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Abstract

A maximal outerplane graph (mop) is a plane embedding of a
graph in which all vertices lie on the exterior face, and
the addition of an edge between any two vertices would
destroy this outerplanarity property. Removing the edges of
the exterior face of a2 mop G results in the interior graph
of G. We give a necssary and sufficient condition for a
graph to be the interior graph of some mop.
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With a plane embedding G of a planar graph there is associated

its geometric dual graph G*, in which the vertex set corresponds

to faces of G and vertex adjacency is equivalent to adjacency of
the corresponding faces. Removing from G* the vertex v
corresponding to the exterior (unbounded) face of G results in
the weak dual graph Gw. Splitting v into the number of copies
equal to the size of the exterior face of G so that each copy 1is
adjacent to exactly one edge corresponding to an edge of the

exterior face results in the semidual graph Gs. Figure 1 gives

an example of a graph G and its dual graphs. To avoid confusion,
we will refer to members of the vertex set of (geometric, weak,

semi-)} dual graphs as nodes.

A planar graph G is outerplanar if and only if there 1is an
embedding of G in the plare in which every vertex of G lies on
the exterior face. This embedding is called an outerplane graph.

A maximal outerplane graph <{(hereafter called mop) 1is an

outerplane graph with the maximum number of edges, 1i.e., such
that addition of an edge between any pair of vertices destroys
outerplanarity. Removing the edges in the exterior face of a mop
G results in a number of isolated vertices and the connected

interior graph of G, Gi.
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Figure 1 A mop G, its dual graphs, and its interior graph.

The weak dual graph of an outerplane graph {see Fleischner et
al., [2]) is a tree called the associated tree of the graph

(Proskurowski and Syslo [6]). A 3-regular tree has vertices of

degree 3 and 1 only. For mops we have the following lemma.

Lemma 1 A graph G is a mop iff the semidual graph Gs 1is a
J~regular tree.

Proof (->) It is easy to see that a 3-regular tree has an even
number of nodes. Therefore, assume that for all m, 2 {m < k,
every 3-regular tree with 2m nodes is the associated tree of a
mop. (It is true for m=2, where G is a K3 and Gs is K13.) Let T
be a 3~repgular tree with 2k vertices. It has a node v of degree
3 adjacent to two leaves (nodes of degree 2) vl and v2. Removal

of these two nodes results in a 3-~regular tree T” which, by the
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inductive hypothesis, 1is a semidual of some mop H®. Let us
define a mop H by adding to H” a vertex w and two edges incident
to it which form a triangular face corresponding to the node v.
Edges (v,vl) and (v,v2) in T correspond to edges incident with w.
Thus, T is the semidual graph of the mop H.

(<~} Every interior face of a mop is a triangle and thus

the internal nodes of the weak dual graph have all degree 3. (]

Removing the leaf nodes from the semidual graph of a wmop G
results in a cycleless connected graph which we will call the
associated tree Ti of the interior graph Gi of G; Ti 1is

isomorphic with the weak dual graph Gw.

Lemma 2 A tree T is the associated tree of the interior graph
of some mop if and only if nodes of T have degree at most 3.

Proof Sufficiency is obvious. To prove the necessity of the
condition we extend the given tree T with node degree at most 3
to a 3-regular tree T” by adding leaf nodes adjacent to all
vertices of degree less than 3. By Lemma 1, T" is a semidual of
a mop G. It follows from the definition that the associated tree

of the interior graph Gi is isomorphic to T. [}

We observe that the the above extension procedure wmay yield
trees non-isomorphic as plane trees and therefore associated with

dif ferent mops as their semidual graphs.
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2. A further characterization of interior graphs of mops

One subclass of interior graphs of mops is a special subclass

of trees called caterpillars. A tree is a caterpillar if and

only if removal of its end-nodes (leaves) results in a path.
From our discussion of trees associated with interior graphs of

mops we have the following property of caterpillars,

Lemma 3 Every caterpillar is the interior graph of some mop.

Proof With a caterpillar C we can associate a path P with the
same number of edges such that each edpe of P crosses exactly one
edge of C (see Figure 2). P is a tree with nodes of degree less
than 3 and thus, by Lemma 2, it is the assoclated tree of the

interior graph of some mop G. []

Figure 2 A caterpillar C, the path P, and the wmop G.

Figure 2 illustrates the construction of the path P and the
corresponding wmop G. We observe that many non—~isomorphic mops
may have the same path P associated with their interior graphs.

Only a caterpillar can be the interior graph of a mop if this
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interior graph is a tree.

Lemma 4 If the interior graph of a wmop is a tree, then it is a
caterpillar.

Proof Let us assume to the contrary, that the interior graph
of a mop G is a tree and not a caterpillar. By a
characterization of caterpillars of Harary and Schwank [3], T
must contain the subdivision graph S(K13) (see Figure 3a) as an
induced subgraph. Without loss of generality, we can represent
the vertices of S(KL3) on the Hamiltonian cycle of G as in Figure
3b. Since every interior face of a mop is 2 triangle, there must
exist a vertex x on the arc of the Namiltonian cycle of G between
vl and w2 not containing u which is adjacent to both u and v2,.
But the triangle {u, %, v2} consists of interior edges of G which
contradicts the assumption that the interior graph of G is a

tree. []

We have thus obtained an additional characterization of

caterpillars,

Theorem 1. A tree is a caterpillar if and only if it 1is the

interior graph of some maximal outerplanar graph.
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Figure 3 (a) The subdivision graph ${(K13) and (b) the interior

graph of a mop G.

Another subclass of interior graphs of mops are the mops

themselves.

Lemma > Every mop is the interior graph of some mop.

Proof By Lemma 2, the semidual graph T of a given mop G (T is
a tree by Lemma 1) can be extended to a 3-regular tree by adding
two pendant edges to each leaf node of T. This new tree
determines (uniquely, if considered a plane tree) a mop H, for

which G is the interior graph. []

In fact, mops and caterpillars are the building blocks of any
graph which is the interior graph a mop. We can see it directly
from the associated tree of the interior graph of a mop, which
can be partitioned into 3-regular trees and paths by appropriate
splitting of some vertices of degree 2. First, we state relevant

properties of the associated tree of the interior graph of a mop.
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Lemma 6 Given the interior graph G of a mop H and its
associated tree T. The following properties holid.

(a) A node of degree 3 in T corresponds to an internal triangle
in G.

{b) Two adjacent edges in T correspond to adjacent edges in G.

(c) All edges of a star in G correspond to edges of a path in T.

(d) To a path in T corresponds a subgraph of G (not necessarily
induced) which is a caterpillar.

{e) A node of degree 2 in T determines a cut-vertex in G.

Proof

(a) A node of degree 3 in T corresponds to a node with no
external mneighboers in the 3-regular semidual tree of the
original mop. Thus, in the original mop, it corresponds toe a
(triangular) face with no edges on the exterior face.

(b) The common end-node of two adjacent edges in T corresponds to
two sides of the triangle in H.

(e) Follows from the definition of the semidual graph of H.

(d) Nodes of degree 2 in T, extended to nodes of degree 3 in the
semidual graph of H correspond to a path of triamgles in H (a
2-path, see Beineke and Pippert {1]). The edges of the path P
correspond to edges of H shared by the adjacent faces
(triangles) in the 2-path. These edges form a caterpillar
(see Hedetniemi [4] and Proskurowski [5]).

(e) A node u of degree 2 in T determines an edge, c, on the
exterior face of H (see Figure 1}. That edge, together with
the two edges of G, say a and b, corresponding to the edges of

T incident with u form a triangle. The vertex of H incident
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to both a and b is a cut-vertex of H-{c}, and therefore also

of G. {1

Lemma 7 Let G be the interior graph of a mop. Then every
2-connected component of G is a mop, and the remaining connected
components of G are caterpillars.

Proof Let T be the associated tree of the interior graph G of
a mop. By Lemma 6, every node of degree 3 in T corresponds to an
internal triangle in G, and every node of degree 2 in T
determines a cut-vertex in G. Thus, splitting nodes of degree 2
adjacent to at least one node of degree 3 partitions T into
subtrees associated with 2-connected components of G and with

caterpillars of G. []

3. Sufficient conditions for interior graphs of mops

Not every collection of mops and caterpillars is the interior
graph of a mop. In this section, we develop concepts allowing us
to state the sufficient conditions for such a collection to be

the interior graph of some mop.

A nontrivial block of a grah G is a maximal 2-connected
subgraph of G containing more than one edge. By Lemma 7, all

nontrivial blocks of an interior graph G of a mop are mops.
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Let B be a nontrivial block of a graph G, B is saturated if
each of its vertices is a cut-vertex of G. For a vertex u of B,
the attached set is the set of vertices of G that can be reached

from u by a path not including any other vertex of R.

Theorem 2 If G is the interior graph of a mop then for every
cut-vertex v of G the number of saturated blocks containing v is
at most 2.

Proof Let us assume that G is the interior graph of a mop and
that v is one of its cut-vertices. Let T be the associated tree
of G. By Lemma 6(c), the edges of T which correspond to E, the
set of edges of G incident with v, form a path P in T. Let Ei
(1£i<k)} denote the edges of E in the block Bi of G incident with
v. Let the sets {Ei} be ordered according to the clockwise order
of blocks Bi arcund v (see Figure 4). The edges of T which
correspond to Ei form a subpath Pi of P. In T, the internal
nodes of Pi have degree 3, and the end-nodes degree at most 2.
Thus, P can be decomposed into Pl,...,Pk, which share their
corresponding end-nodes. For every block Bi (2<i<k-1) there is
the corresponding subtree Ti of T for whichk Pi is a subgraph. If
Bi is an edge then Ti=Pi. If Bi is a block with ki>2 vertices,
then Ti has ki leaves (nodes of degree at most 2 in T), 2 of
which are the end-nodes of Pi. Only ki-2 of these leaf nodes may
be shared by the subtrees of T corresponding to attached sets of
vertices of Bi. Hence, out of ki-l vertices of Bi other than v,
at least one vertex does not have an attached set and thus is not

a cut-vertex. Therefore, Bi (2<i<k-1l) is not saturated and there



Page 11

are at most 2 saturated blocks containing v. {1

Figure 4 The anatomy of the interior graph of a mop.

Theorem 2 gives a necessary local condition for a graph to be
the interior graph of a mop. Figure 5 shows a graph that
satisfies the theorem but will be shown not to be the interior
graph of any mop. A more global property of a graph necessary
for its being the interior graph of a mop 1is based on the
relative location of saturated cut-vertices along the hamiltonian
cycle of any mop block of the graph. A cut-vertex v of a graph G
two other than B blocks of G containing v which are saturated.
(Notice that this implies that B itself is not saturated. In a
saturated mop block of G, every exterior edge of that block 1is
necessary to 1interact with attached sets of the vertices of the
block. Moreover, only one of the edges incident with a given

cut-vertex can be used to interact with 211 the other blocks
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containing that vertex.) A saturated vertex of a mop block needs
both of its incident exterior edges of that mop to interact with
the two adjacent saturated blocks, Therefore, saturated vertices
of a mop must be distributed relatively sparsely along its
Hamiltonian cycle or else they put conflicting demands on the
incident edges of the cycle., The following procedure determines
feasibility of location of saturated vertices in a given mop

block of a graph.

Algorithm ! Feasibility checking

Input: A mop block B of a candidate G for the interior graph
of a mop.

Output: Labeling of B"s edges indicating feasibility of B as
a block of the interior graph G of a mop.

Method:

{1.} With each vertex v of B associate an integer k{v),
0<k(v)<2, 1indicating how many edges of B incident with v
are needed to interact with other blocks of G containing
v. These values are:
k(v):=0 if v is not a cut-vertex;
1 if v 15 not saturated in B;
2 if v 1s saturated in B;
{2.} With each exterior edge e of B associate an integer
m{e), 0<m(e)<2, using values of k(v) in the following
manner :
{initialize} for each edge e of B do m{e):=0;
{iterate } while for no edge e m(e)>l and one of
the following operations can be applied dg
for each vertex v of B s.t. k{v)=2 do
k(v):=0;
for each exterior edge e incident
with v do m(e) :=m(el)+1;
for each vertex v of B s.t. k(v)=l and
only one edge e incident with v has m(e)=0
do k{v):=0; m(e):=1;
{exception} for each vertex v of B s.t. k(v)=1 do
{the following l-1 correspondence
always exists}
choose one exterior edge e incident
to v, not chosen for another vertex;
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k{v}:=0; mle):=m(e)+l;
{check } if for no edge e m{e}>l
then B feasible
else B not feasible

Figure 5 Result of applying Algorithm l to a graph.

Theorem 3 A graph G is the interior graph of a mop only if G
is a connected collection of mops and caterpillars and every mop
block B of G is feasible.

Proof In the case of a successful termination of Algorithm 1
("B feasible™), the values of all vertex labels are distributed
into the edge labels, so that in block B, k{v)=0 for all vertices
v and m{e)<l for all exterior edges e. We will show that a mop
block B of the interior graph G of some mop 1s feasible by
defining a 1labeling process inverse to that of Algorithm 1.
After initial labeling of all exterior edges e of B by m™(e)=l,
we will distribute those values into vertex labels, k“(v), based
on inspection of the tree T associated with G. We initialize
values of k“(v) to 0 for every vertex v of B. For every node u

of degree 2 in T which corresponds to a cut~vertex v of B (see
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Lemma 6(e} and Figure 1) we do the following. The value
associated with the edge a of B incident with v and corresponding
to an edge of T incident with u (edge a in Figure 1) is added to
the label of wvertex v, and the 1label of a decremented,
k“(v),m"(a):=k"(v)+l,m"(a)-1. Notice that there may be at most
two such nodes u corresponding to the same vertex v. There are
exactly two such nodes when v is saturated in B; it then ends up
with the label k“(v}=2. 1If v is not saturated in B, then k" (v)<2
if v is a cut-vertex, and k“(v)=0 otherwise, The demands of
cut-vertices of B represented by labeling k° are at least as
severe as those represented by 1labeling k and still will be
classified by  Algorithm 1 as  feasible. Thus, B is

feasible. (]

Feasibility of a mop block B of a purported interior graph G
may not be encugh for the graph to be the interior graph of a mop
(see graph in Figure 6). The actual '"edge requirements" of a
cut-vertex v in such a block (in the sense of Algorithm 1) may be
equal to 2 even if v is not saturated. This is because the path
in the associated tree of G corresponding to a star in G centered
in v may "pass through" B and thus contain two (rather than one)
edges corresponding to exterior edges of B incident with v. 1In
such a case, the label k“(v) in the inverse of the feasibility
checking algorithm (proeof of Theorem 3) will take value 2. We

observe that this applies to all but two mop blocks of G

containing v.
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Figure 6 A graph G with feasible mop blocks and no feasible edge

requirement

Let us define edge reguirement function k{(v,B) for all

vertices v of a mop block B in a graph G to be a labeling of
vertices with integers 0, 1, and 2 subject to following
constraints.
k(v,B)= 0 if v is not a cut-vertex

2 if v is saturated in B

1 or 2 otherwise.
For a cut-vertex v of a mop block B, we extend the edge
requirement function to all non-mop blocks B” containing v, by

defining k(v,B")=1 if B” is saturated, and k{v,B")=2 otherwise.

Let us call an edge requirement function k for vertices of a
graph G which consists of mop and caterpillar blocks feasible iff

(i) for every mop block B of G, B 1is found feasible by
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Algorithm 1 when vertices of B are initially labeled with values
k(v,B);
(i1) for every cut-vertex v, k{v,B)=l in at most two blocks

B of G containing v.

The above discussion and Theorem 3 allow us to state the
necessary and sufficient condition for a graph to be the interior

graph of a mop.

Theorem 4 A graph G is the interior graph of a mop if and only
if G is a connected collection of mops and caterpillars and has a
feasible edge requirement function.

Proof (Necessity follows from the proof of Theorem 3.) To
prove sufficiency, we will show that if every nontrivial (i.e.,
mop) block of the graph G is feasible according to the Algorithm
1 then, given feasible edge requirement k, G is the interior
graph of some mop. To this end, we show that there exists a tree
T of waximum degree 3 such that edges of G are in a one-to-one
correspondance with edges of T, and every node of degree 3 in T
corresponds to a triangle in G. Guided by the properties spelled
out in Lemma 6 we will be able to find a mop H for which G is the
interior graph. For every block B of G there is a tree
associated with it (when B is a caterpillar, then this tree is a
path). We now combine these trees intoc a tree T associated with

G in the following manner.
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It is sufficient to consider only cut-vertices of G which are
incident with at least one mop block. For each such vertex v, we
order linearly the blocks of G containing v, Bl,...,Bm, so that
no block B for which k(B,v)=1 has both preceding and succeding
blocks. For blecks Bi, 1<i<m, there are two unique leaf nodes of
the corresponding associated tree Ti with pendant edges
corresponding to exterior edges of Bi incident with v. (For an
edge Bi, the two nodes are end-nodes of the corresponding edge
Ti,) There are similar single nodes in Tl and Tm with pendant
edges corresponding to edges of Bl and Bm into which the values
of the label k(v,Bi) have been distributed by Algorithm 1 applied
to the initial labeling k{(uw,Bi) (i=1 and i=m). (For an edge Bi,
there either is a unique node, when k(v,Bi)=2, or two end-nodes,
when k{(v,Bi)=1.) We finally construct the tree T as a union of
all trees Ti, 1<£i<m, where the leaf nodes described above are
pairwise identified: one leaf of Ti is identified with a leaf of
T(i-1), and the other leaf of Ti is identified with a leaf of
T{i+l). Since this newly constructed tree T has degree at most
3, it is associated with the interior graph of some mop, by Lemma

2. By our construction, G is this interior graph. []

4. Complexity of finding feasible edge requirement

In the preceding section we have shown that the existence of a
feasible edge requirement function is a necessary and sufficient
condition for a given collection of mop and caterpillar blocks to

be the interior graph of some mop. We now briefly discuss the
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complexity of checking whether such a function exists.

Of primary importance in finding a feasible edge requirement
function 1is the fact that the blocks of the candidate graph are
connected in a tree-like fashion, i.e., removal of anyone but a
pendant block disconnects some of the remaining blocks. This
leads to a situation in which, once a tentative labeling of
vertices of a block {assignment of function values) is made, it
can "spread" independently into the subtrees of blocks. Let us
define an interval of cut vertices of a mop block to be a maximal
path spanned on such vertices along the Hamiltonian cycle of the
mop, either separated from other vertices on the cycle by non-cut
vertices, or containing all the vertices of the (saturated)
block. Additional simplification of the tentative labeling
process follows from the independence of labeling different
intervals of cut-vertices of a mop block. We will now consider a
process of tentative labeling of a single connected component of
intervals of cut vertices, possibly sharing vertices with some

non-mop blocks, ec.f. Figure 7.
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Figure 7 Collection of connected intervals of cut vertices (o =~

cut vertices, x - non-cut vertices).

Because of the availability of exterior edges incident with
vertices of an interval (at most one more than the number of
vertices in the intervall}, no vertex v of a saturated B mop can
have assigned value k{v,B)=2, and for any other interval, only
one vertex can have assigned value 2., Similarly, no vertex v can
have k(v,B)=l for more than two blocks B incident with it. One
needs also consider edge requirement of such vertices in non—mop

blocks, but those are uniquely determined, see the definition.

Since an interval identifies uniquely the mop block to which
it belongs, in the following we will implicitely make use of this
identification. Below, we present an algorithm assigning values
of the edge requirement fumction to vertices of connected

intervals of cut vertices. The structure of the interval
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adjacencies is  rree~like, and thus the algorithm can be
implemented efficiently utilizing, for instance, the depth first

search of the tree.

Algorithm 2 Finding feasible edge requirement
Input: A connected component of intervals of cut vertices
OQutput: A feasible edge requirement, if one exists,

Method:
{ initialize }
for every non-mop block B and every vertex v
shared by B and an interval do
ifB is saturated then k(v,B):=1 else k(v,B):=2;
for every vertex v of a saturated block B do k{v,B):=l;
for every interval i with a saturated vertex v do
begin let B be the block of the interval i; k(v,B}:=2;
for every vertex u=v of i do k(u,B):=1 end;
{ enforce the labeling }
while there is a vertex v with two blocks B such that k{v,B)=l
and contained block B in which it has not been labeled
do begin k(v,B):=2;
for every vertex u=v in i do k{u,B):=1 end
end;
{ if the labeling does not violate the constraints, it
now can be extended to a feasible edge requrement }
repeat
while there is a vertex v in interval 1 which has no value
assigned in its block B and for twe blocks B” k(v,B7)=1
do begin k{v,B):=2;
for every vertex u=v in i do k(u,B):=1 end

end;
choose a feasible labeling of vertices of any interval
still not labeled
until all vertices are labeled.

The correctness of the above algorithm follows from the Ffact
that, due to the forcible labeling in the while loop, a vertox v
for which no edge requirement has been set in block B is in non
more than one block B” in which k(v,B")=1. Thus, we can always

assign k(v,B) to 1l without violating the constraints.
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