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l, Introduction

For a graph G, its chromatic npumber, X(G), is the
minimum number of colors needed to color vertices of G in
such a way that no two adjacent vertices are assigned the
same color. Related to coloring of edges of G is its
chromatic index, X*(G). It is defined as the minimum number
of colors needed to color edges of G so that no two adjacent

edges are assigned the same color. An assignment of at most

¥
k colors to the vertices (edges) of a graph G is called a
= x- (k-edge-) coloring of G. The problems of finding

the value of the chromatic number (index)} of a graph G is
NP-complete even when G is planar (see [Garey and Johnson],
[Holyer]). As for some positive results, [Gabow and Kariv)
give an efficient edge-coloring algorithm for bipartite
graphs. [Mitchell and Hedetniemi] edge-color trees and
unicyclic graphs. Recently, [Vidgerson] presented an
efficient approximation algorithm for vertex-coloring of
general graphs. Applying a method that follovws the
recursive construction of series-parallel graphs, we can
easily color vertices of such graphs using the minimum
number of colors. Here, we present efficient (linear in the
size of the graph) algorithms for both problems when
restricted to a subclass of series-parallel graphs,
outerplanar araphs. A planar graph G is outerplanar if and
only if there exists a plane embedding of G in which all
vertices lie on the exterior (unbounded) face. Such an

embedding is referred to as an guterplane graph. Without
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loss of generality, we may restrict our discussion of
coloring vertices and edges to 2-connected outerplane

graphs.

For every outerplane graph G there is unique gssociated
Lree T(G). This tree has internal nodes corresponding to
the interior (bounded) faces of €, and external nodes
(leaves) all corresponding to the exterior face, one leaf
for ‘gach edge of G on the exterior face, To avoid
confasion, we refer to podes of T(G) and vertices of G. The
edges of T(G) correspond uniquely to edges of G in such a
way that there is an edge between nodes of T(G) if and only
if the two corresponding faces of G share an edge, We
consider T(G) to be a plane tree, in which the neighborhood
of each node is ordered (see [Proskurowski and Syslol). A
choice of a node of T(G) as its root induces a natural
father-son relation between adjacent nodes, and also a
left-to-right ordering of brother nodes (sons of a common
father). See Figure 1 for an example of an outerplane

graph, its associated tree and a rooting.

The four color theorem [Appel and Haken] ensures that
the chromatic number of outerplanar graphs (as planar
graphs) is at most 4. e will constructively prove that it

is at most 3.

The chromatic index of a graph ¢ 1is bounded by the

maximum degree, ZK(G), of a vertex of G. The Vizing's

theorem (see for instance [Fiorini and Wilson]) states that
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Zﬁ(c)gx'(c)$1+[§(cl. [Firorini} proves that for an
outerplanar graph G, x’(G)=Zl(G) unless G is an odd cycle.
His proof is an existential one and does not provide a
method for finding an optimal edge-coloring. Another proof
of the above equality given in [Fiorini and Wilson] contains
a flaw. We present an algorithm optimally edge-coloring an
outerplanar graph, which may be considered as yet another

proof of the above equality.

In the remainder of our paper we follow the standard
texts [Fiorini and Wilson], [Carey and Johnson] and [Harary]
as references for, respectively, edge coloring, complexity

analysis, and general graph theory.

2. Vertex-coloring

The fact that the chromatic number of an outerplanar
graph is at most 3 is implied by the following observation.
Every outerplanar graph has a vertex of degree 2, Every
subgraph of an outerplanar graph is outerplanar. Hence,
applying the Szekeres-Wilf's bound on the chromatic number
X(G)£Ll+max 6(G'), where maximum is over all subgraphs G' of
G, anda(G') is the minimum vertex degree of G', we have the

following result.

ITheorem 1 The chromatic number of an outerplanar graph

is at most 3. [])
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We now give a procedure for producing an optimal
vertex-coloring of a 2-connected outerplane graph G. Our
method makes use of a traversal of the associated tree T(G)
rooted at an arbitrary node. UWe assume that the traversal
is monotopjc, that is, no node other than the root is

visited before its father.

Visiting a node C of T(G) we color the vertices of the
corrgsponding face of G with two or three colors, depending
on i:s length. If C is not the root, two of its adjacent
vertices are already colored. These colors are subsequently
used to color the cycle C. It is clear that an outerplanar
graph containing an odd-length face is not bipartite., Our
algorithm will produce a 3-coloring of such a graph. If all
faces of G have an even length then a 2-coloring is

produced.

The algorithm coloring vertices of a graph G takes time
linear in the total size of all faces of G, and therefore

proportional to the number of vertices in G.

3. DBreadth=first edge-coloring algorithms

The arbitrary monotonic traversal of the arbitrarily
rooted associated tree T(G), used in the optimal
vertex-coloring of an outerplanar graph G fails in an
attempt to edge~color G. The free choice of coloring edges
along a cycle, when restricted by an algorithmic method may

lead to an eventual coloring conflict, See Figure 1, where
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a monotonic traversal was used. Edges of the triangular
face corresponding to node 8 cannot be colored without use

of an additional color.

Eigure 1 An outerplane graph, its associated tree with the
depth~-first traversal order, and a partial edge~coloring

following that order.

We will give a traversal method of a carefully rooted
associated tree T(G), and a judicial coloring of the
corresponding cycles of G that lead to an optimal
edge-coloring. We define the breadth-first traversal of
internal nodes of a plane (extended) tree rooted at an
external node as visiting the internal nodes in the
left-to-right order in levels defined by the distance from
the root. Figure 2 indicates order of node visits in the
breadth-first traversal of a rooted plane tree. Visiting a
node E during the traversal of T(G) brings a {completion of)

edge~coloring of the corresponding face E of G. Although at
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most one edge e of E has a color already assigned (during a
visit of the node's father, C), the color assignment to the
two edges of E adjacent to e is restricted by other colored
edges adjacent to e, This restriction may impair the
optimal coloring if, in the case of a triangular face E with
end-vertices u and v of the base e, u and v are incident
each with ZB(G)—I edges already assigned colors, the same
for both u and v. Fortunately, this cannot happen in the
breadth-first traversal of T(G) for G with the maximum

vertex degree[ﬁ(G)QS.

Lemma 1 Let a 2-connected, outerplane graph G with the
maximum vertex degree (G)>5 be partiallyzx-edge-colored by
a breadth-first coloring algorithm. The [S-COloring can be
extended to a face E of G corresponding to the next-to-be

visited node of T(G).

Proof By mathematical induction on the number of
visited nodes of T(G}, If E is the first face to be
colored, then at most BQCMG) colors are needed, Therefore,
let us assume that C is the father node of E and the
corresponding faces of G share an edge e with end vertices u
and v. At most one of these two vertices may be incident
with[ﬁ(c)-l previously colored edges: if v is in the face
corresponding to some ancestor of the node C, then u may be
in at most one colored face other than C, namely, that
corresponding to the 1left brother of node E. Thus, the

number of previously colored edges incident with v is at



most 3§Q§G)—1, and edges of E can be colored using only (G)

colors. []

The above Lemma does not translate directly for the
case of[S(G)=4, because of the distinct possibility that the
base edge of a not yet completely colored triangle face is
adjacent to four colored edges forcing the same colors on
both of the triangle's sides., The edge~coloring during the
visit of the corresponding node's father must prevent an
occuzrence of this situation. The coloring process will
have to preserve the following property.

Property P4 A partial 4-edge-coloring of a 2-connected
outerplanar graph G witth(G)=4 has property P4 if and
only if G does not have a colored edge (u,v) shared by a

not yet colored face E such that u and v are incident

with edges colored by three colors.

In the breadth-first edge-coloring algorithm, property
P4 can be endangered only in two situations when coloring
edges of the face corresponding to the father C of the node
E. The first one, in which C's right brother would also be
his leftmost brother, is eliminated by rooting the
associated tree in a leaf node. The second situation can be
reached only through the sequence of face coloring (tree
traversal) illustrated in Figure 2. The node visiting order

is A-"BCI.IDE.
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Figure 2. A paradigm of edge-coloring

Coloring edges of C we have to consider two cases of
C's left brother B, which can be either external or internal

(See Figure 2).

In the former case, there is a choice of two colors for
the first (leftmost) edge of C., This gquarantees that the
next to the last (rightmost) edge a of C can be colored so
as to preserve property P4, namely by assigning it a color
different from those assigned to edges ¢ and d of face A.
In the latter case, when the color of the first edge of C is
forced by the formerly colored edges of A and B, we have
additionally to consider the 1length of C. If C is a
triangle, then the property P4 might not be preserved.
However this property is not necessary for maintaining the
property P4 for coloring of E since its Jleftmost son node

cannot be interior, If C has length greater than 3, then



there is enough freedom in coloring its edges to preserve

property P4. Thus, we have the following Lemma.

Lemma 2 Property P4 can be preserved in a partial
coloring of an outerplane graph G with k=[§(G)=4 colors

following the breadth-first order coloring algorithm. [}

An immediate corollary gives the desired statement

about edge~coloring of such graphs.

rggjgllg;x 3 Let a 2-connected outerplanar graph G with
the maximum vertex degree[B(G)=4 be partiallylx-edge-colored
by a breadth~first coloring algorithm, The[ﬁ-edge— coloring
can be extended to a face C of G corresponding to the

next-to- be-visited node of T(G). []

When (G)=3, the property of a partial 3-edge coloring
required to avoid forced situations can be obtained directly
from P4,

Property P3 A partial 3-edge-coloring of a 2-connected,
outerplane graph G with [S(G)=3 has property P3 if and
only if G does not have a colored edge e shared by a not
yet colored face such that the two colored edges adjacent

to e have the same color.

Lemma 4 Let G' be a partially 3-edge-colored subgraph
of a 2-connected, outerplane graph G with (G)=3 obtained
through the breadth-first coloring algorithm which has

property P3. Let C be the next-to-be-visited node of T(G).

The 3-edge-coloring of G can be extended to C preserving



property P3.

Proof First, let us assume that C is the first face of
G to be colored and that it has n edges., Let e be an edge
shared by C and another face, C°'. Such an edge always
exists since [}(G)=3>2. We assign color 2 to e and color
other edges of C depending on the value of n, If n=0 mod 3,
then coloring edges by 1-2-3 (with e appropriately included
in the sequence) ensures property P3., If n=1 mod 3, then we
col&r edges of C by 1-2-3 starting with an edge adjacent to
the initially colored e, but excluding e. The only two
edges that could violate property P are adjacent to e and
thus belong only to C, since ZX(G)<4. If n=2 mod 3, we
again color edges along C by 1-2-3 starting with an edge
adjacent to e and excluding e, This time, however, the
three last edges of C (i.e., £, g, h in Fiqure 3) are
colored differently, depending on adjacencies of f. If f is
shared with another face, then it is colored 3, with colors
2 and 3 assigned to the remaining edges. Otherwise, the
three edges are colored 2-1-3, respectively. Beside the
edges adjacent to e, the only possibly offensive edges in
the former case are adjacent to f and thus in no other face
than C. In the latter case, only f has adjacent edges
assigned the same color. Again, £ is in no other face and

thus the property P3 holds.



Figure 3 Coloring the first face of G,

Next, consider a G with property P3 and a face C
corresponding to the next-to-be-visited node of T{G). Our
inductive assumption yields that the three colored edges of
C are assigned colors 3-2-1., The same case analysis as the
one above proves that C can be colored to ensure property

P3. Thus G can be colored with three colors. []

The amount of work to c¢olor edges of each face is
proportional to the 1length of that face. Therefore, the
total time spent on edge coloring of an ocuterplanar graph is
bounded by a linear function of the graph's size.
Preprocessing a given outerplanar graph to obtain its rooted
associated tree can also be performed in linear time (see
[Proskurowski and Syslo]). <Collecting the results of this

section, we finally have the following theorem.
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Theorem 2 The breadth-first coloring algorithm produces an
optimal edge-coloring of an outerplanar graph in time

proportional to the size of the graph.
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