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Abstract

The study of open irredundant sets of vertices in a graph
is of interest from both practical and theoretical perspectives.
On the one hand, such sets correspond to possible groups of
simultaneous senders in broadcast networks. On the other, their
maximum size represents a new parameter on graphs. Computing a
maximum irredundant set in an arbitrary graph is known to be
difficult. This motivates development of an efficient algorithm
on tree-structured graphs. Here, we present and prove correct
such an algorithm, emphasizing a development technique whereby a
general algorithm is specialized for the problem at hand, proven
correct, and then refined to reduce its complexity.

I, Introduction

In a broadcast network, messages are transferred between
communication sites by being transmitted over a common medium
(channel). One site is said to be in range of another site if
it can possibly receive the others site”s transmissiomns. A
message transmitted by one site is received by another site only
if that other site is in range and, at the same time, not
transmitting nor within range of another transmitting site. If
either of the secondary conditions hold, a transmission
collision occurs and no usable {(i.e., decipherable) message 1is
received.

According to these constraints, at any time during active
operation of a broadcast network N, each communication site can
be said to be in one of four possible states:



8 -- a sender, having at least one site in
range that receives its transmission;

T -=- an unsuccessful tramsmitter, having no site
in range not experiencing a collision;

R -- a receiver, being in range of a single sender;

D -- dormant, neither transmitting nor
successfully receiving.

A possible pnetwork state of a broadcast network is an
association of one state with each communication site in a
manner consistent with the above state definitions. A mnetwork
state represents a complete, instantaneous situation that could
occur during communication operatiomns in the network. The sites
that are in state § are referred to as senders; those in R are
receivers. Initial motivation for our study was to characterize
and compute maximum sets of senders in a given, arbitrary
broadcast network. The maximum number of sites in a2 sending set
represents an upper—bound on the message capacity of a broadcast
network, being the maximum number of different messages that can
ever be successfully transmitted simultaneously in the network.,

We model a broadcast network N by a simple, undirected
graph G = (V,E) consisting of a set V of vertices, representing
sites of N, and a set E of edges, each being an wunordered pair
of wvertices (uv) such that if (uv) is an edge of G then the
sites represented by uw and v are within range of each other in
N. Vertices u and v are adjacent iff (uv) is in E. Note we
assume that the in range relation is symmetric; this allows G
to be undirected.

A consistent labeling of G is an assignment of labels §, R,
T, and D to vertices of G that corresponds to the states of
related sites from a possible network state of N. A consistent
labeling directly represents that network state, A set of
vertices is a sending set iff there exists a consistent labeling
of G such that each vertex in the set is labeled S. Vertices of
a sending set represent sites that can simultaneously transfer
messages. Possible receivers of those messages are sites
represented by vertices adjacent to elements of the sending set.
The open peighborhood N{(v) of vertex v is the set of vertices
adjacent to v. The vertices in N(v) are called the neighbors of
v, The closed neighborhood N[v] of v is equal to N{(v) + {v},
formed by adding v to its open neighborhood. The composite open
neighborhood CN(U) of a set of vertices U is equal to the union
of the open neighborhoods of vertices in U; the composite
closed neighborhood CN[U] is defined analogously.




In looking for graph-theoretic notions related to sending
set, it 1is mnatural ¢to consider those that can be defined in
terms of the above neighborhood <concepts. Independent and
dominating sets are two well-known notions. An independent set
I is a set of vertices such that i1f u and v are in I then u is
not in N(v) (and vice versa). In other words, no two members of
I are neighbors. A dominating set D is a set of wvertices such
that CN[D] = Vv, the set of vertices of G. 1In other words, every
vertex of G is either in D or is a neighbor of a vertex in D. A
vertex im D 1is said to dominate itself and its neighbors.
Finally, a total dominating set TD is a set of vertices such
that CN(TD) = V, as defined in [2]. Every vertex of G is a
neighbor of, and thus dominated by, a member of TD. In [5] we
demonstrate that these vertex sets are not equivalent to sending
sets.

A recently introduced notion more closely corresponding to
that of sending set is the irredundant set [l1]. An irredundant
set IR is a set of vertices such that if v is in IR then N[v] -~
CN[IR-{v}] 1is not empty. The vertices in N[v] - CN[IR-{v}] are
called the private vertices of v. If we view a vertex in IR as
a member of a sending set, its private neighbors correspond to
receivers of its transmission. However, a vertex in IR may have
itself as sole private vertex, whereas each member of a sending
set must have at least one private neighbor. As such, we define
an open irredundant set OIR to be a set of vertices such that if
v is in OIR then N(v) - CN[OIR-{v}] 1is not empty. By this
definition, each vertex in OIR is guaranteed to have at least
one private neighbor, i.e., a neighbor that is not adjacent to
any other member of OIR. This slight change in the definition
of an irredundant set, now considering only the open
neighborhood of a member, has given us a new graph-theoretic
concept and one that is equivalent to our notion of sending set,
as proven in [5].

The maximum and minimum orders of maximal open irredundant
sets have been compared with those of maximal independent,
minimal domimating, and maximal irredundant sets. A maximal
open irredundant (independent, irredundant) set is such a set
not contained in any other such set. A minimal dominating set
is a dominating set such that no strict subset of its vertices
is also a dominating set. We define the parameters i(G) (I(G)),
d(6) (p(G)), 1ir(e¢) (IR(G)), and o0ir(G) (OIR(G)) to be the
minimum (maximum) orders of maximal independent, minimal
dominating, maximal irredundant, and maximal open irredundant
sets of G, respectively. Cockayne, Hedetniemi, and Miller [1]
note the following inequality sequence:

ir(G) <= d(G) <= i(G) <= I(G) <= D(G) <= IR(G).



Cockayne, Favaron, Payan, and Thomason [3] discuss further
relationships among these six parameters, describing a class of
graphs for which all of the parameter values differ (i.e., where
strictly less—than holds). We proved in [5] that OIR(G) is
related to this sequence of inequalities as follows:

d(G) <= 0IR(G) <= 1IR(G).

O0IR(G) is equal to the number of communication sites in a
largest sending set of a broadcast network corresponding to G.
This, in conjunction with the above discussion, motivates the
study of open irredundant sets and determination of the largest
of these sets for a given graph. In [4] Even, Goldreich and
Tong prove that the problem of determining the maximum order of
an open irredundant set in an arbitrary graph is computationally
difficult (NP-complete, see [9]). Such a result prompts search
for efficient algorithms that either determine an approximate
solution for an arbitrary graph or that determine an exact
solution for a restricted class of graphs. In the following, we
present results of pursuing the latter course, wherein we define
and prove correct an efficient, exact algorithm solving our
problem for trees (i.e., acyclic graphs).

2. An Efficient Algorithm for Trees

We present the development of a solution algorithm in a
manner illustrating a paradigm we have found particularly useful
for defining and verifying algorithms on trees. In recent
years, we have designed efficient algorithms on trees computing
parameters that for arbitrary graphs are known to be difficult
to determine [6,7,8]. As a result of this experience, we have
developed a paradigm for defining such algorithms in which a
general, bottom-up tree traversal is specialized with respect to
the problem at hand, the resultant algorithm is proved <correct,
and finally refined to reduce its complexity by taking advantage
of properties true of the particular parameter for trees. The
general algorithm on trees is as fellows:

General Tree Algorithm

Purpose:
To compute a2 pavameter of interest for a given,
arbitrary tree T.

Information Structures:
Let the current tree CT be T.
Associate with each vertex v of T a set of
state—-dependent variables
{spvi(v), ..., SDVk{(v)}.



Method:
Step 1.] {Process leaf vertices.}
Until only one vertex remains do
(i) Select leaf vertex v from CT.
(ii) Determine values for
SDV1(v), ..., SDVk(v).
(iii) Remove v from CT,
Step 2.] {Process final vertex.}
With v being the remaining vertex of CT do
(i) Determine values for
sbvl(v), ..., SDVk(v).
(ii) Determine the value of the parameter
of interest by considering
SDV1(v), ..., SDVk{(v).

At any time, the current tree CT is the as yet unprocessed
subtree of T, A leaf of CT is a vertex having only one neighbor
in CT. To specialize the general algorithm, a set of
state-dependent variables must be defined. We then nmust
indicate how their values are to be determined for a leaf as it
is processed (Step 1) and how the value of the parameter of
interest is determined from the state-dependent variables of the
last remaining vertex (Step 2).

We specialize the general algorithm for the problem of
computing the maximum order of an open irredundant set in the
following way. As each leaf v of CT is processed in Step 1, it
separates from CT a subtree Tv of previously processed vertices
of T. Vertex v can be in one of five states with respect to an
open irredundant set QIR in T:

IB -- in OIR, with a private neighbor in Tv;

IA -- in OIR, with a private neighbor not in Tv;

0B -- out of OIR, required as a private neighbor
of a vertex of OIR in Tv;

0C =-- out of OIR, as a neighbor {(not required as

private neighbor) of one or more
vertices of OIR in Tv;

ON -- out of OIR, not a neighbor of any vertex
of OIR in Tv.

Based on these states, we associate with each vertex v the
five state-dependent variables IB{(v), IA(v), 0B(v)}, o0c(v), and
ON(v). As vertex v is processed, each variable is assigned the
maximum order of an open irredundant set in Tv, given that v is
in the corresponding state. If v is a leaf of the original tree
T, IB(v) = 0B(v) = 0C(v) = ON(v) = 0 and IA(v) = 1. Otherwise,
the values of the state-dependent variables are determined in
terms of the values associated with the neighbors vl, ..., vk of
v in Tv as follows:



IB(v) = 1 + max [ON(vi) + E& max (IB(vj),0C{(vj),0oN(vi))]
IA(v) = 1 + :%. max (IB(vi),0C(vi),0oN(vi))

0B(v) = max [TACvi) + E; max (0B{vj),0C{vj),oN(vj))]
0C(v) = max [IB(vi) + E% max (IB(vj),0C{vj),0N(vi))]
ON(v) = 2> max (0B(vi),0C(vi),oN(vi)).

1

Finally, when considering the last vertex v (Step 2), the
maximum order of an open irredundant set in T is the maximum of
IB(v), 0B(v), 0C(v), and ON{(v).

Theorem 1. The General Tree Algorithm, specialized as
described above, computes the maximum order of an
open irredundant set for a given tree T,

Proof: The graph T-CT is a forest of trees Ti, that is
initially empty. Each Ti has a distinguished vertex wi adjacent
to a vertex in CT, being the last vertex of Ti removed from CT
in Step !. The invariant relation to be established for Step 1
is that each state-dependent variable value associated with the
wi 1s equal to the maximum order of an open irredundant set in
Ti, when wi is in the corresponding state. This 1is vacuously
true prior to execution of Step 1. As a vertex v is processed,
it is either a leaf of T or is adjacent to ©previously removed
vertices {vl, ..., vk} of the set of distinguished vertices. In
the first case, the assignment of values as indicated above is
obviously <correct, where IB(v)=0 indicates that v can not be a
private neighbor of a previously removed vertex as no such
vertex exists; as v is removed from CT, it is added to the set
of distinguished vertices. In the second case, each state of v
is possible in Tv only if the states of wvl, ..., vk are
constrained as indicated in the expressions given above, The
state of a wvertex directly 1limits the allowable states of
neighboring vertices only, as open irredundance is defined in
terms o0f (local) neighborhoods. The expressions given above
optimize over the selection of allowable states for neighbors
and thus determine the maximum orders of the corresponding open
irredundant sets in the mnewly processed subtree of T. The
vertices {vl, ..., vk} are removed from the set of distinguished
vertices while v is added to it {(as the distinguished vertex of
the newly created, processed subtree). Upon completion of Step
1, CT consists of a single vertex v with 1its neighbors
constituting the set of distinguished vertices. First, the
values for the state-dependent variables of v are computed. The
only impossible state for v is IA; the maximum order of an open
irredundant set for T is determined by taking the maximum of the
values associated with the other four states. []



Now that we have a correct solution algorithm, we can turn
our attention to refinements that <can reduce time and space
complexity while maintaining correctness. The transformations
we make for this problem are all based upon the following
property of open irredundant sets in an arbitrary graph.

Theorem 2. {Duality Property for Open Irredundant Sets}
Given an open irredundaat set OIR = {vl, ..., vk} of
vertices in a graph G such that each vertex vi has
private neighbors PN(vi), the set OIR” = {v1°, ..., vk~™}
such that each vi” is a member of PN(vi) is also an open
irredundant set of vertices in G.

Proof: From the definition of private neighbor, mo vertex
vi of OIR has a vertex vj” of OIR” as neighbor, for i#j. Hence,
in OIR” each vertex vi” has vi as a private neighbor. []

We refer to the action of forming a new open irredundant
set OIR" from a given open irredundant set OIR by selecting
private neighbors of vertices in OIR as a shift operation, since
each vertex in OIR is replaced by a neighbor. Note that OIR” is
of the same order as OIR, The Duality Property allows us to
establish the following relationships among the values of the
five state dependent variables.

Theorem 3. For a vertex v that has been processed in Step 1
of the specialized General Tree Algorithm,

(i) 0B(v) = 1IB(v);

(ii) oc(v) = ON(v);

(iii) IA(v) - 1 = ON(v);

(iv) oN(v) £ IB(v) < ON(v) + 1,

Proof: If v is a leaf of T, then the relationships all
hold. Otherwise, as v is processed, it is the root of subtree
Tv of processed vertices with processed neighbors vl1, ..., vk.
Given an open irredundant set associated with one of the
variable values, we are able to apply one or more shift
operations in Tv or in subtrees rooted at the processed
neighbors to realize an open irredundant set associated with a
related value. In each of the cases below, we transform a set
associated with the value on the left-hand side of the relation
into the one on the right-hand side. The opposite direction is
realized by direct inverse of this transformation.

(i) Apply a shift to Tv, selecting v as the private
neighbor (of its only neighbor in the given set) to be in the
new set.



(ii) For any processed neighbor vi of v that is in the
given set (there must be at least onme such vi, as v is 0C),
shift the subtree rooted by vi.

{iii) Remove v from the given set and for any processed
neighbor of v that is also in the given set, shift its subtree.

(iv) Consider the case where v is in state ON. If there
exists an open irredundant set associated with the value ON(v)
for which not all the neighbors of v are in state OB, thenm IB(v)
= ON(v) + 1 by shifting subtrees rooted at all OB neighbors to
make them IB neighbors and adding v to the given set, claiming
one of the other neighbors as private (possibly using relation
ii and its transformation described above). Otherwise, v can be
added to the set only by claiming one of its OB neighbors as
private and losing a vertex from the set in the subtree rooted
at that neighbor. []

The above relationships allow us to significantly simplify
expressions to determine state-dependent variable wvalues.
First, we <can eliminate TIA(v), o0C{(v), and 0B(v) as being
redundant. The expressions for determining IB(v) and ON(v) now

are:
IB(v) 1 + max [oN(vi) + jz IB(vi)l;
1 J:H.

Z IB(vi).

4.

oN(v)

The expression for ON(v) appears counterintuitive, but
follows as IB(v) = 0B(v) and ON(v) = 0C(v) and IB(v) > ON(v).
As a final refigpement, we realize that IB(v) will be one more
than ON(v) in those <cases where ON(vi) = 1IB(vi) for some
processed neighbor vi of v. We can select such a neighbor to be
the private neighbor of v {(assuming it to be in state ON)
without losing a vertex from the set in that processed subtree.
As such the following process computes the values of IB(v) and
OM(v) from the wvalues associated with {vl, ..., vk}. The
boolean wvariable selected indicates whether neighbor vi was
found with IB(vi) = ON(vi), allowing us to add 1 to IB(v).

procedure Compute~Values
begin on := 0;
selected := false
for i := 1 to k do
begin on := on + IB(vi);
if IB(vi) = OR(vi)
then selected := true
end;
ON(v) := on;
if selected then IB(v) := on + 1
else IB(v) := on
end



Theorem 4., The specialized tree algorithm as refined above
requires time and space linearly related to the
order of the input tree.

Proof: Assuming unit costs for storing integers of the
same order as the input tree, a constant overhead per vertex
implies linear storage requirements. As for time complexity,
the two values at each vertex are referenced twice: once when
the vertex is processed and the wvalues are established and
again, after being processed, when its sole neighbor in CT 1is
being processed. Assuming that assignment and reference to
these values require <constant time, the computation time is
linearly related to the order of the input tree., 1]

3. Conclusion

In this paper, we have discussed a problem motivated by the
study of broadcast networks. The problem is that of determining
maximum sets of senders in such networks. We define a
graph-theoretic model of the problem, introducing the new notion
of open irredundant sets of vertices. We compare the orders of
open irredundant sets with other graph parameters and establish
a duality property for open irredundant sets that is useful in
computing their maximum orders. Finally, we define an efficient
algorithm computing the maximum order of such sets in trees,
illustrating an important algorithm development technique in the
process.,

An irredundant set is defined by existence of a non-empty
difference between the neighborhood of any vertex in the set and
the composite neighborhood of all other wvertices in the set,.
Considering an open or a closed neighborhood in either case
gives us four classes of irredundancy. Closed-closed
corresponds to the original concept as studied by Cockayne et
al,; open-closed corresponds to open irredundancy as defined

here. Open-open would correspond to sets of senders 1in
broadcast networks where a sender could ignore (subtract out)
its own transmissions, allowing it to receive while
transmitting. Finally, <closed-open 1is the largest of the

irredundant sets in any given graph. The maximum orders of the
four classes of irredundant sets in an arbitrary graph are
related, due to class inclusion, as follows:

open—-closed <= (closed-closed and open-open) <= closed-open.

No necessary inequality sequence holds between the orders of
closed-closed and open-open irredundant sets. A comparative
study of the different classes of irredundant sets represents an
interesting topic for future research as does the definition ©of
algorithms to compute their maximum orders.
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