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Abstract

The research proposed here addresses the mechanization of software specification; specifically,
the construction of formal specifications from a general, domain-independent, implementation-
independent language. The current non-mechanized development of such specifications presents
several problems:

sCompleteness
The large amount of low level detail necessary in a formal specification makes completeness a
significant problem.

e Consislency
The development (creation, refinement, modification) of a formal specification must adhere to cer-
tain consistency constraints, which are often difficult to maintain manually.

eMundane details
During the development of a specification, the user must be concerned with both high leve! strategic
decisions and the low level manipulations necessary to implement them.

elntegration
The integration of automated software tools relies on a common data base that contains a rational-
ized history of the development process. A non-mechanized specification process makes no contribu-
tion to this data base. That is, the development of the specification is done outside of the computer
(except for the lowest level editing steps) leaving the process informal and undocumented.

The goal of this research is to address each of these specification problems: completencss, consistency,
automation of details, and documentation and integration. The research will build on two prior efforts in
the area of mechanization of software development: 1) the formal specification language Gist, and 2)
Glitter, a system for automating the transformational development of software. The general approach
centers on two keys ideas: 1) the eflort expended in constructing a complete, consistent formal
specification can be at least partially reused, 2) development steps can be mechanized, and hence
automated and documented.



1. The Mechanization of the Software Development Procesas

Recent work in software development has advocated a shift in the way software is specified, implemented,
tested, and maintained. This work, as evidenced by [Balzer 81, Darlington 81, Green 79, Rich et al 79]
among others, proposes that not only the producte of the software life-cycle be captured by the machine,
but the life-cycle processes as well. In particular, machine-based tools should support the user in his con-
struction of specifications, his development of those specifications into a working system, and his mainte-
nance of the system in the face of changing specifications. Such an approach provides at least two major
advantages:

® Potentially large portions of a process can be automated. This allows the user to concentrate on
decision making and guidance, leaving the machine to hand!e low level manipulation and analysis.

® The same portions can be formally documented in a machine usable fashion. This allows the con-
struction of a corporate, development data-base, which defines the evolution of the system and can
be shared among the various development processes.

In my thesis | demonstrate how automation can be used as a lever for increasing software productivity
[Fickas 82]. The rescarch proposed here is a continuation of the automation effort: by using and extend-
ing previous results in the area of mechanizing the software design and implementation processes, it pro-
poses to mechanize the software specification process. That is, the proposed research attempts to bring the
specification process into the machine, allowing it to be automated, documented, and hence integrated
with development and maintenance tools.

The remainder of the proposal is laid out as follows: the remainder of this section discusses the role of for-
malization in mechanized tools; Section 2 presents the overall rescarch goal, mechanizing the software
specification process; Section 3 introduces the Glitter problem solving system; Section 4 discusses the role
Glitter might play in mechanizing soltware specification; Section 5 presents the two key ideas which tie
the proposed work together, reuse and refinement; Section 6 shows a small example of the proposed sys-
tem in action; Section 7 provides a summary of the proposal.

1.1. The need for formalization

Much current software practice relies on both informal products and processes. This informality is a
major cause of the software problem:

° Any software specification is likely to have some combination of missing, imprecise or inconsistent
requirements, This is exacerbated in an informal specification in which a) the writer expects certain
requirements to be of a common-sense nature, and hence not necessary to record, and b) no
"specification validation” process is available. For the former in particular, English (or pseudo-
English) specifications seem to suffer from many of the problems associated with belief-based
Natural Language (mis-Junderstanding. Specification errors may not manifest themselves until deep
into the development process; imprecision and inccnsistency during implementation, omission during
testing or delivery. Because of this, they are often the most difficult and costly to correct.

° Producing a target program from an informal specification is an error-prone task, and one difficult to
control. The resulting program is unlikely to meet specifications fully or be resource-optimal.

* Although standards exist, documentation of large evolving systems is often useless. Frequently this is
because of alter-the-fact documentation, often by a third party distinct from developers and main-
tainers. Even when produced during development, documentation is generally incomplete, hard to
understand, and diflicult to relate to the actual system. As a system is changed, documentation is
rarely updated correspondingly.

® A large part of system cost is devoted to modifying software to correct bugs and to meet changing
specification requirements. The informality of specification, implementation, and documentation
combine to make this both a costly and onerous task.



A key to the machine-based approach is the attempt to bring formalism to the above life-cycle processes.
Formalism must start with the definition of a formal software specification language. Such a specification
language acts as the key component in an integrated environment:

° An operational specification language {(one with an interpreter} can be executed, albeit slowly.
Hence, testing can be carried out at the specification level, allowing the user to get immediate feed-
back.

° A formal specification provides the necessary input to a mechanized software development process.

. A formal specification, in conjunction with a transformation paradigm, makes it feasible to carry out
maintenance on the specification as opposed to the target program. The potential savings here are
enormous. Instead of a maintainer dealing with highly optimized code which is likely uadocumented,
he or she deals directly with the problem statement. Both debugging and enhancements occur at the
specification; a new program is obtained by re-development.

There exist different formal software specification languages, generally one for each research effort in the
area, While each has its virtues and supporters, my research has and will continue to focus on the Gist
specification language |[Goldman and Wile 79]. The next section provides an overview of Gist.

1.2. The Gist Specification Language

The Gist specification language is a general purpose, domain-independent problem statement language. It
provides three major features. First, no valid implementation need be ruled out; the Gist language does
not inherently force certain design decisions to be made during specification. However, neither does it
enforce any notion of appropriate abstraction level, i.e., it is up to the specifier to choose the correct
abstraction level at which to state the problem,

Second, Gist is operational. An interpreter exists for Gist (currently a subset of the language); a Gist
specification can be executed to provide specification "validation™.

Third, a well defined semantics exist. This supports other useful tools such as property provers and
English paraphrasers.

To provide the specifier with an implementation-free language, Gist includes the following components
([Fickas82, Feather&Londond 82| provide a more detailed, example-driven presentation):

. Relational model of information. Information in Gist is modeled by typed objects and relations
among them. Certain built-in relations are provided, e.g., sets, sequences.

. Historical reference. Information can be extracted from any past state. A construct such as "asof
everbelore” allows a specifier to describe whal past information is needed without concern of how it
is to be made available.

® Constrained non-determinism. Non-determinism frees a specifier from making premature selection or
control decisions. Constraints rule out invalid selections or control paths. Together, they form a
powerful specification technique.

e  Data-directed process invocation (Demons). Gist Demons free the specifier from identifying all loca-
tions where an event calls for the invocation of a process; the event can be made part of a Demon
trigger and the process the Demon body,

. Derived relations. A derived relation allows the specifier to state, in one place, a derivation (i.e., an
invariant among several relations), and use the derived information throughout the specification.

In combination, the constructs above make the modification of a Gist specification a difficult problem: a
trace of the cflects that a newly added (or deleted or modified) specilication construct will have on the rest
of the specification must be made. This includes identifying places where the specification is no longer
consistent, and showing that the change does not incorrectly rule out all possible solutions. This checking
is generally complex, and when done manually, likely to lead to errors.



2. Research goal: the mechanization of the specification process

Gist is one part of a larger integrated, machine-based development system called TI (Transformational
Implementation} constructed at USC/Information Sciences Institute [Balzer et al 76, Balzer 81]. The
development of software using the TI model roughly follows the process below:

Step 1.
The human specifier manually constructs a Gist specification, The specifier acts as translator,
receiving a problem description from a human demain ezpert, and producing a Gist specification.

Step 2.
The specification is executed by the system and results are compared with the domain expert's
intent. Discrepancies lead to changes in the specification.

Step 3.
The specification is mapped, by the human program developer, into a target language. The developer
uses correctness-preserving transformations, applied by the sysiem, to move from specification to
target language.

Step 4.
The target language is "compiled” into a production programming language. This process is gen-
erally viewed as outside the purview of the Tl system. It is expected that sophisticated, emerging
state-of-the-art work in program generation systems will handle the compilation.

Step 5.
The program is run to verify performance constraints. Note that debugging has previously taken
place during specification.

Step 6.
Given a2 requested change by the domain expert, the specification is modified by the specifier and
steps 2 through 5 are repeated.

I will refer to the above as the bage-line model of TI software development. Other papers argue for its
power and provide the specifics glossed over above: [Fickas 82, Swartout and Balzer 82, Wile 81]. Iis
major deficiencies are listed below.

. The transformational development of the Gist specification into the target program is a complex and
tedious task. This is not surprising since the transformation process in TI is equivalent to the design
and implementation processes in the traditional life-cycle model, both of which are at the heart of
what is considered "program development”. The majority of the Tl developer’s time is spent on
searching the large transformation catalog, analyzing applicability conditions and applying low level
transformations that are of a sub-goaling nature. A relatively small proportion of time is spent with
the high level conceptual problems of development.

. The development of the Gist specification is also a complex and tedious task in the T1 model.
Several factors, each tied to the lack of mechanization, contribute. First, the dark side of formaliza-
tion becomes apparent. The plethora of mundane requirements that a human writer can leave impli-
cit as common-sense in an informa)l specification — requirements that he assume a human writer can
induce — must be provided in a formal specification. These requirements must be generated anew for
each new problem specification. Completeness becomes a problem.

Second, modification of the specification, while not required to be correctness-preserving, is required
to be consistency-preserving. Adding, deleting or changing specification constructs generally has
non-trivial ramifications as regards the consistency of the remainder of the specification. While the
base-model supplies a rudimentary formalization of the process of mapping a specification to a tar-
get program (i.e., program transformations), no such formalization exists for the specification pro-
cess, i.e., the development of the specification is undocumented and hence not integrated with the
base-model. Consistency checks are left to the user.

Finally, not only must the specifier provide the overall guidance in developing a specification, he or
she must also provide the often low level manipulations necessary to bring about a desired state.



. Maintenance in the base-line model is a two step process: 1} modification of the specification, 2) re-
development. Both steps are currently manual and non-integrated. That is, there is no formalization
of the specification modification process, nor any support in re-developing a target program. In par-
ticular, there is no reuse of the original development during re-development.

My thesis [Fickas 82] addresses the first of these problems, the formalization, automation, and decumenta.
tion of the transformational development process. The second, that of mechanizing the software
specification process, is addressed by this research proposzl. The third, that of automatic maintenance,
remains open {(however, see |[Wile 81] for some preliminary work in this area). The research proposed here
on specification will build or my thesis work in the area of software development. [ will first present a
synopsis of my thesis work, and then show how it will be used as a foundation for the automation and
documentation of the specification process.

3. A Problem Solving View of Software Development

In the previous section, I presented the problems of using the base-line TI model for transforming a Gist
specification into a target program. My thcsis addresses these problems by automating and documenting a
transformational development. In particular, it is based on the following proposition: the development of
software, using program transformations, is amenable to an Al Problem Solving approach. That is, a set
of development goals can be defined, a set of methods for achieving those goals can be defined (the pro-
gram transformations are a subset of such methods and form the leaves of the planning tree), and a set of
selection rules can be defined for choosing among alternative methods. To support this proposition, [ con-
structed a system, Glitter, which incorporated the goals, methods, and selection rules necessary to handle
two moderate transformational developments. Glitter was able to produce a large portion (90%) of these
developments automatically. In places where the user was required to provide guidance, it was generally
of a high level nature, i.e., Glitter took care of the many mundane steps found in a development.

It may be helpful here to look at a particular example of Glitter in action. Suppose we are given the
description of a postal package router, Packages enter the router, slide down chutes, through switches,
and into bins. The problem is to implement a controller for the router's switches. This problem was
chosen as a study case for specification in Gist because of its interesting features: parallelism, incomplete
information (e.g., the location of a specific package within the router is not explicitly known), historical
information (the order packages cntered the router), errors (misrouting of packages), sensors (event trig-
gered activity). The details of the Gist specification of the router and its mapping can be fouad in [Fickas
82); here we will need only a small abstraction to illustrate Glitter's functionality.

Part of the Gist specification for the router contains the following definition for the sequence AllPackages
(a simplified version of actual Gist syntax will be used for readability):

Gist Sequence: AllPackages
Definition: {package || located-at|package, entrance]} ordered by entrance time;

That is, the sequence AllPackages is the set of packages that have ever been located at the entrance,
ordered by their time of arrival. This definition makes use of several Gist constructs that are not found in
the target language. In partlicular, the sequence is derived from an implicit set and a reference to past
events (i.e., entrance time). The devcloper must transform the sequence definition into a form acceptable
in the target language. Glitter provides the Map Away goa! for stating this goal:

>User: Map Away derived sequence AllPackages

The Map Away goal will be achieved when AllPackages no longer exists as a Gist form, i.c., either it has
been implemented in terms of the target language or has been deleted {we will see that a combination of
both is possible). Glitter now finds all methods which can achieve the goal. Among these are the follow-
ing two:



Method Delete-a-construct
Achieves: Map Away construct C
Actions: Delete C

Method Maintain-a-sequence
Achieves: Map Away derived sequence S
Actions: Incrementally Maintain S

Both of the above methods perform a problem reduction: replace the current goal with some other goal
(both Delete and Incrementally Maintain are development goals defined by Glitter}. The next step is to
choose among the two. The method Delete-a-construct is attractive on the surface: ”if you want to get rid
of a specification construct, try deleting it; it may not be needed”. The question is whether the sequence
AllPackages can be effectively deleted, It is at this point that Glitter's selection rules come into play. One
such rule says:

IFF  you are trying to Map Away a sequence § AND
only the last (first, Nth) element of S is ever referenced
THEN it is likely you can delete S and replace it with a single element

Glitter runs all such rules, and by combining evidence, trims and orders the competing methods. If the
method Delete-a-construct was chosen, then the remainder of the problem solving would involve finding
all references to AllPackages and replacing each with a single element. If Maintain-a-sequence was chosen,
then an explicit sequence would be defined and specific maintenance procedures built to add packages at
the appropriate time {i.e., entry time).

The final outcome would be the application of a primitive set of program transformations to achieve the
Map Away goal. That is, the developer states his or her high level development goal, and the system
figures out the necessary strategies and transformations (does the planning} to achieve that goal. In the
actual development from which this is taken, Glitter chose to delele the sequence. To achieve the user’s
Map Away goal, Glitter produced 45 development steps automatically, 12 of which were primitive pro-
gram transformations and 33 problem reductions or restatements.

4. A Problem Solving View of Software Specification

The assumption underlying the Glitter system is that Problem Solving techniques can be applied to auto-
mate and document the transformation of a Gist specification into a target program. A premise of the
research proposed here is that the same technigues can be used to automate and document the
specification process. The process of developing a specification has much in common with developing a
target program. In particular, once an initial skeleton specification is constructed, much of the remaining
task is the refinement (transformation) of this into the final specification. Of course there are differences:

N The TI program transformation process starts with a formal machine-readable object, the Gist
specification. The specification process starts with some set of informal requirements in the domain
expert's head. The specifier translates these into an initial Gist program. This translation process is
not formalized and remains undocumented {as does the refinement of the imitial specification into
the final version). Previous research in this area has attempted to move directly from the domain
expert's requirements description (in restricted English) to final specification, bypassing the specifier
(see for instance [Balzer et al 78]). I propose to keep the specifier, but case his burden, i.e., provide a
specification assistant.

. A program-lransformation is correctness preserving; a specification-transformation need only be
consistency-preserving. Because the developer is groping for the user's intent, the specification-
transformations must allow the same fexibility as a structured editor. That is, the specification



developer must be free to change the problem specification. However, just as in mapping methods,
specification methods must contain preconditions: in the former they center on equivalency, in the
latter on consistency and correctness. McCune looks at some of these issues in regards to the PSI
program development system [McCune 79].

The use of the Glitter model for specification development rests on the premise that there are a tractably
small set of specification development goals that a specifier may slate, and a finite set of methods for
mappirg those goals onto primitive operations. Part of my research will be the identification of those
goals and methods, and the incorporation of them into a system for developing Gist specifications. Section
5.5 shows, through a hypothetical dialog, how such a system might be used in developing a specification.

5. Proposed Research

My research plan is broken into two parts: 1) the construction of the initial specification, 2) the develop-
ment of this into the final specification. This binary cleavage of the problem is done for pragmatic rea-
sons: it allows two difficult problems to be studied separately. However, schema retrieval and schema
refinement cannot be viewed as totally independent. It is possible that the refinement of one schema will
call for the retrieval of another. I rule this type of interaction out only in the initial stages of the research;
as problems in cataloging and refining schema are worked out, I expect strategic problem solving issues to
come to the forefront.

5.1. Two key ldeas: reuse and refinement

A number of researchers have noted the problems associated with building complete, unambiguous formal
specifications. Approaches have been varied:

® Allow the domain expert to talk directly to the machine in Natural Language. The SAFE [Balzer et
al 78], PSI |Green 79] and NLPQ [Heirdorn 76] systems each embraced this approach to some
degree. Each had limited success on small problems. It appears that a large amount of research
remains to produce such a system for an interesting set of domains.

) Construct domain-specific languages which allow a domain expert to write specifications using
objects and operations tailored to his world. The Draco [Neighbors 80] and ECL [Cheatham 81] sys-
tems, among others, take this approach. Both have had impressive results in a small number of
domains. In particular, the DRACO system allows a domain-specific language to be catalogued, and
hence reused by future specifiers.

) The Programmer's Apprentice (PA) project at MIT [Rich et al 79, Waters 82| provides a program-
mer with general building blocks or plans for constructing programs. Currently, the semantics of
these plans have allowed low to medium level programming concepts to be represented. The
development paradigm is one of a programmer choosing a general plan and then filling in details
until a LISP program is produced. As of now, the PA has no means of formally specifying a problem
([Fickas 82| discusses the differences between the Programmer’s Apprentice and Tl approaches to
software development.).

® Allow the user to quickly see the results of the specification. Rapid Prototyping is generally used as
the moniker for this work. Gist, for one, is operational and hence falls in this class ICohen et al 82].

There arc two kernel ideas provided by the above work from which my work will build:

1.  Reuse of analysis: the DRACO system recognizes that the process of defining the objects, operations
and constraints of a domain is time consuming. Redoing domain analysis for each new specification
is wasteful, error-prone, and hence costly. DRACO attempts to reuse analysis by producing
domain-specific languages as a by-product of analysis. These languages can then be reused in other
problems by other analysts/specifiers.

2. Relrieval and Refinement: the Programmer’s Apprentice allows program plans to be constructed and
then reused as building blocks of other programs. The process is one of retrieving an abstract plan



and then refining it to concrete form by filling in slots.

In the proposed system, reuse will be accomplished by abstracting and cataloging Gist specifications;
development will consist of retrieving an abstract specification and refining it into the desired form.

5.2. A library of Specification Schemata

The specifier will have a library of Gist specification schemata from which to choose. These shemata will
be initially indexed by domain {other types of indexes will be considered at a later date). Each shemata
will contain abstract to concrete, partially to fully instantiated Gist constructs useful for stating problems

in the indexed domain. An example may be useful here. Suppose that the specifier wished to specify a
rouling problem:

>User: Retrieve routing schemas
The following routing schemas are available:

1) Physical-Router - routes generated physical objects
to m destipations

2) TravSalesman-Router - routes 1 physical object through
each of k locations

3) ..



> User: Display Physical-Router

Name: Physical-Router

Description: routes generated physical objects
to m destinations

Domain-index: routing

Parameters: number of destinations m

Schema:

type physobj
type location with subtypes (destination, entrance);

relation located-at|physobj,location]
relation destination-of|physobj, destination]
relation connected-to[location, location)

constraint ObjectsCantBelnSamePlace
definition
~ exist o1|physobj, 02{physobj, k|location
ll located-at{ol, k] AND located-at|o2, ki;

constraint ObjectCantBelnDifferentPlaces
definition
~ exist o|physobj, k1]location, k2|location
|| located-at[o, k1] AND located-at|o, k2];

demon CreateObject(o|object, e|entrance)
Trigger: RANDOM
Response: create o|object;
assert located-atjo,e];

demon SignalArrival{o|object, d|destination)
Trigger: located-at|o, d] AND destination-of|o, d]
Response: ?correct-arrival-response?;

demon MoveObject{o|object, i1|location, 12{location)
Trigger: located-atfo, 11) AND
connected-toll1, 12} AND
?condition?
Response: located-at[o, 12];

The above schema contains objects, operations, and common sense knowledge about the routing world.
The portion shown above is just one part of the entire routing schema; the majority of the schema has
been clided. The full schema contains all of the constructs useful in speciflying routing problems.

Suppose a specifier decided to use the routing schema to specify a particular routing problem. After
retrieving the schema, the next step would be to refine and tailor the schema to fit the problem at hand.
This might involve deleting skeletal constructs which overspecify the problem (e.g., the constraint that
two objects can't be in the same location may be an overconstraint}, changing constructs, refining con-
structs, filling in slots {bracketed by question marks above), and adding constructs to fill out the
specilication. The key peint is that the above schema has captured some part of the analysis needed to
build specifications in the routing domain. The specifier can reuse this analysis for his or her particular
problem.



Note that while there is support for the basic two step process of constructing (retrieving) a skeleton solu-
tion and then refining and debugging it [Sussman 75, Larkin 81|, others have argued that the software
specification process must follow a more evolutionary model, constantly switching between specification
and implementation [Swartout and Balzer 82]. It is this switching that often proves so costly. The nced
to modily the specification after the commencement of implementation can be caused by unforeseen
jmplementation tradcoffs and limitations, as well as enhancements requested by the user after the system
is delivered. These types of problems are difficult to predict during specification, and are beyond the scope
of this work. However, another major cause of development backtracking is addressed by this proposal,
that of incomplete specifications. Because of the complexity of the specification process, the manual pro-
duction of a complete specification, one containing all of the necessary constraints, objects, and opera-
tions, must follow a basic cycle of specification /implementation/debugging. By starting with a more com-
plete {but abstract) specification, iterations through this costly cycle can be reduced.

5.3. Schema Reflnement: Glitter Reapplied

The Problem Solving model introduced by Glitter will be used as the basis of specification refinement and
modification. This requires focusing on three areas:

(1) Goals. A set of specification goals must be defined. Each will represent a type of abstract operation
we might want to carry out on a specification. For instance, we may wish to further consairain, aug-
ment, refine, define, consolidate, generalize, or delele various portions of a specification. These types
of goals have been found useful in the small set of examples studied so far. It is expected that others
will be needed. In particular, the results of other research efforts in documenting the specification
process will have a favorable impact here. For instance, Wile's PADDLE system [Wile 81] is capable
of documenting the (informal) goals that a developer goes through in creating a program. Glitter
benefited from this work by using this documentation as a guide in constructing its formal develop-
ment goals. Any similar documentation of informal specification goals is expected to have similar
payofls in the proposed system.

(2) Methods. A set of methods for achieving specification goals must be defined.The systein’s methods
allow goals to be mapped onto primitive editing operations {(the "transformations” or primitive
operators of the specification world). The crucial question here is one of generality. The use of
Glitter to map specifications irto implementations employed only domain-independent methods. It is
expected that some mixture of domain-independent and domain-dependent methods will be needed
in developing specifications. Clearly, the richer this mixture is on the side of domain-indcpendence,
the more concise and efficient the system becomes (section 6 gives examples of several domain-
independent methods). However, the use of domain-dependent methods is not viewed as inherently
evil, and useful ways to and manage them will also be studied.

(38) Selection rules. A set of sclection rules for choosing among alternative methods must be defined.
During program development, Glitter's selection rules were used to automatically find, count, and
analyze low level Gist comstructs; the user was relied on to supply more insightful analysis. We
expect that while new rules will be needed in specification development, many of Glitter's existing
analysis routines will be reusable. We plan to use the same interactive partnership approach to rea-
son about problem solving.

Glitter will be used as the foundation of a problem solving system for specification development. By
removing the portions particular to software development — the development goals, methods and rules —
the Glitter machinery can be reused (in fact it appears that some of Glitter’s old goals and methods will
remain useful in this new problem solving domain). In particular, the following Glitter components
currently exist: a goal writing language, a method writing language, a selection rule writing language, and
the basic problem solving control processes necessary to turn the system over. Also in place are the
mechanisms that allow a problem solver to explore various solution paths, e.g., suspending the current
path, spawning a new path, resuming a suspended path.



5.4. Robustness

The Glitter model is based on evolving competency: the goals, methods, and selection rules are expecied
to be incomplete, but gradually to become richer as experience is gained. This requires two system
features. First, the user should not be Jocked into using only the pre-defined goals and methods of the sys-
tem. If a goal or method is missing, the user should be able to bypass normal operation, and continuc pro-
cessing. In Glitter, this was accomplished by allowing the user to define ad hoc goals and methods as they
were needed.

Second, the system should help identify areas where its knowledge is weak or missing. In Glitter, this was
accomplished by monitoring the user's actions. For instance, the use of an ad hoc goal or method as dis-
cussed above lead Glitter to document the problem solving context in which it occurred. This is based on
the assumption that use of an ad hoc technique signals a missing piece of knowledge. It is likely that the
ad hoc technique can be generalized for inclusion in the system’s permanent catalogs.

5.5. Documenting the problem solving process

A byproduct of the Glitter problem solving process is a history of the user's goals, the methods competing
to achieve those goals, the method chosen, and the reason for choosing it (and rejecting the others).
Further, Glitter maintains a dynamic representation of the exploration carried out by the user. This
allows the user at any time to:

° Display some or all of the current paths through the planning space.
° Move to any problem solving state.

» Ask to see a) the method set compeling in a problem solving state, b) the selection rules that have
fired, and c) their effect on the method set.

° Choose any method from the compeling set (i.e., spawn a new branch).

This documentation forms the basis of the development data base crucial to an integrated approach to
software development. By using Glitter during the development of the target program, the rich planning
structure of that process was brought inside the machine; by using the Glitter framework in specification,
I expect to reap the same benefits.

6. A hypothetical, specification development

Below is a hypothetical example of the proposed model in use. This example is extracted from an infor-
mal specification development transcript kindly provided by Martin Feather. Note that this development
started from scratch. Hence, much of the specification development up to the state below has been con-
cerned with goals that add objects and operations, and fill-in details, i.e., (re)doing analysis. Given a good
specification schema from which to start, most of the objects, operations, and constraints would be pre-
defined, leaving the specifier to fill-in slots and provide tailoring goals.

The Elevator Problem

The problem is one of specifying an elevator controller. The portion of the specification shown below
represents some intermediate development state in which the major objects and operations have been
specified. Note that this specification might have started as a schema transportation abstraction, i.e.,
something that captures information about transportation domains, e.g. buses, elevators, plares, taxis, etc.
Such a schema would contain types of conveyors, passengers, properties of conveyots (containership), loca-
tions, destinations, etc,



type elevator

type floor with subtypes (Top, Bottom})
type direction = {Up, Down}

type passenger

relation E-located-atlelevator, Boor] (* an elevator’s location *)
relation P-located-at|passenger, floot] (* a passenger’s location *)
relation destination{passenger, floor]

relation inside[passenger, elevator]

constraint elevator-is-container
definition forall p|passenger, e|elevator
inside|p, e] implies E-located-at[e, *| = P-located-at|p, *|

demon enter-elevator(p]passenger, clelevator, f|floor}
trigger: E-located-at|e, f] AND
P-located-at|p, {]| AND
" inside[p, e] AND
~ destination|p, f]
response: assert inside{p, e]

action move-elevator-up{e|elevator)
definition update E-located-atle, f] to E-located-atle, f+1}

action move-elevator-down(elelevator) ...

There are several places where the specifier may focus his or her attention:

The relation “inside” is under-constrained. A passenger should not be allowed inside more than one
elevator. Note that the constraint ObjectCantBelnDiflerentPlaces from the routing domain (see 5.2)
would be useful here.

The move-elevator-up action is under-constrained. Elevators may currently move through the roof.
Since this specification is being constructed from scratch, we can assume that the specifier either for-
got this detail or is ignoring such details until a later time. If, on the other hand, the specification
had been retrieved from the catalog of skeleton specifications, then we might expect such a con-
straint, in some abstract forin, to be present, i.e., many types of conveyances have route boundaries
that they travel between, but not through.

An elevator, as defined above, is overly abstract. Elevators have doors, switches, phones, ete. At
least some of these must be made explicit.

Some elevators have lock-and-key systems for traveling to certain floors. This would require further
constraints on elevator movement.

Here we will look at two of these, constraining an elevator's upward movement, and refining an elevator
to have doors.

>User: Constrain the action move-elevator-up

Among the methods for achieving this goal are the following two:



Method Constrain-action-locally
Achieves: Constrain action A
Actions: Add local constraint ?C to A

Method Constrain-action-globally
Achieves: Constrain action A
Actions: Add global constraint ?C to the specification

The first method will add a local constraint to the action; the second will add a global constraint to the
specification. Since either type of consiraint can be equivalently transformed to the other, selection here is
a matter of style. If we expect the same constraint to be necded in other locations, then the choice would
be a global constraint. Otherwise, the local constraint provides a focus that is easier to understand. One
or more selection rules would be the repository for this style information.

A note on domain-gpecific methods: assume that the system chooscs Constrain-action-locally. The con-
straint 7C must now be defined (the slot filled-in). Initially, the system will rcly on the user to supply it.
However, since the overall goal is to automate as much of the specification process as possible, we might
ask how the system could be of more assistance here. A "smarter” method may take note of the action
being taken (effectively, the increment of a variable} to provide all or some portion of the constraint. An
even smarter method might take note of the domain we are working in (transportation) and the objects
and operations we are working with (the movement of conveyances). Such methods move away from the
domain-independent methods found in Glitter. At least one interesting approach would be to attach such
methods to specific schemata, loading them when the schema is retricved (the DRACO system [Neighbors
80] uses a similar technique for loading domain-specific optimizing transformations).

Assume that the system has chosen to add a local constraint. The specifier will be asked to supply it
(note the system will take care of the syntactic details of where to insert it):

action move-elevator-up(efelevator)
definition
Precondition: <mouse position>>
update E-located-atle, f] to E-located-at|e, f+1]

The specifier may now enter the needed condition:
" E-located-at[e, top)

Next the specifier may want to move towards a more detailed view of the real world. For instance, other
parts of the specification will need to have a more refined view of an elevator.

>User: Refine type elevator
The system finds, among others, the method below.

Method Refine-object-type
Achieves: Refine type T
Actions: Define subtypes of T

Define parts of T

The above method reduces the Refine goal to two sub-goals, both involving the Define goal. Other
methods trigger on the Define goals until actual operations are generated. In this case, the final outcome
might include the definition of the subtypes Local and Express, and the subpart door. The problem



solving process (along with user interaction) for achieving the refine goal would produce the following
(changes are flagged with |):

| type elevator = {local, express}
type floor with subtypes (Top, Bottom)
type passenger
type direction = {Up, Down}

| type openorclosed = {Opea, Closed}

relation E-located-at{elevator, fHoor| (* an elevator’s location *)
relation P-located-at{passenger, floor] (* a passenger's location *)
relation destination|passenger, floor]
relation inside[passenger, elevator]

| relation part-of[elevator, door]

| relation position-of[door, openorclosed]

constraint elevalor-is-container
definition forall p]passenger, e|elevator
inside|p, e] implies E-located-at[e, ¥] = P-located-at|p, ¥|

demon enter-elevator(p|passenger, elelevator, [|floor)
trigger: E-located-at|e, f|] AND
P-located-at|p, f] AND
| position-of|part-of[*, elevator], open] AND
~ inside|p, ¢] AND
~ destination|p, f]
response: asseri inside|p, e}

action move-elevator-up(elelevator)
definition precondition ~ located-atle, Top] AND
| position-of[part-of|*, €], closed]
update E-located-at[e, ] to E-located-atfe, f+1]

action move-clevator-down(ejelevator) ...

In the above step, the system plays a more powerful role. The refinement of an object will likely have
ramifications throughout the specification. We are taking what the rest of the specification regards as a
blackbox (an elevator), and splitting it open {adding doors, etc.). Hence, the methods chosen to refine
elevator must address more than the problem of adding subtypes and part-of relations; they must also
focus on how the newly refined object now interacts with existing constraint, demon, and action
definitions. The changes to enter-clevator and move-elevator-up point this out. The capabilily to both find
all locations effected by a specification modification (a syntactic aid), and assist in changing each to reflect
the new viewpoint {a semantic aid) are tow of our major research goals.



7. Summary of Proposed Research

Problems Addressed

(1) A large amount of low level detail is necessary in a formal specification. Much of this detail is of
the common-sense variety left out of informal (e.g., English) specifications. The handling of this
detail manually by the user is both tedious and likely to lead to incomplete specifications. The cost
of an incomplete specification can be high if not caught until the design or implementation stage.

(2) A change to one part of a specification can have complex effects on the remainder. As in complete-
ness checking, consistency checking, if done manually, is complex and error-prone. Consistency
errors can have the same high cost as completeness errors.

(3) In developing a specification manually, the user is responsible for providing both high level strategies
and the low level steps necessary to carry them out, As with domain analysis details, manipulation
details can be tedious and error-prone if carried out manually.

(4) Other development tools rely on information (e.g., rationale, dependencies) about the specification
process. Such information currently is not documented, and hence is unavailable.

Propesed Solulions

A system is proposed that has two major components: a) a catalog of specification schemata, and b) a
problem solving system [or refining a schema into a complete, consistent problem specification. The sys-
tem addresses each of the problemns above:

(1) The library of specification schemata will allow an analyst/specifier to reuse past analysis. By
defining the fundamental objects, operations, relations, and constraints of a domain, a schema allows
the specification process to move away from the current blank-sheet paradigm to one of refine-and-
tailor. The completeness problem should be greatly reduced as more complete specifications are
passed to the transformation phase, i.e., less backtracking to fix completeness bugs will be required.

(2) The set of development methods will help automate and maintain specification consistency. Sub-
goalable applicability conditions can be established for each method in the system. In places where
automation is not possible, the system can at least ask the right questions of the user. This approach
of automating where possible (generally low level details} and querying the user when automation
fails has been used successfully in Glitter.

{3) The problem of dealing with the mundane details of specification medification can be handled by
relying on the machine to supply the necessary steps. The Glitter system filied this role in the
software transformation process by supplying the user with a sel of program development goals; the
system mapped these goals onto a set of primitive operators {correctness-preserving transforma-
tions). The same approach will be used for specification developmeni. Here the user will supply
specification goals, and the system will map these goals onto consistency-preserving operations,

(4) A by-product of the Glitter system is 2 machine-usable history of the planning and exploration space
generated during problem sclving. This history allows the specification process to be integrated into
the overall machine-based development model.

The proposed system will center on two key ideas: reuse and refinement. The library of specification sche-
mata will provide the reuse through storage and retrieval of past analysis efforts. The Problem Solving
system will provide the means of refining the skeleton specification into the desired final form.

Polential Difficulties

While the Glitter model provides a sound foundation, the proposed work explores new ground with the
attendant risks.



(1)

(2)

Schema fibrary. Other research has shown thai is is possible to construct domain-dependent
specification languages and then reuse them (see for instance [Neighbors 80]). The work here
explores the reuse of specifications written in a domain-independent specification language. A poten-
tial problem is that useful schemata may have to be tied to overly-specific domains, e.g., a schema
that only handles elevator problems. My preliminary work in cataloging schema from the transpor-
tation domain does no! support this; a single transportation domain can be used in a wide range of
sub-domains. However, there is another mitigating item: part of my current work is exploring the
use of composable schema components from which to construct a specification. In this way, a
specification for a domain new to the system can be built by taking parts from existing schemas in
other domains. This work looks quite promising.

Problem egolving. The difficuity here is the use of general specification development goals and
methods on domain specific problems. Do human specifiers use consistent goals across domains? Can
a domain-independent set of methods be found for achieving them? If not, the problem becomes the
management of the potentially large amount of domain-specific knowledge the system must possess.

In summary, a reuse and refinement approach is planned, which will produce large payofls in specification
mechanization if successful. The potential difficulties with this approach are recognized, and means of
modifying or extending the approach to meet them have been included in the proposal.

8. Regearch Plan

The first priority of this research will be the construction of a prototype system. This work has already
begun. Current research focuses on the following components:

(1)

(2)
(3)

A language for representing domain abstractions. Initial use of Gist as the domain representation
language proved awkward. Our current work centers on a domain language that mixes object-
oriented constructs with Gist constructs. We expect that the new language will compile to Gist.

A small library of schemata. Because I have analysis/specification experience in the area of schedul-
ing and transportation, [ have chosen to look al problems from these domains first.

A problem solving systein. Included will be a set of goals for refining a specification schema. The
method catalog will contain methods for mapping goals to operators. A set of rules will be defined
for selecting among alternative methods.
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