' and a @ corresponds to
visiting an external node of T' (a leaf). It has been shown
in [4]) that a recursive "leaf-expansion” algorithm applied
iteratively to intermediate extended binary trees (with less
than n internal nodes) in the order determined by a fixed
monotonic traversal, generates exactly the class of all binary
strings representing binary trees with n nodes. In the next
section we present two simple algorithms, FIRST and NEXT,
which will effectively generate this class of strings in time
proportional to its size, Namely, FIRST produces the
lexicographically smallest such string, and NEXT modifies the
string representation t +to produce the tree representation
succeeding t (unless t is the lexicographically largest
string). Analysis of performance of the algorithm NEXT will
be based on the total time requirements of computing NEXTj for
all i = 1,...,Cn_1 , where NEXTGL FIRST, NEXTf = NEXTONEXTj_j,
and C,p is the n-th Catalan number (counting the binary trees
with n nodes), The subsequent section gives an algorithm
RANK(t) which computes the ordinal of a string t representing
a tree with n nodes in the lexicographically ordered list of

all such strings. Accordingly, RANK(NEXT™) = i + 1. The

Page 4

algorithm uses values of an integer function which can be
computed either following a recurrence relation, or from a
closed form involving binomial coefficients. Assuming
constant time availability of these values (through, for
instance, a pre-computation process), RANK requires only a
linear amount of time. The algorithm UNRANK {i) performing
the inverse function produces the string representation of the
i-th binary tree with n vertices {according to the
lexicographical ordering of the corresponding strings). Thus,
UNRANK(i+l) = NEXTi for i = l,...,CHJ . The time complexity
of UNRANK is 1linear with n, again assuming constant time

access to the values of the integer function mentioned above.

2. Enumeration: algorithms and analysis.

We will assume that a binary tree is represented by a
global record consisting of an array treel[l..2n+l] and an
integer value last pointing to the rightmost 1 in that array.
The strings representing binary trees with n nodes will be
generated in lexicographical order through initialization of
the array tree (procedure FIRST) and the consecutive updating
of some of the entries in the array (procedure NEXT).
Although both procedures may spend as much as O(n) time in a
single execution, the time complexity of updating the array
tree averaged over all binary trees with n nodes will be shown

to be bounded by a constant.

Page 5

procedure FIRST;
var i:integer;
begin for i := 1 to n do
begin treef[2i-1] := 1;
tree[2i] := @
tree[2n+l)] := B;
last:=2n-1
end; (* FIRST *)
Assuming the preorder traversal controlling the
interpretation of strings representing binary trees, the first
tree on 3 nodes is shown in Figure 1la, The computational

complexity of FIRST is O(n).

In [2] the generation of strings representing binary
trees with n nodes is defined recursively. Two consecutive
(lexicographically ordered) strings may be obtained from the
same string representing a binary tree with n-1 nodes by
expanding into the substring "188" each of two consecutive
zeroes in the block of rightmost zeroes. (This corresponds to
expanding -- through the promotion to the internal node status
-~ the corresponding leaves of the extended binary tree.) The
resulting strings differ only by the position of the rightmost
l's which are relatively shifted by one position. 1In the
alternative situation, the two consecutive representations are
obtained from two consecutive representations of trees with
n-1 nodes, as the result of expanding the last zero in one,
and the first zero (in the rightmost block) in the other
string. Applying this description recursively, we find that
any two consecutive strings differ in the suffix positions
containing in the lexicographically preceding string the

rightmost block of 3j < n ones and the preceding zero. This

Page 6

suffix is replaced in the other string by a leading 1 followed
by zeroes and the representation of the first binary tree on

j-1 nodes. An example with n=5 and j=4 is given in Figure 1b.

PSRN

(c) 18106100 9 ll111028000¢80 1100106161089

Figure 1 (a) The first tree with 3 nodes, (b) two

consecutive trees on 5 nodes, and (c¢) their representations,

In the following, we describe a charging scheme for the
cost of updating tree representation in the operation NEXT,
The unit charge is the cost of setting two entries in the
tree representation. When NEXT is applied to a
representation t in which the rightmost block of 1's has
width w (1 < w < n), then the following entries have to be
set: the one immediately preceding that block (to 1), the w
entries of the block itself (to @), and the w-1 entries in
the suffix representing the first tree with w-1l nodes (to
1). The prefix of the tree representation and the other 8's
in its suffix remain unchanged. Thus, the total charges

amount to w units (1 + w + w - 1 changes). These are

=

Page 7

w +~ 1 changes). These are apportioned to t itself and to its
w~-1l prudecessors. Each of these predecessors incurs only one
unit charge as arguments of NEXT, as the corresponding values
of w are all 1. 1Indeed, the rightmost block of w 1's in ¢t
must be followed by at least w+l @'s to satisfy the
feasibility of the representation. For each of the w-1
representations of trees immediately preceding ¢, an
application of NEXT requires only a change of the rightmost 1.
Thus, over all applications of NEXT to every tree

representation once, no tree is charged more than two units.

Actually, the total charges for the trees with n nodes
are less than 2CH . This follows from the fact that the
rightmost block of w 1's in a tree representation may be, and
frequently is, followed by more than w+l 8's. We conclude
this section by an implementation of the procedure NEXT.

procedure NEXT;
var i,w: integer;
begin w:=0; i:=last;
while tree[i]
treel[i):=1;
for i:=1 to w-1 do tree[2(n-i)+1]}:=1;

last:=2n-1
end; (* NEXT *)

3. Ranking of feasible strings

Iterative application of the procedure NEXT from the
preceding section produces the master list of binary strings
representing binary trees with n nodes. The interpretation of

these strings depends on the chosen monotonic traversal order.

Page 8

Henceforth, by a string we will understand a feasible strinpng,
i.e., one that is on our master list. A feasible string
representing a binary tree has no proper prefix in which the
number of #'s exceeds that of 1's. We will now concentrate on
determining the position of a given string t on our master
list, and denote this position by RANK(t). Thus, RANK(FIRST)
= 1, and RANK(NEXT(t)} = 1 + RANK(t) for all strings t but the

last ou. the master list.

We observe that the position of a string on the master
list depends directly on the displacement of its 1's from
their original positions (2(n-j)+1 for the jth rightmost 1),
Denoting by d(t,j) the displacement of the jth 1 in the string
t, we have d(t,n)=08, and d(t,3j) < a(t,j+1) + 1 <« n-j, for
j=l..n-1. Consider a string t' which has d(t',i)=0 for all
i<j, and d(t',j)=k for some fixed j, k £n and such that k <
n-j. Consider another string t" such that a(t",i)=4(t',i) for
all i#j and d(t",j)=P. We define the displacement fupction
g(j.k) as the distance between these two strings on our master

list:
g(j,k) = RANK(t') - RANK(t")

We note that values of the displacement function do not
depend on the number of nodes, n. Figure 2 illustrates the

definition.

Page 9

From this definition it follows that g(j,0)=0 and that
RANK(t') = g({j.k} + g(j+l,d4(t",j+1)) + RANK(t''') , where
d(t''',i)=d4(t",i) for all i>j+l, and d(t''',i)=8 for igj+l.

By induction, for any string t we have

{3.1) RANK(t) = 1 + SUM{ g(i,d{t,i))! 1<i<n)
| Sl 1816190101060
E" 1190010161068
11001061100¢80
1109011081028
11601101000
110011106000
ol 110108816100
Figure 2 Representations of t', t", and t''' when n=5, j=3,

and k=1.

By definition of the procedure NEXT, the string #*t!
immediately preceding t! on our master list has
d(*t',iy=k+j-i~1 for ig&j, d(*t',i)=d(t',i) for id>j, and

RANK{t*)

It

RANK(*t') + 1. From this and (3.1) we have the

recurrence relation defining g:

g(j,k) 1 + SUM({ g(i,k+j~i-1)]| 1Li<j) for 1<k<n~j, j<n

i}

g9.3,0) g

Page 14

Following Dershowitz and Zaks [2], we find the closed
form solution to this recurrence relation.
(3.2) g(3,k) = (ZJHh=1) ~ (21 for 58, k>a.
J J=1
The formula (3.1) suggests a simple algorithm computing

RANK(t} for a given string t.

function RANK(t:string): integer;
var sum, j: integer;
begin sum:=1l; j:=1;
for i:=last downto 2 do
if tree(i]l=1
then begin sum:=sum+g(j,2(n-j)-i-1);
js=j+1
end;
RANK:=sum
end; (* RANK *)

Assuming a constant time access to the values of g{i k),
the complexity of the algorithm RANK is obviously linear with
the length of the string (with the number of nodes in the
represented by it tree). However, as the formula (3.2)
contains binomial coefficients, the related computations may
take substantial amount of time because of the magnitude of
the factorial values involved. A much more realistic
assumption is that the table of values g(j,k) will be
precomputed using the recurrence relation (3.1). This is an
O(N2) process which may serve many ranking and unranking
requests, for trees with different numbers of nodes n, bounded

by some fixed value N. Figure 3 gives an example of such a

table.

m G -

H N W s gy

[

Page 11

35 154

27 118 429

20 - 75 275 1901

14 48 165 572 2082

g 28 98 297 1891 3432

5 14 42 132 429 14389 4862
2 5 14 42 132 429 1438
2 3 4 5 6 7 8

Figqure 3 Table of the displacement function g(j,k).

The unranking procedure consists of the reconstruction
of the values d(t,j) from their composite representation as
RANK(t). From the recurrence relation defining the
displacement function g(j,k), we have that for any string t

and its displaced jth rightmost 1

g(j,1+4d(t,3)) > SUM(g{i,d(t,i)) | 1Li<j)

This follows from the constraints that the position of
the jth 1 puts on the displacement of the other 1's (to its
right in t). We can thus determine the displacement of 1's
of t by comparing the ranking number (or the remainder
thereof) with the values of the displacement function, from
the leftmost 1 subject to displacement (3 = n-1) through the
rightmost one. The restriction d(t,j=1) < d{t,j) + 1 allows

a linear algorithm UNRANK given below.

Page 12

procedure UNRANK(x:integer);
var i,j,k: integer;
begin tree[l]:=1; k:=1; i:=2;
for j:=n-1 downto 1 do
begin while g(j,k)>x do k:=k-1;
while i{2(n-j)}-k do
begin tree[i]:=8; i:=i+l end;
treelij:=1; i:=i+l1;
X:=x-g{j,k); k:=k+l
end;
last:=i-1; -
while i<2n+l1 do begin tree[i]:=8;
i:=i+l end
end; (* UNRANK *)

4. Conclusions

We have proposed an algorithm enumerating a sequence of
binary strings representing (extended) binary trees. The
algorithm performs consecutive updates of of the strings in
constant time, when averaged over all string updates. Based
upon this enumeration algorithm, we also propose algorithms
computing the rank of a tree representation, and computing
the tree given its rank. These algorithms are very
efficient, under assumption of a fast access to values of a
two~argument function closely related to functions counting
grid paths from the origin to a given point. Dershowitz and
Zaks [2] eloguently present the combinatorial background to

those counting results,
5. References

1] . Beyer and S.M. Hedetniemi, "Constant Time
Generation of Rooted Trees", Computer and Information
Science Department Technical Report University of Oregon,

[2] M, Dershowitz and S. Zaks, "Enumeration of Ordered
Trees", Discrete Mathematics 31, 1986, pp. 9-28.

Page 13

[3] 6.D. Knott, "A Numbering System for Binary Trees",
Communications of the ACM 28, 2(1977), pp. 113-115,

[4] A. Proskurowski, "On the Generation of Binary Trees",

Journal of the ACM 27, 1(1986), pp. 1-2.

[5] R.C. Read, "How to Avoid Isomorphism Search when
Cataloguing Combinatorial Configqurations®™, Ann. Disc,
Math, 2, 1978, pp.187-124.

[6] F. Ruskey and T.C. Hu, “Generating Binary Trees

Lexicographically", SIAM J. Computing 6, 4(1977), pp.
745-758.

[7] M. Solomon and R.A. Finkel, "A Note on Enumerating
Binary Trees”, Journal of the ACM 27, 1(198@), pp. 3-5.

