CIS-TR-82-07

THE ANATOMY OF PROGRAMHMING

Jozef Hvorecky
Department of Computer Science
Komensky University
842 15 Bratislava, Czechoslovakia

1. Introduction

e —— ot 2 St

The most important feature of school education is that it has
been concentrated on general information which presents the main
ideas and notions of its subjects. Such knowledge not cluttered
by odd details can be easily used as a starting point on the way
to some deeper particular knowledge.

In contradiction to that common fact, many current programming
courses have usually been based on the recent state of hardware and
software, Thus, they do not present the kind of knowledge apt for
both future programmers and casual users, because they (willingly
or unwillingly) show the given state as the best and/or the only
possible one. On the other hand, some sources (for example, the set
of books written by Ledgard et al.[8, 18, 11, 13]) indicate that
there existe the knowledge which does not depend on any particular
language or machine and which represents the core of programming.

An analogy with creative writing course can be offered:

The creative writing is not the typing just as the programming
is not the sitting at a terminal (though people tend to think
g0). In both cases the ideas of a perforﬁer are much more
important than their actual writing. Therefore, the matter
taught in the creative writing course is how to arrange those
ideas and how to present them in a reasonable and legible
manner. The completion of the course made nobody a writer

But a good course can provide future writers with substantial
knowledge about writing and can give general information about

the profession to the others. Students write their own stories

in order to apply those abstract principles and to better
understand them.

In this paper we present an outline of the introductory
programming course. The ideas presented in the course are based on
the belief that the core of a programmer's activity is the
development and the implementation of algorithms.

The basic ideas of algorithm development had been known
long before the first computer appeared. They have been
successfully used by scientists and they do not change with the
advancement of technology. The common use of computers has only
made them more important. On the other hand, the fast development
of both hardware and software makes the properties of future
machines and programming languages difficult to predict. Thus,
programming courses should afford knowledge about properties
of algorithms, the algorithm development, and their connection
to computers. Practical experience with work on computetrs (which
is an unavoidable part of a programmer's skills) should be
introduced in the form of a case study. In the actual course
given by the author students start running their programs only
when they have acquired the preliminary information as presented
in Sections 2 - 5.

The course concentrates on the following issues:

a) LEvery problem may have several solutions.

b} Every proposed solution must be verified to see whether or not
it really solves the problem.

c} The main differences among solutions are rooted in their

computational complexity.

d) New solutions should be sought until one finds a solution
with the "reasonable" complexity or the one that can not be
improved.

The presentation starts with the general ideas of problem
solving and deals with problems which need not be (and usually
are not) solved by computers. Conversely, we will assume that the
computation is to be performed by humans because in that case
students are much more interested in improving their ;olutions.
This means that the analogy between common human thinking and

programming is utilized (see Fig. 1).

General problem solving Programming
I I I
Level 1 I Intention I Task I
I - I I
I I I
I Imagination I Idea of algorithm I
Level 2 s T |
I I I
I Solution I Program I
I I__ I
I I
Level 3 I Execution I
I by human by computer I
I - I
Fig. 1

The first two issues represent the relation between a task and
a program satisfying it (i.e., between levels 1 and 2 on Fig.l).
The relation is briefly explained in Section 2 of the paper. This
section also shows a method by which a programming language can be

introduced indirectly - as a tool for solving easy problems.

L}

In Section 3 some ideas on the development of programs are
presented, namely, the connection between the idea of an algorithm
and its expression by a program. This section is an informal
introduction to structured programming techniques.

The last two issues above address the connection between a
program and its execution . They will be illustrated by the
stepwise construction of the program for integer multiplication
in Section 4. As it is shown there, during the construction many
important notions of the theory of programming, of the
computational complexity and of data structures can be introduced
as results of solving advanced problems.

A brief evaluation of the proposed method of teaching

programming is given in Section 5.

2. Programming language as a result of problem solving

—— e T e e S S A S ek Sk bk e A ek A S S S T S S SRS S SR LR Ak e b ks S S

In the presented course students become familiar with partial
pieces of knowledge during problem solving in dialogue with their
teacher. The teacher introduces problems, asks for their solutions,
conducts dialogue and helps students, if necessary.

The execution of algorithms on computers is absolutely
precise. To simulate this property, mathematical problems are
solved, because they also require precise solutions.

The notion of an algorithm is introduced informally, as a
prescription describing the process of the solution of a problem.
To be understood the algorithm has to be written in some fixed
form. This agreed upon form is called a programming language. The
constructs of such a language must have the imperative form in
order to change one given state of information to another. That
is why they are called commands or statements.

The commands manipulate elementary objects - constants and
variables. For the purpose of this paper it is sufficient
to start with integer constants and integer variables, and two
operations over them, addition and subtraction., Other operations
and data types will be defined later in the moment when they are
needed for solving some particular problem.

The existing programming languages are the results of
long-term searches for an appropriate tool for problem solving.
e simulate this development by a construction of a programming

language from simple problems., Such an approach has another

advantage: It shows indirectly that commands of a programming
language are correct tools for solving some problems, but
solutions of other problems have to be expressed either by
their combinations or by choosing another language more
appropriate for that particular problem.
A problem is defined as a triple
f P}
X

{0}

where P is used for a precondition (i.e., the property of data which

is valid at the moment the problem is formulated),

{ means a postcondition (i.e., a desired relation which should
be held after solving the problem),

X is an (unknown) algorithm with the following property:
Every execution of X which starts with data satisfying the
precondition P finishes with results satisfying the
postcondition Q.
Let us solve the following simple problem:
{ A < B}
S (1)
{ A<=RB]
which can be formulated in words as:
'Given two integers A and B for which relation A < B holds.
Find the algorithm S such that after the execution of S, the
relation "A is less or equal to B" will be valid.'

Because

(A < B) => (A <= B) (2)

it is easy to see that the postcondition holds for input values A

and B, i.e., the problem can be solved by the command "do nothing".

This command which does not change the value of any variable is
called the dummy command.

We are interested in finding as many solutions of (1) as
possible. Therefore, students are asked if other solutions of the

problem exist, Since
{A = B} => (A <= B} (3)

any algorithm guaranteeing the equality A = B after its execution
solves the problem.

According to the precondition, A is not equal to B before S
starts., Thus, the algorithm mus£ change the value of at least one
of those variables. The change must be brought about by an
execution of a command. It implies that we must introduce the
command which allows the changing of the value of a variable,
That command is called the assignment statement.

Changing just the value of one variable, we obtain two

different algorithms
A :=B (4)

and
B := A (5)
We can also change the values of both variables to another value,

say, five:
A :=5; B :=5

These two commands must not be separated, because none of them
solves the problem by itself. To express this requirement we
enclose them by special brackets "begin" and "end". The command
which is a result of enclosing several command by these brackets

is called a compound statement. Consequently,

begin A := 5; B := 5 end (6)
is a solution of (1), too.
Now we can ask: Can the value of A be changed independently of
B. (i.e., neither to B nor simultaneously with the change of B)?
The answer is yes. The value of A can be increased by 1,
because the relation

(A < B) => (A + 1 <= B}
holds for integers. Consequently, after the assignment
A=A+ 1 {7)

the relation A <= B will be true. Thus, (7) is another solution of
(1). This example illustrates the assignment statement with the
same variable on both sides of the assignment sign.

If the relation A < B still holds after the execution of (7),
the command can be repeated. The number of repetitions depends on
the validity of the relation. It allows us to introduce the notion
of a loop

while A < B do A := A 4+ 1 (8)
Since the validity of A < B is implied directly from the
precondition, the loop body is executed at least once. This means
that it is reasonable to execute the loop body A := A + 1 first
and then ask if the equality A = B was achieved.

The next loop

repeat A := A + 1 until A =B (9)

will be executed that way.

Even when there are other interesting sclutions of (1), let us

solve the reverse problem

{ A K=B}
i (16)
{f A < B)

One can easily find its next solution
A :=A-1 (11)
But there is no reason for subtraction, if the relation A < B holds
for the initial values of A and B. Thus, the precondition can be
partitioned into two cases:

(A < B) or (A = B).

The first case can be solved using a dummy command and the second one

by (11). The switch is made in the conditional statement

if A=pB then A := A-1 else dumny (12)

which can be also written in the shortened form

if A =B then A := A-1 (13)

In this way we have introduced the main control structures of

the programming language Pascal.

=z T o=

3. Programming techniques

. A S ot by ——— i —

The ideas of structured programming are aimed at the construction
of large programs. However, their advantages can also be presented
at the construction of small programs. In this section, we use
those ideas to illustrate the connection between the idea of an

algorithm and its expression by commands.

3.1 Direct programming

e — — e T — -

If the problem is simple or its solution is known, it can be
programmed directly. To illustrate this notion, let us consider

the following simple problem:

{ A>B}
U (14)
{ A<D}

One can propose a direct solution: “"Decrease the value of A
by as much as it is less than B". From the many possible

realizations we have chosen
A :=8 ~1 (15)

as an example.

g N e

3.2 Reformulation of a problem

If you are not able to solve a problem directly, you can try
another technique ~ the reformulation. The reformulation does not
solve the problem; it only produces another version of it (which
ought to be more suitable for programming)}.

A reformulation of the problem (14) is

{A>B}
u' (16)
{B>A}
which offers the new idea: "Exchange the original values of A

and B". Thus, the problem

{f A= a, B = b}
u'r {17)
{ A="5b, B= a}

describes a partial subproblem of (l14). This well-known problem has
many possible solutions. The most common of them can also be used

for the introduction of the notion of the auxiliary variable:

begin AU

X = A;
A := B; {18)
B := AUX

end

Note that any solution of (17) also solves problem (14), but the
opposite assertion is not necessarily true., The algorithm (15) does

not soclve (17).

= 12 =

3.3 The partitioning of a problem

S e et e S T S Sy S (B o . S S ey oy

The following problem
f A>B1}
v (19)
{ A<=B1}
will be used in this section as an illustration of the basic idea
of structured programming - the partitioning of a problem.

This approach to solving a problem is based on splitting the
Problem into several subproblems which are "easier to solve" in
some sense.For example, in the above problem (19) we notice that
the precondition of (19) is the same as the precondition of (14).
Because that problem has been solved, it is reasonable to propose
its solution as the first part of a solution of problem (19). Thus,
the problem can be reformulated to the following form

{A>B}
begin U;

{ A<B} (28)
Vl

where U is an algorithm solving (14) and
V' is an algorithm solving the rest of problenm,

i.e., the subproblem
{A<B}

V! (21}
{f A <=B1}

13.

But the latter problem is identical with problem (1), i.e., the

algorithm

V = begin U; § end (22)

where U is a solution of (14} and
5 is a solution of (1)

solves the problem (19}.

- 14 -

4. Systematic improvement of programs

AL S e . —— ————— T e T ———— . i il S Mk

In this section we present systematic stepwise improvement
of programs as the main idea to be used in the construction of
real programs. Most textbooks prefer to explain the idea by means
of problems unknown to students (sorting, numerical analysis etc.)
In such cases students are not able to distinguish betﬁeen new
pieces of information connected with this particular problem and
information typical of programming itself.

For that reason, the problem of multiplication of
non-negative integers has been chosen. The purpose of
multiplication, its properties and the need for finding a fast
algorithm are known to students. Thus, what is new is that it is

3
an algorithmic view of the problem and its solution.

4.1 Fundamental algorithm

—— e ——— — — L i e i . e ————

The problem of multiplication is formulated as follows:

[X>=0, Y >= 0}
MULT {23)
{ PRODUCT = X * Y }

where X * Y is an abbreviation for

Y+ Y+Y+ .,..+Y
\ —

X times

- 15 -

Our first task will be finding an arbitrary algorithm which
solves (23). This means that the proof of the existence of the
multiplication algorithm is required. In addition, the algorithm
can be used as a basis for the subsequent construction of other
algorithms and for the compariscn of their effectiveness,

Assuming that we do not know of any multiplication algorithm,
vwe can follow the natural idea:

It is easy to multiply Y by some small integer M, say, by

g, lr 2, LI N O
but not by an arbitrary value of X, Accordingly, let us split the
process of multiplication into two parts: the first will realize
the multiplication by 1 and the second one will expand the
multiplication for X. It implies the requirement M <= X and the
following reformulation of the problem:
{ X>=0, Y>=0}
begin MULT?;
{ PRODUCT = I * ¥, 1 <= X } (24)
MULT'!
end
{ PRODUCT = X * Y }
The first subproblem MULT' has a simple solution
begin M := B; PRODUCT := 0§ end (25)
Then, we will reformulate the subproblem MULT'' as
{ PRODUCT = 4 * Y, M <= X }
muLT?! (26)
{ PRODUCT = M * ¥, M = X }
to obtain the similar structure of its pre- and post- conditions.

In this form it is easier to see what should be done: To increase

- 16 =
the value of M in such a manner that the equality PRODUCT = M*Y
holds. Thus, the solution has the form
while 11 <> X do NULT''!' (27)

vhere MULT'*' is an algorithm increasing M and preserving the
equality., The problem MULT''' can be formulated as follows
{ PRODUCT = M * ¥, M < X }

MoLT''? (28}
{ PRODUCT = M * ¥, M <= X }

with the solutiocn

begin M := N + 1;
PRODUCT := PRODUCT + Y (29)
end

Completing the partial solutions we obtain the algorithm for

multiplication by sequential addition

begin M := @; PRODUCT := 0;
while M <> X do begin M := M + 1;
PRODUCT := PRODUCT + Y (30
end
end

Mote that the condition
{ PRODUCT = If * ¥, M <= X }
holds after the execution of MULT' as well as MULT''', i.e., before
the entrance to the loop and after every execution of its body.

A condition with this property is called the loop invariant.

4.2 Modifications of the fundamental algorithm and the theory

St e e o o S oy i e o oy St i Sk S S e S et e i e e e gt A . T S T W S A o o S St e S M et et e G S e St

Algorithm (38) needs 2*X additions for one multiplication,
i.e., it is slow even for small numbers. Qur ambition will be to
improve it.

To decrease the number of additions one may want to increase
the increment by which the partial product within the loop is

changed. The first modification of (38) will use the increment 2*Y:

begin 1 := 0; PRODUCT := 0; INCREMENT := Y + Y; (31)
while M <> X do begin M := M + 2;
PRODUCT := PRODUCT + INCREMENT
end

end

This algorithm computes the product for even X's faster than
(30) does, but for odd X's its computation never terminates.

An algorithm that computes the right results for some initial
values, bﬁt does not terminates for the others, is called the
partially correct one, '

Changing of the loop condition into

while M < X do ...
guarantees the termination, but not the right results for odd X's.
An algorithm that terminates its execution for any initial

values satisfying the precondition is called the terminating

algorithm.

v B

A correct algorithm must be terminating and partially correct
{(in that case it terminates and gives correct results for any
allowed initial values).

The following algorithm which contains "the correction” of
the product obtained in the first loop is correct and

approximately twice as fast as algorithm (30):

begin M := @; PRODUCT := 0; INCREMENT := Y + ¥;

vhile M < X do begin Il := 1 + 2;
PRODUCT := PRODUCT + INCREMENT

end;
(32)

if ¥ > X then begin M := M ~ 1;
PRODUCT := PRODUCT - Y

end
end
The point of the previous example is that a small change in

the algorithm (say, a misprint) can considerably change algorithm's

behavior, i.e., the behavior of algorithms is discontinuous.

- 19 -

4.3 Further improvement of the algorithm and its computational

T R L S S S e e e e S S L) S e ey) Bk e S e T S s e A T S e S 7ot 0 o e

By similar means we are able to construct the algorithms with
increments 3*Y, 4*Y, etc., respectively. The larger the constant N
in N*Y the better performance of the algorithm for large numbers,
but the worse performance for small numbers,

Consequently, we need the algorithm with smaller increments
for small numbers and greater increments for large numbers, i.e.,
the algorithm with non-constant increments of product.

In the simplest case the increment will change with the
arithmetic progression

Y, 2%y, 3%y, ..., N*Y, ...
The next algorithm computes the product in this way

begin 11 :=

; PRODUCT := 0;
N i I

0
1 NCREMENT := Y;

while M < X do begin M := M + N;

PRODUCT := PRODUCT + INCREMENT;

N := N + 1;
INCREMENT := INCREMENT + Y
end;
(33)
while M > X do begin M := ¥ - 1;
PRODUCT := PRODUCT - ¥
end

end

The evaluation of the first loop ends for the least value of

N for which

1 +2+ 3+ ...+ N > X%.

The corresponding quadratic inequality g¢gives an approximate

solution
M = sgrt(2*X).

The execution of the second loop is repeated -1 times in
the worst case and approximately /2 times in the average case.

Accordingly, the algorithm (33) needs

A*N + 2*%(N-1) <= 6 * sqrt(2*X) <= 9 * gqgrt(¥X)
additions and subtractions in the worst case and

4*N + 2*(N/2) <= 5 * sqrt(2*X) <= 7.5 * sqrt(X)

additions and subtractions in the average case.

Both of the above functions express the relationship between
the size of input data and the time necessary for computation.
The function with this property is called the time computational
complexity.

During the correction phase (i.e., inside the second loop)
just the value

Y or 2*Y or 3*Y or ... or (MN-1l}*Y

will be subtracted from PRODUCT, depending on the difference M-X%
after termination of the first loop. Each of them was computed
during the first loop as a value of an increment. Consequently,

if we store the values of increments in the array, the second loop

can be replaced by the conditional statement

g 1

begin M := P; PRODUCT := §;
N := 1; INCREMENT{l] := Y;
(34)
while M < X do begin M := M + N;

PRODUCT := PRODUCT + INCREMENT|[N];
N =N+ 1;
INCREMENT{N] := INCREMENT{N-1] + Y
end;
if M > X then PRODUCT := PRODUCT - INCREMENT [M~X]

end

The length of the array INCREMENT is to be sqrt(2*X).

The function which expresses the relationship between the
size of input data and the necessary capacity of memory space is
called the computation space complexity.

The algorithm (34) is interesting alsoc for another reason.
The corrections are supposed to be of the same duration. In fact,
this is possible only if the time for finding any member of the
array is the same. This assumption is true only for random access

memory.

R

4.4 The advanced algorithms

Improvement of the present algorithms was achieved by using
the arithmetic progression for computing increments. The use of
the geometric progression in the next algorithm paves the way for
obtaining further improvement.

begin M := §; PRODUCT := §;
i I =

N :=1 NCREMENT := Y;

-

while M < X do begin M := M + N;
PRODUCT := PRODUCT + INCREMENT;
N := N + H;
INCREMENT := INCREMENT 4+ INCREMENT
end;
while M > X do begin M := M - 1;
PRODUCT := PRODUCT -~ Y (35}
end

end

Since the first loop ends when
1 +2+44+8+ ...+ 27t >= ¥
{where t is approximately lg{(X), the logarithm based 2 of X) the
first loop in (35) is faster than the first loop in (33) and (34).

Unfortunately, the last member of the product is
27t ¥ ¥ = 2%(1lg X) * X =X * Y

i.e., we can "overshoot"” by as much as X-1. Therefore in the worst
case the second loop simulates the fundamental algorithm (38) (from
the opposite direction).

Thus, the radical change of the correction phase is needed.

In fact we can also use geometric progression for the correction

- 23 =

of I. Obviously, there is a new possibility of shooting M over X
(in the opposite direction, i.e., before X). That is why in the
next algorithm M swings around X like a pendulum until it stops
stops on the right value., The similarity of actions can also be

observed from the form of the algorithm.

begin M := §; PRODUCT := 0;
while M <> ¥ do
begin N := 1; INCREMENT := Y;

while M < X do

begin M := M + N;
PRODUCT := PRODUCT + INCREMENT;
N := N + N;
INCREMENT := INCREMENT + INCREMENT
end;
(36)
N := =1; DECREMENT := -Y;

while M > X do
begin M := M + N;
PRODUCT := PRODUCT + DECREMENT;
N := N + N;

DECREMENT := DECREMENT + DECREMENT

end
end

end

The number of additions used for multiplication is a lineaf

function of 1g(X) 2. It implies that this algorithm is faster than

any previous algorithm (except for a few small numbers).

But we need not allow M to overshoot X. Should M overshoot X,

we will start the generation of the progression from 1 again.

This is the main idea of the next algorithm.

- 24 -

begin I1 := B8; PRODUCT := (;
N := 1; INCREMENT := Y;
while M <> X do
if ¥ + N <= ¥ then
begin M := M + N;
PRODUCT := PRODUCT + INCREMENT:
N := N + N;

INCREMENT := INCREUIMENT + INCREMENT

end
(37)
else

begin N := 1;
INCREMENT

N
=]

end
end

Not only is the notation of (37) shorter than the notation of
(36), but the same relation is valid for their computation time.
In algorithm (37) we do not waste time computing redundant
arithmetic operations caused by overshooting. The improvement
represents a small factor and the computational complexities of
both previous algorithms are within the same range lg(X)“ 2.

We notice a drawback of the last algorithm. The computation
uses a large number of small increments, but only a few large
ones. Better usage of large increments could be a means of further
improvement.

The values of large increments are computed through the
smaller ones, Consequently, if we prefer the larger increments
in the computation of the product, all the increments have to be
evaluated before the computation of the product starts. During
the computation we will always use the largest increment as many
times as possible. Only if it could cause an overshooting, will

we start adding the next smaller one.

-

- 25 =

This idea is presented by algorithm (38).

begin M PRODUCT := G;
i

t= 0
1= 1
Nli

I ~e =a

]

1; INCREMENT[i] := Y;

while M{i] < X do
begin i := 1 + 1;
NM[i] := W[i-1] + H[i-1};
INCREMENT([i] := IMNCREMENT[i-l] 4+ INCREMENT{i-1]
end;

while I <> X do (38)
begin
while (M + HN[i]) <= X do
begin M := M + N[i};
PRODUCT := PRODUCT + INCREMENTI[i]
end
i =1 -

=t we

end

end

The first loop computes the increments and stores them
(together with the information about the number of ¥'s in the
i-th increment). The second loop computes the product in the
manner discussed above,

It can be shown that in this particular case the inner loop
(i.e., the one inside the second loop) is repeated at most once.
Accordingly, it can be replaced by the conditional statement

if (M + N[i]) <= X then
begin I := M + N[i]; (39)

PRODUCT := PRODUCT + INCREMENT[i]
end

This version of algorithm (38) is used in computers for the
hardvare integer multiplication. Surprisingly, this algorithm was
not developed for computers. Its oldest form is written on Rhind's

papyrus dated 1868 B.C.

e e Pl g

- 25 -

5. Conclusion

The last example shows that the ideas presented here are very
old and that a process similar to the one discussed had to be made
at least four thousands years ago. But it is also the fact that
many of these ideas had been forgotten and (for example)
multiplication has been taught through drill.

The author likes the presented ideas because he prefers
thinking to drill. Unfortunately, there are many teachers who
prefer drill to thinking and start teaching programming with the
syntax of a programming language or (even worse)} explaining
principles of computer construction. They should note one
argument: Programming as a problem solving activity existed many
years before computers {(though it had no name) and it has been
only reinforced by the technological advancement. On the other.
hand there are also many examples that show that technology has
adopted ideas of programming.

A reader can also object that our method is too formal and,
conseqguently, oriented to students with highly developed
mathematical reasoning ability. In our opinion programming and
mathematics are both formal disciplines., A reader who does not
believe this is asked to read Section 4.2 once more. It shows
that small changes in programs have big consequences {often
financial ones, too).

Thus, all future programmers must be prepared to use formal

reasoning. Of course, the level of formalization can be a

- 27 =

matter of discussion and it will probably differ depending on
the student's age and specialization. From this point of view
the last objection is not the issue. It ié rather a call for the
development of similar methods oriented to the other groups of
students.

Fortunately, publications espousing this or similar approach

have begun to appear. Some of them are mentioned in the lost of

references.

e e

6. References

1. H. Abelson, A. di Sessa: Turtle geometry, MIT Press, Cambridge,
Ha,, 1981

2. B. W, bijkstra: A discipline of programming, Prentice-Hall,
Englewood Cliffs, N. J., 1976

3. A. P, Crshow: Programming - the second literacy,
3rd 'orld Conference Computers in Education,
North Holland, Amsterdam, 1981

4, A, P. Ershow, G. A, Zvenigorodsky, Yu, A. Pervin: School
informatics, Report 152, Computing Center of
Siberian Division Academy of Sciences of the
U.5.5.R, Novosibirsk, 19878 (in Russian)

5. D. Gries: What should we teach in an introductory programming
course, Proceedings of 5th SIGCSE Symposium,
Detroit, 1974

6. P. Grogono, S. H., Melson: Problem solving and computer
pregramming, Addison-Wesley, Reading, Ma., 1982

7. J. Hvorecky, J. Kelemen: Algoritmizacia - elementarny uvod,
Alfa Publishers, Bratislava, 1983 (in Slovak)

8. L. J. Chmura, H. F. Ledgard: Cobol with style: Programming
proverbs, Hayden book company, Rochelle Park,
M.Jd., 1976

9. H, W. Lawson: Understanding computer systems, Computer Science
Press, Rockville, ld., 1982

10, H. F. Ledgard, L., J. Chmura: Fortran with style: Programming
proverbs, Hayden book company, Rochelle Park,
N.J., 1978

11. BH. F. Ledgard, P, Nagin, J. F. Hueras: Pascal with style:
Programming proverbs, Hayden book company,
Rochelle Park, N.J., 1979

12. H. F. Ledgard, A, Singer: Elementary Pascal, Random House, New
York, 1982

13, P. Nagin, H. F. Ledgard: Basic with style: Programming
proverbs, Hayden book company, Rochelle Park,
N.J., 1978 .

14,

15,

l6.

17.

18.

R.

K.

M.

]

Papert: Mindstorms, Basic Books, New York, 1980

Pattis: Karel the Robot, John Wiley, Mew York, 1981

W. Smillie: A service course in computing science presented
from a historical point of view, SIGCSE

Bulletin, Vol. 13, No. 2, June 1981

Wirth: Systematic programming. An introduction,
Prentice-Hall, Englewood Cliffs, N.

Wirth: Algorithms + Data structures = Programs,
Prentice-Hall, Englewocod Cliffs, N.

J., 1973

J., 1976

