CIS-TR-84-02
An Introduction to ORBS

Stephen Fickos

Department of Computer and {nformation Science
University of Oregon

CIS-TR-84-02
An Introduction to ORBS

Stephen Fickas

Department of Computer and Information Science
University of Oregon

Abstract

This paper introduces the ORBS expert-system writing environment. In defining
ORBS, we have attempted to use the key ideas from past expert system language
eflorts in building an environment that supports incremental, interactive construction
of expert systems. Among others, ORBS inherits ideas from Hearsay IlI, YAPS, RLL
and LOOPS. The paper follows an extended example of the ORBS representation of a
VLSI silicon compilation rule.

Pege 1

An Introduction to ORBS
by

Stephen Fickas
Computer Science Department
University of Oregon

July 1984

1. Introduection

Groups at the University of Oregon and Oregon State University are working on the construction of an
expert-systems environment that attempts to incorporate the important ideas of past expert-system
language efforts in an environment that is general, supportive and simple. This paper describes the
environment, called ORBS (Oregon Rule Based System}. We introduce ORBS by discussing its major
pieces: the data base (section 2), rules (section 3), control and scheduling (section 4), and the development
environment (section 5). We will cairy a single example through the paper, one taken from a silicon com-
piler in the VLSI domain.

ORBS traces its lineage to four ancestors: Hearsay IIl [1], YAPS [2], RLL [3] and LOOPS [4]. We see the
major contributions of each as follows:

. Hearsay III: separation of performance and competence knowledge, blackboard model.
® RLL: language extension.
° YAPS: simple syntax, manageable system.

° LOOPS. meld of procedural, rule, object oriented, active value paradigms into a single system.
Powerful interactive, incremental development environmeat using Interlisp-D and graphics.

We only slightly overgeneralize by saying that each system above lacks the key features of the others.
ORBS attempts to bring as many of these features together as possible.

2. The ORBS Data Base

In outline form, an ORBS system contains a set of relational facts in its data base, a set of forward-
chaining rules that trigger on those facts, and a set of scheduling rules that determine which triggered rule
to execute. We will look at each of these pieces in more detail in coming sections. In this section, we con-
centrate on the data base,

ORBS uses a data base that is identical to that of YAPS [2]. It is similar to the Hearsay IIl blackboard in
that it is relation-based. Its key [eatures are as follows:

(1) Objects within the ORBS data base are either Lisp objects or Flavor instances {an ORBS flavor is
similar to a Zetalisp fiavor (5], which is more or less similar to a Smalltalk object). Object attri-
butes and components can be defined either through relations, or directly through instance variables
and methods.

(2} ORBS relations are free-form and untyped s-cxpressions.

(3} Each instance of a relation on the blackboard has a2 unique identification number associated with it
ala OPS5 [6]. Identical relations can appear in ORBS; they are differentiated by their ID number.
This capability is crucial to maintaining a process history, whick can be used by a debugger to

DRAFT

Page 2

perform process backtracking, Further, ID numbers are monotonically increasing, hence the recency
of relations can be determined by numerical ordering.

In summary, the ORBS data base attempts to walk the line between simplicity and representational
power. It allows simple, free-form relations when that is all that is called for. It provides a more powerful
modeling representation (i.e., object-oriented programming) when that is needed. In essence, ORBS pro-
vides a direct correlation between problem complexity and system complexity: simple problems can use

simple representations, complex problems can use complex representations.’

2.1. A VLSI example

The example we will use throughout the rest of the paper is taken from a silicon compiler in the domain
of VLSI. Because this is a complex domain, we will use the more powerful modeling features of ORBS,
namely object oriented, flavor representation.

We will use Hearsay Ill as a side-by-side comparator in the VLSI example. We do this for two reasons: 1)
it is instructive to show the differences between a typed, blackboard data base, and an :ntyped, free form
data base extended with flavors, and 2) much of ORBS scheduling is motivated by the Hearsay 1[I mode}
of control. We hope to show the similarities between the two languages, and the places where we have
extended Hearsay III ideas to achieve simplicity and extensibility. We will first present the ORBS
representation, and then that of Hearsay III.

The specific domain object we are interested in is a ring-oscillator. This is defined in terms of a more gen-
eral object called a circuit-component. Using flavor terminclogy, we will miz-in a circuit-component
flavor into a ring-oscillator flavor to get the desired attributes. First we define the circuit-component
flavor:

(defMavor circuit~component

(x-dim y-dim) :instance variables, i.e., attributes
nil} ;a circuit~component inkerits from nothing in this example
{defmethod (circuit-component area) () ; a method to handle "area” messages

(quantily-area x-dim y-dim})

(defun quantify-area (x y) ...) ;computes area from x,y dimensions

Now we define a ring-oscillator:

INote that this 15 not the case in many systems where system setup/initialization for any problem requires a large ante, and a
single representation is provided irrespecitive of problem complexity.

DRAFT

Page 3

(defflavor ring-oscillator
(timing) ; an instance variable
(circuit-component)) ;a ring oscillator inherits from circuit component

(defmethod (ring-oscillator speed) () ; a method to handle "speed” messages
(quantify-speed timing))

(defun quantify-speed (time) ...) ;computes speed from timing

Above, the ring-oscillator favor inherits instance variables {x-dim, y-dim) and methods (area} from
circuit-component. Ii also adds its own instance variable (timing) and method (speed). Once we have
defined the ring-oscillator flavor, we must instantiate it, and make it available to our rules, i.e., add it to
the data base. The following will accomplish this:

(fact ring-ose {make-instance 'ring-oscillator ...))

"fact” will place the relation ring-osc in the data hase with a single argument of a ring-oscillator flavor
instance.

Now let's look at the Hearsay Il representation. We will rely on Hearsay 1II’s relational database, and a
predefined relation to imodel the ring oscillator. Hearsay 1II provides no object oriented representation
paradigm, so we will be unable to directly represent abstract objects such as circuit-component, and the
associated flavor inheritance. The first step in setting up the Hearsay !l representation is defining the
unit and relation typing structure. Hearsay III's machinery for accomplishing this is both conceptually and
syntactically complex. Instead, we will paraphrase the process: we must define a ring-oscillator type, and
a set of typed relations between a ring-oscillator and its attributes, Hearsay IIi provides a built-in relation
called ROLE-OF to define attributes or components of a structure, so we will use this.

Once the type structure has been defined, we are ready to place a ring-oscillator on the blackboard. We
first create a blackboard unit of type ring-osc. We then associaie the three attributes x-dim, y-dim and
timing by use of Hearsay’s ROLE-OF relation (**@'' places a relation on the blackboard):

(SETQ ringo (MKUNIT 'ring-osc))
(@ (ROLE-OF ’timing ringo 8))

(@ (ROLE-OF 'x-dimensien ringo 2)}
(@ (ROLE-OF 'y-dimension ringo 3))

Unfortunately, the derived attributes area and speed cannot be explicitly attached to the ring-oscillator
unit using the ROLE-OF relation. Instead we implicitly state them as Lisp predicates.

Before leaving this section, we wish to add one final note. In building Hearsay III systems, we have found
that much of system development and debugging time can be traced to setting up and maintaining com-
plex type hierarchies. In contrast, ORBS uses a3 much simpler representation: untyped lisp s-expressions
(with Aavor instances as possible elements). Strong arguments have been made for both approaches. OQur
experience in building systems with both languages is that working prototypes can be brought up and
debugged more quickly, and understood more readily using the ORBS representation.

DRAFT

Page 4

3. ORBS Rules

ORBS rules are forward chaining. A rule contains one or more left-hand-side (LHS) patterns, zero or more
filters, one or more right-hand-side (RHS) actions, several system-defined fictds, and zero or more user-
defined fields. Before describing the rule syntax, we will look at the match fschedule/execute cycle.

For each rule R,

(1) The LHS of R is matched against the data base. Separate activations are created for each different
match.

(2) Each activation of R is passed through R's (optional) filtering predicates. A predicate returning nil
eliminates the activation from further consideration.

(3} Each fiitered activation of R is placed in a conflict resolution set. The conflict resolution set holds
the accumulated activations of all rules.

(4) The conflict resolution set is passed through a set of scheduling rules (previously defined by the
user). The outcome is a conflict resolution set containing a single activation, which is chosen for exe-
cution.

Te introduce syntax, we will use an example taken from an ORBS system to do silicon compilation. The
piece of knowledge which we wish to represent is the following:

If you are building a ring oscillator that must be both small and fast, then use inverter-type-3 as the basic
building block

We will first look at the ORBS representation of this knowledge, and then for contrast, the Hearsay III
equivalent. Assume that we are using the flavor representation of circuit-component a2nd ring-oscillator
introduced in the last section. The ORBS ruie is as follows:

(defp small-fast
(goal (choose-inverter))
(ring-osc -ro)
test (eq (send -ro 'speed) 'fast)
(eq (send -ro 'area) 'small)
->
(remove 1)
(fact ro-cell inverter-3)

status: active
author: simoudis)
Figure 1

The LHS is made up of two patterns that will match data base facts (goal and ring-osc); pattern variables
are prepended with a hyphen. The (optional) keyword “test”” marks the beginning of the filtering predi-
cates. The *—>"" marks the beginning of the RHS actions; ‘‘remove’ removes the fact matching the ith
LHS pattern from the data base, “fact” adds a relation to the data base. The “::" marks the beginning
of further rule attributes; “status” is an ORBS-defined field, and “‘author’’ a user-defined field. Note that
the pattern variable -ro will be bound to the instance of the flavor object ring-oscillator created in the last
section.

The goal relation is used for control, providing a means of stepping through a set of tasks. For the rule te
match, we must be in the "choose-inverter” task, i.e., someone else must have inserted the goal relation
into the data base.

DRAFT

Page b

It is instructive to compare the ORBS represcatation with the Hearsay III representation. The
corresponding Hearsay III knowledge source is as follows:

{DECLARE-KS small-fast (rox y z)

(APAND
{ring-osc ro)
(ROLE-OF timing ro z)
(ROLE-OF x-dimension ro x)
(ROLE-OF y-dimension ro y)
(EQ (quantify-speed z} 'fast)
(EQ {(quantify-area x y) 'smalt))

'choose-inverter

(@ (ro-cell inverter-3)))

The pattern variables of this knowledge source are ro, X, y, z; no hyphen is needed to distinguish them
since they are formally declared. The “APAND" marks the beginning of the trigger, which consists of 4
patterns matching the relations ring-osc and ROLE-OF on the blackboard. The trigger also contains two
filtering predicates using EQ. ‘‘choosc-inverter” is a scheduling level whick we will discuss in section 4.
The body of the knowledge source consists of a function (“@"’) that places an instance of the relation ro-
cell onto the blackboard. The match/schedule/execute cycle of Hearsay III is similar to ORBS in that
triggering is separated from execution by a scheduling step. However, there are major diflerences which we
will postpone discussing until section 4.1.

3.1. Rule Matching

The ORBS rule small-fast includes two patterns: (ring-osc -ro) and (goal (choose-inverter)}. Assume that
data base relations exist that match these patterns. Before this match car be included in the conflict set,
it must pass the filtering tests. All expressions following the test keyword are evaluated in turn. If any
retutns a nil value, the match is removed from consideration. In this case, the filter asks the ring-oscillator
(i.e., the flavor instance representing the ring-oscillator) for its speed and area by sending the appropriate
messages to -To.

test (eq (send -ro 'speed) 'fast)
(eq (send -ro 'area) 'small)

Note that using the Flavor approach means that retrieving a directly stored value like “x-dim"”, and a
derived value like “‘area’ uses uniform machinery: message passing. Note also that unlike the Hearsay K8,
the ORBS rule has no need to reference or know about the instance variables “x-dim”, “‘y-dim" and *‘tim-

. LA s

ing

3.2. RHS Actlon!

The action part of an ORBS rule contains one or more s-expressions, each of which is evaluated in turn.
Certain pre-defined functions, such as “remove” and “fact’”, are built-in. Just as Hearsay III wil! allow
any valid Interlisp expression to appear in an action, ORBS will allow any valid Franzlisp or flavor mes-
sage passing expression to appear in an action. The only difference is that Hearsay expecls a single expres-
sion, whereas ORBS supplies an implicit progn to a sequence of expressions.

The RHS of the ORBS rule small-fast contains two actions, The first is a built-in function that removes
the relation from the data base that matches the ith LHS pattern. In this case i = 1, hence a goal relation
is removed. The second action, also a built-in function, adds relations to the data base. In this case, we
note the fact that the ring-oscillator cell has been chosen by adding the relation ro-cell with argument

DRAFT

Page 68

inverter-3.

The RHS of the Hearsay XS uses the built-in function "@” to add a relation to the blackboard. We will
discuss later why no goal relation, and hence no remove action, is needed in Hearsay IIL

3.3. The Conflict Set

We will call the collection of relations that match a LHS pattern/filter in ORBS, or a LHS trigger in Hear-
say III, an activation. Multiple activations are created when more than one rule matches, or the same rule
matches different ways. Once the set of activations, called the conflict set, has been gathered, the system

must decide which to choose for application. Currently, ORBS allows only one activation to be chosen® ,
whereas Hearsay 1l allows multiple activations to be applied. Both Hearsay lil and ORBS are based on
the view that competence knowledge — domain knowledge like our small-fast rule — should be separated
from performance knowledge — knowledge that helps choose among competing activationus in the conflict
set. Both allow the user to tailor performance knowledge to fit the application (in contrast to languages
like YAPS and PROLOG, which have a single, built-in strategy). As discussed in more detail in section 4,
ORBS attempts to simplily the definition of performance knowledge by providing a uniforin interface, and
a catalog of scheduling knowledge found useful in past systems.

3.4, Extensibility

Before leaving our discussion of ORBS rules, we note their extensibility. An ORBS rule may contain zero
or more user-defined fields. Using an ORBS rule-extension declaration, the user may add one or more
attributes to one or more rules. In the case of the rule small-fast, the extension might have been defined as
follows:

(rule-extension *all-rules* (zuthor))

OURBS gives the rest of the system machinery for accessing these fields. Hence, we could define a schedul-
ing rule that choose one rule over another depending on the confidence in the rule author. In general, we
have found this ability to extend a rule a powerful part of the language. When properly integrated with
the rest of the system, it allows a rule to be viewed as just another object to be analyzed and modified.

4. Schedullng

Hearsay was a pioneering system in separating competency kunowledge from performance knowledge. In
Hearsay, KS firing is separated from KS triggering by a scheduling step. A triggered KS, called an activa-
tion, is placed on a scheduling blackboard (SBB). The user may define scheduling knowledge sources (SKS)
that trigger on this placement. These in turn cause activations to be created and placed on the scheduling
blackboard (the process stops here: an SKS is not allowed to trigger on the placement of an activation of
another SKS). SKS are generally used to organize and order KS activations on the SBB. Once ordered by
SKS, the activations of KS are invoked by a domain scheduler (a piece of user-defined Interlisp code). It is
this scheduler that normally determines the structure of the SBB, e.g., a priority queue, an ordered
agenda.

Moving back to our example from the last section, the Hearsay KS small-fast included a value “choose-
inverter' in its scheduling-level field. This associates *chouse-inverter” with any activations of this KS.
In the Hearsay VLSI system, we structure the SBB around priority levels. ‘‘choose-inverter” is one such

*We are experimenting with multiple activation applications on any cycle, but have yet to work cut ihe problems of one RHS
action validating the application of a following activation

DRAFT

Page 7

level. It has levels above it and below it, i.e., “‘start-up", “order-cells’’. When a ICS activation is created,
it is placed on the level determined by its scheduling-level field. Hearsay IlI's (user-defined) VLSI
scheduler simply moves down levels looking for activations. If one is found, it is fired, and its activation is
removed from the SBB. In this way, all “start-up’ activations are executed before all “choose-inverter”
activations, which are executed before all “‘order-cells” activations, ete.

In ORBS, we have attempted to simplify Hearsay HI's scheduling process. Scheduling in ORBS involves
1) defining a sel of scheduling rules in Franzlisp, and 2) declaring how those rules are to be combined to
form a scheduler. As with Hearsay, the triggering of an ORBS rule causes an activation to be created.
However, the activation is placed in a conflict set as opposed te on a SBB. Once the conflict set has been
built (i.e., all activations have been collected), it is passed through the scheduler. The first rule in the
scheduler takes the initial conflict set, and returns a new conflict set. The new conflict set is input to the
second rule, which outputs a new conflict set. Generally, each rule either removes or weights one or more
activations. This process continues until either no activations remain in the conflict set, or the last rule is
called. In the former case, the system halts. In the latter case, the scheduler returns the one remaining
activation in the conflict set; if more than one exists, an error message is printed and the break package is
called.

An example might be useful here. Suppose that we wanted to define a simple scheduling strategy in our

VLSI system that chooses the activation that includes the most recent goal® in its LHS pattern. If more
than one activation contains the most recent goal relation, the tie will be broken arbitrarily.

We need two scheduling rules: one that will find the rule activation(s) with the most recent goal; one that
will arbitrarily select among ties. ORBS provides these rules in a predefined set of scheduling rules. The
first is called KW, and the second AD1. Note that the user is not forced to choose [rom ORBS predefined
set: he or she is free to write his or her own rules, or modify existing ones.

We now must inform ORBS that 1) the rules KW and ADI are to be used in scheduling, and 2) they are
to be applied in a certain order. ORBS accepts an extended form of Forgy's scheduling expressions [7] to
accomplish this:

[(KW goal)] > AD1

This defines a scheduling strategy that applies the rule KW to the conflict set, using “‘goal” as the key-
word, and then passes {as denoted by the >} the resulting non-empty conflict set to AD1. The square
brackets say that if the KW rule produces an empty conflict set (i.e., no activations conlain a goal rela-
tion in their LHS patterns) then halt the system. AD1 will arbitrarily delete all but one of the remaining
activations.

The above scheduling strategy assumes that goals will be added to the data base in the appropriate order.
This means that we are mixing competence and performance knowledge. Is there a way to remove the
tasking information from the data base {and hence rule patterns)? Since the Hearsay Il knowledge source
seems to have accomplished this, we might take a closer look at how this was done.

The Hearsay III VLSI system used "tasking levels” to represent the order that rules should be run. It did
this by associating with each rule a specific task level. As a start, we might do the following in ORBS:

{rule-extension *all-rules® sched-levet)

When we define a rule, we can fill its sched-level ficld apprapriately. We're now hall way home. We still
have to worry about defining a scheduler that can use this information to order tasking. In Hearsay, this
was accomplished by writing code that would process the SBB levels in the right order. We can perform

3n ORBS, the nost recent goal is the goal refation instance that was most recently added to the data base.

DRAFT

Page 8

the same thing in ORBS be defining the appropriate scheduling rule:

(setg *priority-levels* ‘(start-up choose-inverter choose-cell ... }) ;a global

(defschedrule PL (es)
(find-highest cs *priority-levels*))

PL takes as input a conflict set cs, and returns the set of activations (another conflict set) with the highest
priority. The function find-highest accomplishes this by looking at each activation in the conflict set,
checking the value of its sched-level field against the user-defined priority levels.

Using PL, we can redefine our scheduling expression as follows:
[PL] > AD1
This allows us to remove the goal relations from the data base. Qur new small-fast rule is now as follows:

(defp small-fast
(ring-osc -ro}
test (eq {send -ro 'spced) 'fast)
(eq (send -ro 'area) 'small)
-2
(fact ro-cell inverter-3)

author: simoudis
sched-level: choose-inverter)
Figure 2

4.1. State Triggering versus Modiflcation Triggering

Although we have shown how ORBS can model some portions of Hearsay Ill's scheduling machinery, there
remains an important difference: ORBS and Hearsay handle triggering semnantics differently. In Hearsay, a
KS is triggered only when one of the patterns in its LHS matches against a newly added fact. In ORBS, a
rule triggers when all of the patterns in its LHS match facts in the data base. In summary, a Fearsay KS
will trigger only once for any particular set of facts of the blackboard. An ORBS rule will trigger on every
cycle that its LHS matches a set of facts in the data base.

The consequence of this is that Hearsay must "remembeor” what KS activations were created on each
cycle. It cannot choose to forget an activation since that activation may be applicable on a subsequent
cycle. Since an activation will oot be regenerated, it must be kept on the SBB. All activations are placed
on the SBB, and will not go away until they arc chosen for invocation, or some other process explicitly
deletes them. It is up to the user-defined scheduler, on every cycle, to weed through current and past
activations, and decide which to invoke.

In ORBS, no activation history is necessary (the one exception is discussed shortly). This is because a rule
triggering does not prevent it from triggering again on the same data, i.e., the same activation can be gen-
erated multiple times. As an example, suppose that rules R1 and R2 trigger creating activations Al and
A2. Suppose Al is chosen on the current cycle for execution. On the next cycle it is quite possible for Al
and A2 to be generated again. The only reasons they would not both be generated was if the execution of
Al on the previous cycle caused the data base to be changed so that R1 or R2 no longer triggered, i.e.,
their LHS patterns no longer matched facts in the data base on the current cycle. If both Al and A2 are

DRAFT

Page 9

regenerated, the scheduler is free to choose Al again, A2 or any other activation in the conflict set.

Moving back to our example, there is nothing to stop our new small-fast rule in figure 2 from repeatedly
firing. In the old rule in figure 1, a RHS action removed the goal relation so that the rule no longer fired,
i.e., the rule eflectively shut itself off. Our new rule has done away with the necd for the goal pattern, so
it appears we are stuck. Assuming we do not want the small-fast rule to be executed more than once, we
have two answers. First, we can write a scheduling rule that will eliminate activations executed on previ-
ous cycles. This requires a history of executed activations. ORBS keeps such a list in *executed-
activationss. Thus the user can define a scheduling rule {(actually, ORBS provides one predefined) that
searches this list, and eliminates any activations in the current conflict set which are members.

Our second solution attempts to improve on the first. In particular, using scheduling to weed out previ-
ously executed activations is not very efficient. FFor one, it can lead to a large amount of time being spent
in the matching process. That is, the matcher may have to regenerate a large number of aclivations that
will always be deleted from the conflict set, e.g., because they've been seen before. Also, what gets
through to the conflict set should be activations that have a chance of being chosen; it is up to meta-
knowledge in the form of the scheduling rules to choose the best. Here we are letting through activations
that are noise, a by-product of our regeneration policy.

To get around these problems, we have included two fields in each ORBS rule that hold information rela-
tively to triggering and activation creation. We have seen one, "status”, already. When a rule’s status is
inactive, the matcher will not attempt to trigger it. The other is “meta-trigger’”’. The meta-trigger field is
filled with either

® nil: no information is available.
. no-repeat: do not allow the same activation to be chosen more than once,
° I-ingtance: during any cycle, stop generating activations after the first new one, i.e., one that is not

on *executed-activations*. In other words, do not allow more than one activation from this rule in
the conflict set during any one cycle. Also, don't allow repeats.

o I-ghot: shut a rule off when any one of its activations has been executed.

Any ORBS process (a RHS action, a scheduling rule) can (re)set a rule's status or meta-trigger ficid, This
is consistent with our view of a rule as just another data object.

Using the meta-trigger field in our small-fast rule, we get:

{defp small-fast
(ring-osc -ro)
test (eq (send -ro 'speed) 'fast)
(eq (send -ro 'area) 'small)
-2
{fact ro-cell inverter-3)

author: simoudis
sched-level: choose-inverter
meta-trigger: 1-shot
status: active)

That is, the choosing of an inverter is a one shot process. Once it is chosen, there will never be reason to
make the choice again. Hence, turn ofl small-fast once it has executed.

no-repeat, l-instance and 1-shot are first attempts to include triggering information in an ORBS rule
(LOOPS attempts to keep similar types of information about its rules |[4]). They are simple, and hence
will not handle complex cases. For instance, small-fast is just one rule in a set of rules that choase an
inverter type for a ring-oscillator. Others include small-slow, large-fast, large-slow. This set is mutually

DRAFT

Page 10

exclusive in that no more than one rule will actually trigger, ever. Hence, once one of them triggers, we'd
like to turn all of the rest off. All we have done with small-fast is to turn it off when it triggers; al} of the
other rules in the set will continue to be processed by the mntcher on every cycle. Since none will ever
trigger, this is quite wasteful of the matcher’s time. We could include code in each RHS to turn off all
rules in the set, However, a cleaner solution is Lo mark the (any) set of rules as mutually exclusive. ORBS
currently does not support this.

Using a related example, if we have more than one ring-oscillator, then we want the rule small-fast to be
applied to both, i.e., we want an inverter to be chosen for both bindings of the pattern variable -ro.
Because it is not sensitive to context, 1-shot would turn the rule off after only one inverter was chosen,
i.e., after a single activation has been executed. We could resort to replacing 1-shot with no-repeat. Then,
one activation would be chosen on each cycle. However, this leads to wasteful attempts to match the rule
on subsequent cycles; we know the rule will never fire again after cells are chosen for the two inverters.
What we'd like to say is turn yoursell off after two executions. Better yet, turn yoursell off when all ring-
oscillators have an inverter (this would also handle our mutually exclusive rule-set problem above). For-
malizing these problems is one of our current interests. In particular, we are working on a general
triggering/scheduling model that will allow us to handle such cases (c.f. [7,8,9]). For now, if no-repeat, 1-
instance or i-shot are too weak, the user must resor! to mixing control knowledge into the data base as
seen in the goal relation of our small-fast rule in figure 1.

5. Interactive Development

ORBS takes a dynamic view of system development and debugeging. Like Interlisp, ORBS gives the user
the ability to patch bugs and continue on. This is in direct opposition to systems like PROLOG, OPS5,
YAPS, and Hearsay IIl. Each of these systems uses a more traditional cycle of edit/load/compile/run.
When a bug is encountered, the cycle is repeated. Conversely, ORBS allows the user to place break points
at convenient locations during a run. When a break is reached, ORBS transfers control to the break-
package. From here, the user may interrogate various portions of the computation state, modily the state,
back up to previous states, and continue processing.

The effort we have placed in building an interactive development environment is motivated by our experi-
ence building expert systems in languages like OP55, YAPS, and Hearsay IIl. We find that each of these
languages resists an incremental approach to development. Unfortunately, this approach is exactly what is
called for in the systems we have attempted to build. As Swartout and Balzer point out, you cannot hope
to work out all the details of a problem before you commence development [10]; a complete problem
description is defined only after building a prototype, testing it, changing the prototype, testing it, etc.

ORBS provides the user with a break package. The break package is called either when explicitly
requested by the user through setting of break points, or when the system encounters an error. Once in
the break package, the user may interrogate the current state, change it, and continue processing. First
we will look at the types of break points available. These are scttable {and unsettable) at any point in a
computation:

° Break on < pattern>> being added to the dala base. < pattern>> is a relation with patlern variables,
and is exactly equivalent to a pattern in the LHS of a rule.

s Break on <pattern>> being deleted from the data bnse.

. Break when <(rule> matched, <rule>> is the name of a specific rule, e.g., small-fast. The break
package is called when both pattern and test match.

. Break when <rule> chosen. The break package is called when final scheduling rule returns conflict
set that consists of single activation of <rule>.

. Break when <rule> fired. The break package called after activation of <rule> chosen, and all
RHS actions executed.

DRAFT

Page 11

° Break every cycle. The break package is called after activation chosen and RHS actions executed,
i.e., right before matching starts.

. Break on system halting. The system halts when no activations remain in the conflict set.

» Break before scheduling. The break package is called when initial conflict set is built, but before
scheduling rules are invoked.

® Break after scheduling. The break package is ¢alled when last scheduling rule relurns a single
activation, but before that activation is executed,

° Break after <scheduling rule>>. The break package called after <scheduling rule> returns a
conflict set.

The break poinis above allow a user to enter the break package ot convenient times. Once in the break
package, the user has the following options (some actions are dependent on the state of computation):

° Print bindings of an activation, i.e.,, whal data base facts have been used to match LHS patterns.
. Pretty print the data base (for any cycle).

° Add 2 new fact to the data base,

° Delete a fact from the data base,

* Edit the data base (destructively edit an existing fact).

] Add a rule.

. Edit a rule, i.e., calt the ORDS rule editor.

. Print conflict set. Pretty prints each activation in current conflict set.

® Execute <activation>. Manually schedule an activation in the conflict set for execution.

° Remove <activation>> from the conflict set.

N Determine why <rule> did not fire in <cycle>>., Answer is either "did not match” or name of
scheduling rule that eliminated <rule>> [rom the conflict set.

® Match <rule> against {<fact>>}. User chooses subset of facts to match against <rule>>. Answer
is either "match™ or LHS pattern{s) that failed to match,

. Single step the scheduling rules. The break package is ealled after each scheduling rule returas.

® Print process history. This includes, on a ¢ycle by cycle basis, what relations were added, what rela-
tions were deleted, what activation was executed.

° Revert to a previous cycle,

) Continue processing.

One major component that is missing from our interactive model is a graphics interface. Current versions
of the system use CRT technology. This makes it awkward to display component structires. Further,
simultaneous display of ORBS components (the data base, conflict set, rules) is difficult. Finally, dynamic
tracing of system execution is limited to non-graphical representations, i.e., text descriptions. Modern sys-
tems such as LOOPS have shown that each of these problems can be tackled by integrating bit-mapped
screen graphics inlo the interactive system. Our medium term goal is to move ORDBS onto a machine that
supports bit-mapped graphics (a Symbolics 3600), and build the necessary graphics support.

6. Summary
ORBS is an attempt to marry the good ideas that have come out of expert-system language research with

those that have come out of interactive, incremental, soltware development research [11]. A major goal is
to provide ar environment that matches representational complexity with problem complexity. We want

DRAFT

Page 12

simple problems to be handled with simple machinery {e.g.,a relational database). We want complex prob-
lems to have available more extensive representational machinery (e.g., object-otiented programming).

We strongly feel that system construction most profitably follows an incremental approach. It is infeasible
to work out all details of 2 problem before commencing testing. Our experience shows thal a prototype or
strawman should quickly be construcied, and used to highlight missing knowledge or potential problem
areas. The ORBS model of interactive development is based on these ideas.

Another goal of ORBS, and one that effects both complexity and incremental development, is the reduc-
tion of setup costs to the user. In languages such as Hearsay IH, there is a large amount of detail that
must be defined and debugged before testing can commence. Languages like PROLOG have virtually no
initial startup costs. In ORBS, we are trying to strike a balance, We are altempting to provide complex
machinery, but at the same time allow the user to ignore that complexity until he or she needs to deal
with it (sometimes never). To strike this balance, we follow two general ideas.

(1) Each new system we build tends to reuse parts of previous systems. For instance, many problems
require a priorily queue or agenda based scheduler. So we catalog reusable scheduling rules. One of
our long range goals is the cataloging of reusable domain knowledge as well,

(2} Through judicious use of defaults, many of the decisions that a user may wish to make later in the
development process (e.g., after several prototypes have been tested) can be suspended. Thus, early
systems may be simple, but ineflicient. Once later systecms become more solid, eficiency concerns
can be addressed.

The ORBS system is being implemented on a VAX using the Maryland extension to Franzlisp [12]. The
major components of the system (rules, data base, facts, activations, etc.) are flavor objects; computation
is message-based. We are currently translating the Franz/Maryland implementation to Zetalisp on the
Symbolics 3600.
7. Research Plan
A working prolotype of the ORBS system currently exists. In this section, we will describe our future
efforts. Our research plan can be broken into short term {1 year or less) and long term (more than 1 year)
goals,
Short term:

1. Port the system to the Symbolics 3600.

2. Construct a prototype graphics interface on the 3600.

3. Functionally test the system on varied domains, This will be tied in with the graduate Expert Sys-
tems course.

4. lmprove the matching algorithm. This is a non-trivial problem giver ORBS interactive, incremen-
tal model. For instance, it is assumed that rules, the data base, and cycles (in the process of back-
tracking) will all be changed as the system runms. Efficient matching algorithms like those of OPSH
and YAPS demand a static, non-incremental model.

Long term:

1. Extend the graphics interface to include dynamic displays such as those found in LOOPS.

DRAFT

Page 13

2. Explore the reuse of performance knowledge, Our overall goal is a scheduling assistant that will
help a user build a scheduling strategy to match the problem domain. This will include eataloging
general scheduling rules such as those found in [7,8,9].

3. Explore the reuse of competence knowledge. We conjecture that different systems within the same
domain will likely have common objects and rules. We are attempting to catalog skeleton or
schematic forms of domain knowledge for reuse on new systems; [13] discusses our approach in more
detail. We are currently looking at the domains of oflice systems, and transportation systems.

Acknowledgments
Members of the ORBS project include Michael Hennessy, David Novick, and Rob Reesor from the Univer-

sity of Oregon, and Bill Bregar from Oregon State University. Through discussions and coding, they have
been a major influence on the shape of ORBS to date.

Jane and Dana Laursen have also helped with various coding tasks.

DRAFT

8. References

[1]

[2]

13}

4]

|5

[6]

[7]

18]

[9]

Erman, L., London, P., Fickas, S.
The design and example use of Hearsay III,
In 7tk International Joint Conference on Al, Vancouver, 1081

Allen, E.
YAPS: Yet Another Production System,
TR 1146, Computer Seience Dept, University of Maryland, 1283

Griener, R., Lenant, D.
A representation language language
In 1al Nalional Conference on Al, Stanford, 1980

Bobrow,D., Stefik, M.
The LOOPS Manual,
Xerox Pare, Palo Alto, 12//83

Weinreb, D, Moon, D.
Objects, Message Passing, and Flavors,
Lisp Machine Manual, Ch. 20, Symbolics Inc., 1981

Forgy, C.,
OPS55 User’'s Manual,
Tech Report, Computer Science Dept, CMU, 1981

McDermott, J., Forgy, C.
Production system conflict resolution strategies,
In Patiern-Directed Inference Systems, Academic Pregs, 1978

Clancey, W,

The Advantages of Abstract Control Knowledge in Expert System Design,
Tech Report HPP-83-17, Computer Science Dept, Stanford, 11/83

Genesercth, M.
Meta-Level Architecture,
Memo HPP-81-6, Computer Science Dept, Stanford, 12/82

{10] Swartout, W., Balzer, R.

On the inevitable intertwining of specification and implementation,

CACM 25(7) (1982)

[11] Shiels, B.

Power tools for programmers,
In Interactive Programming Environmenis, MeGraw-Hill, 1984

DRAFT

Pege 14

Page 15

[12] Allen, E., Trigg, R., Wood, R.
Maryland Franzlisp Environment,
TR 1226, Computer Science Dept, University of Maryland, 1183

[13] Fickas, S.
Specification Automation,
In Workshop on Models and Longuages for
Software Specification, Orlando, 1984

DRAFT

A System to Hardcopy Screen Images
of the Symbolics 3800 LISP Machine

J.M Wilczynski, K.Chen, D.Meyer, R.Reesgor

Department of Computer and Information Science
University of Oregon

A System to Hardcopy Screen Images of the Symbolics 3600
LISP Machine

J.M. Wilczynski, K.Chen, D.Meyer, R.Reesor

Department of Computer and Information Science
University of Oregon

ABSTRACT

This decument describes a system that allows screen images from a Symbol-
ics 3600 LISP Machine to be sent to an Imagen Imprint-10 laser printer by way of
a VAX 11/750.

The introduction gives an overview of Lhe problem and the steps taken to
resolve it. Then the software changes and additions, both on the Symbolics 3600
and on the VAX, are covered in deiail. Appendices contzin examples of code and
printed screen images.

July 31, 1984

A System to Hardcopy Screen Images of the Symbolics 3600
LISP Machine

J M Wilczynski, K.Chen, D.Meyer, R.Recsor

Department of Computer and Information Science
University of Oregon

1. Introduction

Three Symbolics 3600 LISP machines were recently added to our department’s site
configuration. Our environment had previously consisted of two VAX 11/750's, running UNIX
4.1 bsd, with a LP-25 printer and an Imagen 10 Laser Printer (ILP} hardwired to one VAX
{VAX2, see Appendix A) and accessible to the other VAX (VAX1) by way of the UUCP network.
One of the many things the LISP machines are used for is bitmap graphics. Although a laser
printer could be purchased {rom Symbolics to be hardwired to the new LISP machines, it was felt
that we should be able to utilize the ILP that was already installed if we could somehow make the
Symbolics 3600"s interface with it.

This report gives an overview of the process of interfacing the two systems. The five main
steps in the process are as follows.

First, there was a general period of research. This included gaining familiarity with the
LISP machines, the ILP, and what use could be made of the fact that we had to use the VAXZ2 as
a relay, We had to learn how the bitmap graphics were represented on the LISP machine, how
we might copy a screen image to a LISP machine file, and send it off to the ILP by way of the
VAX2. A major task here was to discover if the format of the bitmap leaving the Symbolics 3600
was acceptable to be received by the ILP. As it turned out, it wasn’t; the bits needed to be
swapped before being sent to the ILP. This swapping could take place either on the Symbolics
3600 or on the VAX2 system. We decided that in order to get a prototype of the new system up
and running, we would do the work on the Symbolics 3600. This scemed sensible in that we
could prepare everything using the Symbolics 3600 and then send the bitmap file to some VAX2
directory to be later sent to the ILP.

Next we conducted a search of the software provided with the Symbolics 3600 LISP
machines to see if anything might be useful to our project. Although many functions relating to
copying screen images were referenced in the LISP machine decumentation, we found that Sym-
bolies had not provided most of them at our site, presumably since we did not have the Symbolics
laser printer for which the software had been designed. We did, however, find a few things to
build upon and set about to do so.

At the same timne that the second step, described above, was happening, we were experi-
menting with the ILP by hand building some small bitmaps on the VAX2 and trying to print
them. IMPRINT-10, the operating system of the ILP, uses a low level machine language called
IMPRESS-10 which allows commands to be inserted into a file belore being sent to the ILP so
that the ILP will know the format of the information it is receiving. There was also some experi-
mentation here to see il IMPRESS-10 might be able to swap the bits instead of doing it on the
LISP machine, but this didn't seem plausible.

At this point we had a group of ZETALISP functions that could be compiled that allowed a
screen image to he copied into a file, after swapping the ordering of the bits. This file could be on
the LISP machine’s file systern or on the VAX?2's file system; any file could be specified. Next we
had to log on to the VAX2 and add IMPRESS-10 commands and then send the file to the ILP.
This process was obviously unwieldy since the user had to stop work on the LISP machine and
switch to the VAX2 if the output was desired right away. It also turned out that the bit

-92.

swapping on the LISP machine was slow, but the prototype was running and usable.

Finally, we decided that we needed to automate the process so that the user could hit some
sequence of keys on the LISP machine and the screen image would be printed on the ILP with no
intervention. This turned out to be a good place to make further use of the VAX2. The bit
swapping was moved from the LISP machine to a C program on the VAX2. Also, instead of hav-
ing the user give a file name where to send the bitmap, a file was built and automatically sent to
a VAX2 directory. A spooler was written to run in this directory so that it would collect any bit-
maps coming from the LISP machines. Finally, a shell script was designed that combined the bit
swapping program with code to add the IMPRESS-10 commands and send the final product to the
ILP.

2. Symbolics 3600 Software Support

The Symbolics 3600 is a computer system in which each active user is assigned a medium
scale processor, a suitable amount of memory, and a swapping disk. Files are stored in a central-
ized file system accessed through CHAOSNET. CHAOSNET is used to access other shared
resources in addition to the file system (e.g. printers, tape drives, processors, and IfO devices).
Each network node (CHAOSNET) consists of the transceiver, interface, and a computer which
executes the Network Control Program (NCP).

The Symbolics 3600 CHAQSNET support consists of a set of ZETALISP functions and data
structure definitions in the CHAOS package. The NCP on the VAX is implemented entirely in
the kernel as a device driver and is accessed from user programs with the normal I/O system calls

(packets received from the network are processed at interrupt level). Stream mode (default for
opening CHAOS device) makes the connection behave like a UNIX file.

Our configuration (sce Appendix A) consists of three Symbolics 3600's, one VAX 11/750
(VAX2) accessible over the CHAOSNET using the ETHERNET protocol, and another VAX
(VAX1) accessible over the UUCP net. The ILP is connected, using an RS-232C serial interface,
to the VAX?2. DBecause the Symbolics 3600 file system is accessible over the CHAOSNET, all we
had to do after we created a bitmap was to define a pathname specifying a directory, either on
the VAX2 or the Symbolics, to put the file in. However, the Symbolics 3600 differs from the VAX
in the way that it handles the serial [/O stream data transfers. The Symbolics 3600 character set,
using 8 bits per byte, differs from the 7 bit ASCII set. Most devices that are likely te use serial
communications use the standard ASCII set. The serial IO stream of the Symbolics 3600 is also
different from the other streams in that it is buffered on the output side using LGP:TYO, the
method of the BASIC-LGP-STREAM Hfavor. Only after the output buffer is filled, or if the
stream is closed, are the characters transmitted.

If we define a connection between two users as a principal service provided by the
CHAOSNET, we can define a stream as a standard 1/O stream which transmits to and receives
from a connecction using a 16 bit number as an address [or cach node, or host. As we said before,
stream mode (default for opening the stream) makes the connection behave like a UNIX file. The
host name, always specified in the pathname for the file cither on the VAX or the Symbelics 3660,
serves as an address of the host's file system where the host's name serves as the address [or the
CHAOSNET connection.

Our hardcopy system was distributed over the CHAOSNET using different file systems and
processors (Symbolics 3600 and VAX2 with peripherals). The Symbolics 3600, which provides
high resclution bitmap graphics, is the source of the images which can be displayed on a high
resolution lerminal screen or with the use of a laser printer for even better resolution. Originally,
the Symbolics 3600 included a hardcopy system in the LGP package with some constructor func-
tions defined in the TV package. This hardcopy system, and in particular the part which defines
bitinap printing, was not applicable in its current state to our configuration. The part of the ori-
ginal hardcopy system for printing bitimaps was set up to communicate with a Symbolics Laser
Graphics Printer (LGP) which, although based on the same MC68000 microprocessor, uses a
different driving program. In particular, the way that the bitmap is represented in the image's
memory is different. The self diagnostics, driving program, and built in fonts are contained in the

-3-

ROM storage {up to 65556 bytes) for both printers. Also since the ILP differs from the LGP as
far as the instruction set is concerned, we had to include diflerent instructions with the bitmap
being sent over the net. We had to change tie following in the Symbolics provided hardcopy sys-
tem:

1. Replace "old” LGP related instructions with new ones.

2. Structure the representation of the image (bitmap) into a
set of fragments {windows) according to the ILP’s format.

3. Open the CHAOSNET connection: Symbolics-VAXZ, to send the
image to a specified directory or the VAX2,

It turned out that since packets are transmitted over the transmission medium (coaxial
cable used be the CHAOSNET) in reverse bit order and not restored in the case of bitmap
transmission (in the receiving host), the bit reversal program had to be written as well. It was
decided that the creation of a bitmap and structuring it for the ILP with only the basic
IMPRESS-10 command, BITMAP, would be done on the Symbolics 3600. Adding the ILP’s
required instructions, in IMPRESS-10, and the bit reversal program would be done on the VAX2.

3. The Symbelics 3000 part of the hardcopy system

The Symbolics 3600 part of the modified hardeopy system, for release 4.5, contains two files.
The first one (included in the LGP package) contains a totally new ZETALISP program including
two newly defined methods. The first method LGP:SEND-COMMANDI (sce Appendix B) is
defined for the BASIC-LGP-STREAM flavor and defines a stream operation, for S:OUTPUT-
STREAM, of passing a character to the stream. This method was defined to pass to the stream
{the object of BASIC-LGP-STREAM flavor) the IMPRESS-10 command, BITMAP, with the type
of operation and the dimensions of the array holding the bitmap as arguments. Next, the original
bitmap, in the form of an array of bits, had to be converted into an array of 8 bit bytes within
the LGP:SHOW-BITMAP method of the LGP-BITMAP-STREAM flavor. The method,
LGP:SHOW-BITMAP, was rewritten entirely. The created array of bytes was structured accord-
ing to IMPRINT-10 acceptable format.

The difference in the handling of bitmaps by the two printers is in the way that the bitmap
is structured by the operating system of each printer. The ILI® requires it to be structured as
39x32 subarrays of pixels. These subarrays, or windows, are used as the smallest units of the bit-
map manipulation in IMPRESS-10. The two arguments given to IMPRESS-10's BITMAP com-
mand specify the width and height of the bitmap in 32x32 subarray of pixel units. For example,
the command BITMAP 20 20 specifies a bitmap which has 20 rows of 20 32x32 windows.

The LGP lormat for handling the bitmaps is different. The word argument of the compar-
able command specifies the number of predefined scan lines to be sent. Each scan line consists of
64 words, 16 bits each, of raster data, which using the resolution of either laser printer (240 pixels
per inch) gives a 4.2 inch long line which is shorter than the standard line for 8x11 format. So for
the LGP the unit window was 16x16 pixels/bits.

As we mentioned carlier, since the instruction sets are diflerent for the two printers, the
LGP:SHOW-BITMAP function was rewritten. First, the IMPRESS-10 BITMAP command was
added with the appropriate arguments using the previously defined method LGP:.SEND-
COMMANDI. Since IMPRESS-10 is a low level machine language, each command is represented
as a 1 or 2 byte number. The appropriate numbers (command and arguments) were output to the
stream, SI:OUTPUT-STREAM, one byte at a time using the LGP:TYO method of the BASIC-
LGP-STREAM flavor. Within the old hardcopy system, the LGP:SHOW-BITMAP method of the
LGP-BITMAP-STREAM flavor was used to format a bitmap for the LGP printer.

Another fle, included in the TV package, holds functions which use the LGP:SHOW-
BITMAP method. These functions actually copy the screen (create bitmaps) and use the

-4-

LGP:SHOW-BITMAP method to open the destination stream. There are four ZETALISP func-
tions and one data structure which do this (see Appendix C). There was no need to change the
functions which create the bitmap (an array of bits representing a one-to-one mapping of pixels of
the screen’s image onto the elements of the array). We only had to change the function which
opens an I/O stream using the WITH-OPEN-STREAM macro. Since the stream mode used by
default makes a CHAOS connection which acts like a UNIX file, we in fact defined, by specifying
a pathname, an address to store our bitmap in the form of a file. Since it was our intention to do
all additional processing on the VAX2 and since the ILP communicates only with the VAX2, we
defined the pathname to specify the VAX file name VAX:/us: [spool/ipcd/changingpart.bit so the
bitmap would be placed directly into the fust/spool/iped directory.

The changing part of the pathname was generated using the time function and parsing the
output string (hrs/minutes/seconds). This was done using the ZETALISP function TV:OUT-
FILE (sec Appendix C).* So at 13:40:15, the file created by the function TV:OUT-FILE would be
VAX:/usr/spool/ipcd/134015.bit. Now with the stream defined to be a file on the VAX, we could
execute the LGP:SHOW-BITMAP method to actually create the file.

All the methods needed to create a bitmap are included in the ZETALISP function KBD-
ESC-Q (sce Appendix C) which can be considered to be the main driver of both the old and the
modified hardcopy systems. In addition, it defines three possible options for hardcopy operations:

1. Copy selected window.
9. Copy main screen.
3. Copy main screen and who-line.

4. VAX Software Support

The VAX software for the above project consists of a spooler, a few auxiliary programs, and
a "shell seript” to tie them zll together. In this section, we describe the general problem, and our
solution and then deseribe the components of the system.

4.1. The General Problem

After the logistics of providing the bitmaps (to the VAXZ) to be printed on the ILP were
worked out, the process of printing a bitmap needed to be automated. The general problem, then,
was to design a system that would be aware of bitmaps comming over the CHAOSNET (from
the Symbolics 3600's) to the VAX2. Note that the "ideal” solution to the problem would be to
design a system much like the printer spooler, that is, have the requesting program "exec” the
dacmon, if one was not already active (i.e., if a line printer daemon is not running when one types
"Ipt”, onc is started up to service the newly spooled print request). The problem, however, was
that we couldn’t implement a method for starting up a process under UNIX from the Symbolics
(that is, over the CHAOSNET), given our time frame (note that solving this problem leads to an
eflicient spooling system).

4.2. The General Solution

Since we couldn’t start a process on the VAX?2 from the Symbolics, we decided to imple-
ment a spooler that is always around, and check a specified directory for work (note that this can
be done from cron, so that the daemon doesn’t have to run continuously). Thus, the overview of
spooler operation is as follows:

{(i). One or more files are writlen into a spool
directory (/usr/spoalfiped on our system);

¢ This function was cantnbuted to the project by Will Goodwin and Allen Brookes

-5

(ii). The spooler {/usr/local/bin/ipcd) notices
that files are present;

(iii). Iped then reads the directory, and "exec's”
an IPCOPY (actually, it exec's an ipc, which is
described below} for each spooled file;

(iv). Finally, iped cleans up the spool directory
by deleting the work {spooled) files.

4.3. Auxillary programs
(iY. swape -
Maps Symbolics bitmaps onto ILP bitmap format.
Note that the mapping is table driven, and the
“swapping” table is generated by mkswaptb.c.

(ii). ipec -
A "shell seript” to put all of the above
together; Ipc also performs functions such
as concalenating the header and trailer files
to the remapped bitmaps (IMPRESS-10 control
information); One ipe is "exec’ed” by iped for
each bitmap it finds in its spool directory.
Note that after the bitmaps are processed, the
result is "piped” down to ipr, the Imagen supplied
spooler for ILP format bitmaps. What follows is
& picture of ipc:
#! /bin/sh
#
#
ipc-—
#
Ipcis a script to take input files from the Symbolics
3600 LISP machines and format them for prinling on the
ILP.
#
There are 3 basic auxiliary files:
(i) fusr/local/binfswap -- maps bits into ILP format
(ii). [fusrflocalfsrcfuoflib/head.imp — ILP header format
(iii). fusrflocal/srefuo/libftail.imp -- ILP trailer format
#
The source code for all of the ipcopy system can be found in
[usr/local/srcfuofipcopy
#
#
LIB=/ust flocal /src fuoflib # headers and trailers here
BIN= /usrflocal/bin # exccutable code here

SPOOL={usr/spoolfipcd # spool directory

-6-

if [$# = 0|; then # any file args?
echo ipe: no args found > /dev/console # complain
exit 1 # no...get out

G

trap 'rm -f ftmp/$$.impexit 1' 1 23 14 15 # trap some signals

rm - fimp/$$.imp # just in case

look

if | -I $SPOOL/$1 |; then # only do this if we have a file
$BIN/swap < $SPOOL/$1 > [tmp/$$.imp # swap the bits around
cat $LIB/head.imp ftmp/$$.imp $LIB/tailimp | ipr # and ipr it

else
ccho ipe: can “t get at $SPOOL/$1 > [dev/console # register complaint
exit 1 # no file...crash and burn

fi

rm -f [tmp/$$.imp # get rid of our tmp file

5. Concluding Remarks

The modified hardcopy system for the Symbolics 3600 release 4.5 was finally saved, after
thorough testing, in the form of a world load on one of our Symbolics 3600's (LM3).

Before the world load was actually saved, a system of the two binary files that hold the
compiled code was added to the original world load (release 4.5). Now we had a world load with
the hardcopy functions, either rewritten or modified, available in compiled form on the system.
By saving the modified version of the world load, we made the modified hardeopy system immedi-
ately available to all users, after initial booling (see Appendix E).

Acknowledgements

We would like to thank Steve Fickas, Mike Hennessy, and Kent Stevens from our depart-
ment and Jan Stoeckenius rom IJmagen Inc. for their help and critical suggestions.

References

[1] R.Mathews and S.Finkel, Program Development Tools and Techniques, Symbolics, 1983.

{2] D.Moon, Chaosnet, Technical Report of Artificial Intelligence Laboratory, MIT, 1982.

[3] S.Reisler, LGP-1 Laser Grophice Printer, Technical Manual, Symbolics, 1982.

[4] C.Roads, 8600 Technical Summary, Symbolics, 1081.

{5] C.Ryland, E.Martinez, J.Stoeckenius, J.Tein, /mprint-10 System Manual, lmagen Inc., 1983.

[6] D.Weinreb and D.Moon, LISP Afachine Manual, MIT, 1981.

Appendix A

s Symbolics3eo0 Computer and Information Science Department
- Lyp Kachine
Untiversily of Oregon
Configuration of the Computer Systems
CHAOS
YAX 2
: sTRINL
s'}m“‘hc‘.uoo CHROS VA% “l'lSO INTEREACE InerIuT-10
ML | losp Medndne (uN1YX) ——TINACEL UWER
PRIvTER
CHAOS UUC®
Symbalics 3604 Vaxil 150

J’L.‘Pwu“ -

LGP:SHOW-BITMAP and LGP:SEND-COMMANDI1 methods
deflned for the modified hardcopy system

ts4 =8 NODE ; LISP § ORSE: O JPRAGKAGE: LGP -~3-

(DEFMETHOD (BRSIC-LGP-GTRERM :GEND-COMRANDL) (CHAR)
(GEND SI:0UTPUT-BTRERM *1TYQ CHAR)) ~

(DEFVAR MRAX-M 8)
{DEFUAR NAX-Y 0)
(DEFVAR CARRY @)

(DEFKETHOD (LGP-BITMAP-STRERM :SEHOL-BITMRAP) (ARRAY WIDTH HEIGHT)
(E°TO mMAX-R (NIN (+7 (+ WIDTH 7.} @©.) 144.))
;(SETO NAH-A (¢r ([« MIDIH 7.) B.)) f
(SETO MAH-Y (+ HEIGHT 31.))
(SETQ CRRRY {MAKE-RRRAY
(LIST (#7 (+ (ARRAY-DIMENMSIOM-N 1 RRRAY) 7.) 8.} MAX-Y)
*:TYPE ART-B8 ' :DISPLACED=TO ARRAY))

{€END SELF °*:SEND-COMMAND! R®1BR23S)

{SEND SELF * :SEMD-COMMANG] #18R7)

{SEND SELF ° :SEND-COMMANDL MIGR (+ (/7 HAXN-X 4.) 1.))

(SEND SELF *:BEND-COMBAND] R1GR (77 MAN-Y 32.))

(DOTIHES (I (s7 mAK-Y 32.))
(DOTIHES {J (e (#7 MAK-X 4.) 1.})
(DOTIMES (K 32.)
(DOTINES (L 4.)

{SERD SI:0UTPUT~GTRERN *:TYD
(AREF CARRY (< (% J 4.) L) (+ (e] 32.) K}

M

THACS (L1GP) herdl.lisp ?jerey LAZ: (17 8
Compiling Function (:METHOD LGP-BITHRP-STREAM :SHOW-BITRAP)
Function (sMETHOD LGP-BITHMAP-STREAM :E5MON-BITMAP) complled.

A B TR e N O o e Ll Bl Ll
.

Appendix C
Methods to Create a Bitmap on Symbolics 3600

(BerRESDUKCE hARJCOPY-BIT-ARKAY (LOPTIOMAL {WIDTH MAIN-5CRE H-HIﬁFHJ*

(HEIGHT MAIN-CCREEN-HEIGHT)) renental Uump Complete Uump
:CONSTRUCTOR (RMAXE-ARRAY (LIST MIDBTH HEIGHT) *:TYPE ‘RRT-18) -ee records Servar Shutdown
:MATCHER (RND (@ (RRRAY-DIMENSIOM-N | OBJECT} WIDTH) BUIT

{2 {RRRAY-DIFENSION-N 2 OB.JECT) HEIGHT))
:INITIAL-COPIES @}

{DEFVAR sBCREEN-HARDCOPY-ANNOUMCEMENT® ' :BE:EP)

(DEFUAR RARRAY Q)

{DEFVARR TU-ARRAY O)

{DEFUVAR OUTPUT-FILE ®wvax:/susrs/<spoo!s/ipcd//screen.blt®)

t3: ESC @ 0 ccples without whaline, ESC 1 0 copies Jjust selected window.
(LeFUN ¥BD-EGL-0 {RRG)

{LET ({SHEET (SELECTO ARG
(1 SELECTED-WINDOM)
{8 PEFAULT-HCREEN)
{CTHERWISE (MAIN-3CREEN-RHD-WHO-LINE)}))))
(RULTIPLE=-URLUE-PIND (FPOM-ARRAY WIDTH HEIGHT)
(SHAPSHOT-SCREZH-DECODT~-ARRAY EBHEET)
{USING-RESOLRCE {T0-ARKAY HARDCLUPY-BIT-ARRRY (LOGAND -48 (¢ MWIDTH 37)) (e HEIGHT 31.)}
(IF (EQ sSCRCEM-HARDCCOPY-ANNOUNCEMENTE ° :FLASH)
{COMPLEMENT -B2W-M0DE))
(SMAPEHGT-SCREEN FREM-FRRAT TO-ARBAY WIDTH HEIGHT)
(1F (EQ sSCREEN-HARDCOPY-ANNCUNCENENTE * :BEEP)
(DEEP)®
(IF {EQ sSCREEH-HARDCGPY-RHNOUNCENEMT® * ;FLAGH)
{COMPLEMENT -BOW-NGDE) }

(WITH-CPEN-GTRERN (STREAM (ST :RANI-HARDCOPY-STRERM
(LGP:GEY~-LGP-RECORB-FILE-HRROCOPY-BEVICE (out-fite))
*HITHAP-ONLY-P T
)}
(BEND STRESM ' :SHOW-BITHAP TO-RRRAY MIDTH HEIGHT))))))

[DEFUN SMRPSHOT-SCREEN (FROM-ARRAY TO-RRRAY LOPTIDNAL HIDTH HEITMT)
{LITHOUT -IHTERRUPTS
(MULTIPLE-JRLUE (FROM-ARRAY WIDTH HEIGHT)
{ SNRPSHDT ~SCRETEN-DECGDE-PRRAY FROM-ARRAY WIDTH HEICHT))

{WHO~LINE-UPDRTE)
(BITBLT ALU-SETZ (RRRAV-DIMENSION-M | TO-RRRAY) (ARRAY-DINENSION-N 2 TO-ARRAY)

TO-RRRAY © @ TO-ARRAY B @)
(BITPL? ALU-SETR WIDTH HEIGHT FROHM-ARRAY @ O TO-ARFAY 0@ B))
{UALUES TO-ARRRY WIDTH HEIGHT))

(FEFUN SHAPSHOT-SCREEN-DECODE-ARKAY (ARRAY LOPTIONRL KIDTH HEICHT)
SFEE (L1SP) herc2.licn suerey LH2: 13)

s, WAL s = IR A a2 W S A2 M s B e L

areElc 7 Bl anierr rass AL L
T

e G TIR T Y ST A]

Be s ired 19123154 JLRIY

{DEFUN SNRPSHOT -SCREEN-DECODE -ARRAY (ARRAY GOPTIONAL WIDTH HEIGHT)
(conD {{ARRAYP ARRAY)

(OR HIDTH {SETO WIDTH (RRRAY-CIMENSION-N 1 ARRAY)))

;DR HEIGH! (SETQ HEIGHT (RRRAY-DIMENSIOH-N 2 RRRAY))))

{
{OR WIDTH (SETQ WIDTH (SHEEY-HIDTH ARRAY)))
{GR HEIGHT (SETQ HEIGHT (SHEET-HEIGHY ARRAY}))
(SETQ ARRAY (OR {SHEET-SCREEN-ARRAY ARRAY) (FERROR °"Window 6 does not have a screen |
array' FIRAY)))))
{VALUES RRRAY WIDTH MEIGHT))

Femental Uump
ree records
QuiT

Complete Dump
Servaer Shutdown

ZRACS (L1SP) herd2.liap dgeres LAZ: 12)
{17:24 Process KBD ESL wsnts to type out)

HYPENDLIR © \Conrinued)

(defun OUT-FILE () remental Dump Lomplete Dump
(prog {outfile time minutes seconds hours) ree records Server Shutdown
(setg time (nultiple-value-tist (tine:parse "now")) GUIT
seconds (string-append (string {car (expladen (car time))))
(string (cadr (enploden {car time}))))
ninutes {string-append (string (cor (enploden (cadr tine)))})
(string (cadr {exploden (cadr tine))}))

hours (string~append (string (car (esploden (caddr tine))))
{string {cadr {exploden (caddr tine})})}
cutfile (string-append “van://usr/7sapacls/ipcdss®
hours minutes seconds ".bit"))
(return cutfile)))

——

ZMRCS (LISP) hard.lisp >kent LH1: (7) 1
Quote I3 not a defined Key.

o mar e 1 A AT e e R L TR el A e A e s

FE

F kel B i

LA Tou ok S S e T L L v R S
b o d: 1Y L,

4 hAarsinae it
J

J‘*’ri—lluh —

An Example Screen Image
(generated by Symbolics provided HACKS:DEMO program)
printed on ILP with the use of the modified hardcopy system.

1024K Physical memory
Release
Site version

;logln * Jerzy °In3)
{(hacks:dema)

X

Liap Listener |

3ol
3] l‘?lt‘!ﬁ

1

Synbolics Systen, Jworld3.ioad
» 15600X Swapping space.
4.5

4

{Untversity of Oregen Lisp Magh o — 2 = A L1suin

PN AT A AT Y e I T S

—_—————

Appendix E

An Example Instruction to the Users
How to Use the Modified Hardcopy System

We saved (on LM3) a new version of the system which includes all hardcopy functions.
Now if you boot the LM3 {for some time it will be only available on LM3) you can immediately
use the hardcopy system:

FUNCTION 0 Q (kit: FUNCTION 0 and Q keys) copies main window with the
who line.

FUNCTION 1 Q copies selected window {the most receat one).

FUNCTION n Q copies main window with the who line (where n is from the
3<n<9 interval).

The first time you use the hardcopy system {unction (one of the above) after you lug in to
the Symbolics, you will be prompted with the following message:

Process KBD ESC wants to type out

Now you nced ‘o grab {with the mouse) from the main menu, the SELECT option, which
gives you the menu of all windows presently on the system. You nced to select the Backgroud
Liep Interactor window which has the KBD ESC messnge. KBD ESC process asks for your
VAX2 login name and password. If your VAX2 login name is equivalent to the one you have on,
Symbolics you need only to type in your password. After the Network Control Program has
your VAXZ login name and password it establishies contact with VAX2 and sends the bitmap over
the CHAOSNET to the fusr/spoolfipcd directory. From this directory it is taken by the spoaler
daemon {ipcd) and another programs are executed included in fusr/local/binfipc to convert it to
the ILP format and next it is sent (using ipr spooler) to the ILP.

	CIS-TR-84-2
	CIS-TR-84-2-2

