Page 1

A Problem Solving Approach to Softwarce Development

by

Stephen Fickas
Computer Science Bepartment
University of Oregon
Eugene, Oregon 97403

July 1984

ABSTRACT

We present a new model of software development by transformation. The model uses a problem solving
approach to automate and document the development process. The model is incorporated in a system
called Glitter, which explicitly represents the gonls and methods that lead to transformation applications,
and the selection criteria used to select one transformation over another. Glitter, using a partnership
approach with the user, has been able to 2utomatically generate 90 percent of the planring and transfor-
mation steps in the examples studied. Further, by using a by-product of the Glitter system — a record of
the planning that leads te a final implementation — we are able to begin to ook at automating other
software lifecycle processes.

1. Introduction

This paper presents a problem solving model of software development. The model starts with an abstract,
formal specification and {rensforms the specification into a compilable implementation. Transformation
relies on interactive problem solving during which the user specifies development goals, and the machine
responds by finding and applying methods to achieve those goals. The model incorporates each of the fol-
lowing items:

. A language for stating software design goals. This language is the communication medium between
user and machine.

° A cataleg of methods for achieving those goals.
. A catalog of selection rules for choosing among competing methods.
o A parinership, which plays off the strengths of both user and machine,

. Automatically generated documentation of the software design process that includes the goal struc-

ture, competing methods, and selection rationale used to reach an implementation.

Based on the model, a system that partially automates the software design! process has been built {1}.

The system, called Glitter,” has been used to produce implementations of a text editing program and the

coatroller for a postal package router.

10ur use of the term design in this paper is limited to the process of transforming a specification into a compilable algorithm.
Design and development will be used interchangeably.

2An historically rooted acronym: Goal-direeted jitterer. Rather antiquated currently.

Page 2

1.1. A Problem Solving Approach

The Glitter system uses 2 problem solving mode! to provide mechanized support for software develop-
ment. The user provides the development goals that he wants achieved, and the system finds means of
solving them. The aim is to have the system achieve the user's goals automatically, bothering the user
only when missing (e.g., insightful, domain specific) information is needed. That is, the system should
carry out the mundane detailed steps of the design, allowing the user to concentrate on higher-level
development issues. Further, the system should document its problem solving process in a way that can

be used by other development processes, e.g.; maintenance, replay, explanation,

The use of an interactive problem solving mode! for transformationa! software development has several
benefits:

° What vs. How. The model advocates a shift in the way transformational developments are con-
structed. Instead of the user deciding how to achieve some implementation by searching through a
transformation catalog for appropriate transformations and then sclecting one, the user decides what
development goal he wishes to achieve, and uses the goal language to state it. The system then
makes available all methods which might achieve the goal and all knowledge that might help choose

among them.

. Aulomation. Many development steps involve low level transformations. These steps can be
automatically produced by the system, i.e., one user goal may lead to many transformation applica-
tions. The user is left free to atlend to the more important strategic issues involved in organizing a

development.

e Partnership emphasized. The design process is viewed 2s a joint activity with the strengths of cach
partner emphasized: the user supplies strategic and insightfu! knowledge; the machine supplies preci-
sion, analysis, recording, and catalogs of knowledge found useful in past development eflorts. Note
the divergence of approaches between a partnership model and that of automatic programming. In
the latter, full automation is achieved by studying constrained examples; rescarch progresses by
working on gradually tougher problems. Using a partnership model, tougher problems can be han-
dled by including the user; research progresses by gradually removing the user from the process.

° Development history recorded. The by-product of a Glitter development is the planning structure
which produced the actual transformation steps. The planning structure provides the teleclogy of
statements in the implementation; it shows how an implementation was derived, not simply what
the implementation does. Other tools can use this structure to analyze and change a development,

i.e., do maintenance.

The Glitter problem solving model can trace its roots to 3 key ideas developed by past research efforts in
the area of transformational development of software (a good review of work in the transformational area
can be found in [2]).

Key 1dea 1: a partnership model that uses the human for guidance, and the machine for application

Page 3

allows both a greater varielty and complexity of problems to be tackled than a strictly automatic
approach. See [3,4,5] for some representative systems that use a form of man /machine partnership to

build non-toy programs.

Key idea 2: a transformational development can be viewed as just another product to be created,
analyzed, edited. Systems that aliow a development to be treated as an object of study include [6,7].

Key idea 3: a development is structured. A transformational development should record more than
just the program transformations applied. In particular, a user will employ various strategies that
help organize and decompose a development into manageable pieces. A development should capture
this planning structure. The PADDLE system [6] in pasticular allows the user to organize a develop-

ment around subtasks; the subtasks are recorded as part of the development.

In this paper we present the fourth key Idea: producing a transformational development is a problem
suited to an automated, problem solving approach. Glitter uses all four of these ideas to provide an

interactive, problem solving system to automate the production of transforniational developments.

1.2. The Foundations

Glitter is based on the transformational model of software development. In particular, it was developed
as one part of the Transformational Implementation (TI) project st USC/Information Sciences Institute
[4,8,9]. The three major components of the TI project are

{1) The formal specification language called Gist [9,10].

(2) The interactive transformation engine, which incrementally maps specifications into implementations
{4,8].

(3) The devclopment-structuring language PADDLE [6]. PADDLE allows a developer to record his
development as an executable program. This program can be run during maintenance to automati-

cally produce portions of the original development. We will discuss PADDLE in more detail in later
sections.

1.2,]1. Specification in TI

The T1 approach to program development involves mapping a program specification written in a high
level specification language into the implementation of an efficient compilable algorithm through a

predefined set of correctness preserving transformations.

The TI model supports the evolutionary approach to specification construction. Specifications do not
spring to life in their full glory, but evolve from incomplete and ambiguous forms into the desired final
problem description (see [11] for a discussion of the intertwining of specification and implementation).
Because Gist is an operational specification language, specifications can be executed and the results used

to validate that the specilication meets the user's intentions or point to portions of the spec which require

Page 4

further elaboration.

1.2.2. Implementation In TI

The effects of transformation application in TI can be classified as mapping specification freedoms found

in Gist into objects and operations which exist at the implementation level.® The mapping process may

involve mapping operational freedoms, informational freedoms or efficiency freedoms.

Using PADDLE, the specification writer defines the tasks or goals that he wishes to pursue. He then
specifies what subtasks must be accomplished to complete the tasks. This process continues until he
defines the primitive transformations to be applied to the program. The application of a transformation
produces a mew program state. The final development is a series of transformation applications leading
from the initial specification to the desired implementation. The development is structured by the tasks

the user defined along the way.

1.2.3. Maintenance in TI

The development process, whether manual or automatic, spreads information throughout a program.
What was local and understandable in the spec becomes splintered, smashed 2nd diflicult to understand in
the final program. This directly affects the case of modifying a program and leads to much confusion
among managers and programmers: what appears to be a trivial change at the specification level fre-

quently turns out to be a diflicult and error-prone task at the concrete program level.

In TI, maintenance is shifted from the final optimized code to the program specification. That is, a change
in the problem is made as a change to the specification. Each time such a specification change is made, a
new development is produced by repeating the mapping process. Because PADDLE allows the user to
document his development, the potential for reusing a past developmnent in a new situation is much
enhanced. In particular, PADDLE allows the user to transform a development! to add, delete or modily
sections to correlate with the mew specification. Note that the treatment of the development as just
another program allows the application of the same machinery defined to handle a specification program,

a powerlul generalization.

1.3. Adding automation to the T1I Model

In the TI model as implemented by PADDLE, the user is responsible for defining the task and sub-task
structure, as well as deciding what transformations to apply and where to apply them. The machine is

responsible for record keeping and faithful application of transformations. While this model forms the

MWe will discuss Gist freedoms in mere detail in later chapters. For now, a freedom can be viewed as 2 specification construct
that avoids implementation or efficiency concerns.

*Primitive transformations in PADDLE are akin Lo editing steps. Heace, it is up to the user Lo define * higher level” transfor-
mations that preserve some property (correctness, consistency). In this case, it iz up to the waer to insure that a chapge to ope part
of a specification i consistent with the remaiing portions of the development. In section 6, we will discuss this issue farther,

Page 5

right formal foundation for an automation efort, it does not address some sticky issues. We will discuss

these issues in this section.

1.3.1. Process Formslization

Much of of the work in complex problem solving domains such as software development involves 1) for-
mulating the right goals or tasks to pursue, 2) finding the right strategies or plans for refining them into
more manageable subgoals, and 3) finally manipulating the domain cbjects (e.g., programs) through primi-
tive operators {e.g., program transformations). For example, one high level plan for achieving the goal
"implement this Gist specification” is "first ind implementztions for all data structures, and then work on
implementing actions”. Plans of this type are far removed from actual program transformutions; many
intermediate problem solving steps must be generated before even the first change is made to the pro-

gram.

If we wish to formalize the problem solving process, we must define a language for 1) stating particular
problems (goals), and 2) building plans for solving those problems (achieving those goals). PADDLE pro-
vides the framework for stating goals and plans, but not the goal language and plans themselves.

1.3.2, Detall Management

Qur experience with transformational developments [4,8,9] has produced an important result: many of the
transformation steps are not the interesting and clever optimizations we rely on from expert designers, but
the mundane preparatory and clean-up steps which are the fller between. Often, the attention which must
be paid to these burdensome steps distracts a designer from the more important optimizations that lead to
real performance gains. We would like the the machine to automatically select and apply entire sequences
of low level transformations to meet some higher level development goal.

1.3.3. User's Role

Our experience is that the complexity of a transformational development requires a high degree of auto-
mation. The machine should help organize the development and automate as much of it as its knowledge

base allows. This bhas several aspects:

° The catalog of development techniques must not orly contain the tactical knowledge embodied in
program transformations, but the strategic type of knowledge useful for organizing larger chunks of

the development.

° We nced the ability to identify and collect the set of tactics or strategies useful in achieving some
development goal. The catalog of development methods can be expected to both grow large and be
modified often as new methods are added, old ones deleted and others updated. Even with cleverly
constructed names, manually searching a large catalog of transformations for ones that are applica-

ble to the current development task is both tedious and error-prone., Note the irony here: as the

Page 8

machine becomes more knowledge rich through the addition of more transformations, the partner-
ship as a whole becomes weaker because of the the user's increasing difficulty in scarching the cata-

log for the set of applicable transformations.

. As a catalog grows, we would expect many candidate methods to be available for achieving a partic-
ular goal. Selecting the best ane to apply is generally a non-trivial task, and cne that the machine
should participate in.

1.3.4. Documentation .

The record of the development process is expected to be used by other TI tools. For example, a mainte-
nance tool might nced to determine the relationship between two steps in a development: is cne a
preparatory step for the other; are both sub-components of some higher level plan; are both totally
independent; can one be replaced by another? Answers to these questions will allow the tool to decide
whether parts of the original development can be reused given changes to the original specification.
Answers will come from the planning structure that overlays and rationalizes the actual program transfor-
mation steps. This includes the goal/sub-goal tree and the selection criteria at each node. The more of
the development process that remains in the user's head, the less effective will be other tools relying on
the development history. PADDLE captures a portion of the planning space, the tasks explicitly defined
by the user. Our goal can be more ambitious: by automating the development process, we capture all sys-

tem problem solving.

In summary, a transformational development is lengthy, and contains many low level steps. In general,
the transformational development model is only partially formalized and documented, and practically
unautomated. The modecl presented in this paper addresses these problems by extending the TI model to

include an automated partner.

2. A sma!l example

In this section we will look at the development of a problem specified in Gist.® The English description of
the problem, the control of a postal package router, is as follows:

Consider a routing system for distributing packages into destination bins, The topology of the system is a
network consisting of a source, plus a set of binary switches connected by chutes, terminating in bine. Fig-
ure 2.0 depicts this graphicaily. Packages move through the network by gravity feed. A switch setting may
be changed only when the switch is empty. Packages may bunch up, and hence prevent a switch from being
set until the entire bunch passes through. Finally, the destination of a package can only be physicaliy
sensed when it is in the source station (i.e., when it first enters the network) and when it reaches a bin;
switches and chutes have no sensors for determining package destination. Howevee, the presence of a pack-
age in a chute or switch can be sensed. The problem is defining o switch controller that will minimize
package misrouting.

EWe will use a atylized version of Gist to avoid introducing detailed syntax, See [9] for a more complete description of Gist.

Page 7

T ——

e

chute

switch

e —————— bin

Figure 2.0: Package Routing Network

Glitter was used to develop the router specification into an implementation that controls the switches of
the network. Here we will look at a snippet of that development. While the main points will be anno-
tated, it is not expected that the reader will be able to follow all of the details of the development; our

purpose is to give a flavor of a Glitter development session. Sections 3-5 will provide more detail.

To summarize briefly, the objects in the router domain are packages, chutes, switches, and bins. The
operations are putting a package into the input chute, and changing the setting of a switch. Assume that
the package-router specification-writer decided to include a specification of the entire sequence of packages
that have ever entered the router, ordered by their arrival time. Suppose this sequence was to be called
PHIST (short for PACKAGE_HISTORY). Below is a stylized Gist representation of this sequence.

relation PHIST{packages | sequence of package)
definition packages = (sequence of package) ordered wrt LOCATED_AT(package, source)

relation LOCATED_AT(package, location)

The definition of PHIST contains several specification freedoms. First, it is a derived relation: it defines
packages in terms of other data, namely the relation LOCATED_AT. Second, it makes use of historical
reference: the ordering of packages is by their arrival time, a past event. Finally, it makes use of an
efficiency freedom: there is no need to know alf of the packages that have entered at any one time. That

Page 8

is, certain portions of the specification (which have been elided) reference pieces of PHIST, but no portion
requires the entire history; the specification writer has overgeneralized to promote clarity. All of these
freedoms must be removed or mapped away during the development process. We will use Glitter to carry

this out.

2.1. Start of sesston

Given a Gist specification to develop using Glitter, the organization of the development must be deter-
mined. This translates into deciding what order Gist statements should be tackled, i.e., in what order
freedoms should be mapped away. Decisions made here can be crucial to both the success of a develop-
ment, and the difliculty producing it. For instance, dealing with non-determinism before unfolding con-
straints can lead to with much wasted effort (London and Feather [9] look al this in more detail). While
we hope to automate this ordering process at some time, it currently falls into the realm of insightful rea-
soning that we have placed with the user. Hence, as part of the user/Glitter partnership, the user is

responsible for overall development organization.

Suppose that the user has decided that the relation PHIST is ncw ready for development. To use the
Glitter system, he must have a means of stating this goal. Glitter supplies the user with a goal vocabulary
for stating development goals. The vocabulary is discussed in detail in section 3. Here we will assume that

the user chooses the Develop goa!l from the vocabulary:

>Devclop PHIST®

As can be seen above, 3 goal may take an argument (more than one is possible). Arguments can be names
of objects in the Gist specification, or other development related information, The system responds by
finding methods for achieving the develop goal. To do this, it searches through its catalog of development
methods. This catalog captures our current state of knmowledge of software development using the
Transformational Implementation approach. Each method in the catalog is indexed by the goal that the
method helps achieve. Here, Glitter collects together all methods that are indexed by the goal "Develop”,

Note that the Develop goal is high level (the highest currently): it requests simply that a Gist statement
be mapped into a suitable implementation without specifying how this is to be done. We would hope that
the methods associated with this goal would also be high level or strategic in rature, and general enough
to be applied across statement types. In fact, this is exactly what we have found: a small set of strategic
methods is capable of handling most of the Gist statements that occur as arguments to the Develop goal.
This finding is quite encouraging. It leads us to believe that our method catalog will not grow to prohibi-

tive dimensions, at least at the high end.

Glitter will find at lcast the following methods applicable to the development of PHIST: 1) a method that
attempts to delete all or portions of a specification statement, 2) a method that maintains a derived rela-
tion, and 3) a method that rederives a relation on demand. We will call these methods DELETE, MAIN-

®The system’s prompt is *>". Anything following i nser typein.

Page 9

TAIN, and REDERIVE respectively. DELETE is motivated by the knowledge that a specification writer
will often include Gist statements that are a help in writing and understanding the specification, but have
no real use in the implementation. Such statements may specify redundant or unused information. As we
shall sec shortly, PHIST overgeneralizes the package history; it includes unused information. However,
the inciusion of PHIST in the specification is in no way erroncous, or even bad style. PHIST allows a clear

description of the problem without getting bogged down in efficiency concerns.

The remaining methods, MAINTAIN and REDERIVE, are gencral methods for implementing Gist rela-
tions. Clearly these two methods should not be the first choice if the DELETE method can be employed
here. That is, if PHIST is used in the specification as an understanding aid, then we should delete it now
and move on to the next problem. Else, we should get to work on implementing it. Who will decide?
Glitter contains a catalog of selection rules for choosing among competing methods. When all appropriate
methods are gathered, Glitter finds all sclection rules that might help in choosing among tiem. Each rule
is applied to deny or support one or more of the competing methods.

In the case at hand, we wish to first know whether DELETE can be employed. Deciding whether a par-
ticular statement will be either redundant or unused in the implementation is not an casy task for cither
human or machine. Current selection rules exist for answering the question for very specific instances. One
such rule deals with deleting relations that define a sequence of objects (which PHIST does). A para-
phrase of the rule is

IF 1) a method M attempts to delete a relation X
2) X is not referenced anywhere in the specification
THEN M will be successful

Note the analysis that must be performed to show that the antecedent of this rule is true. First, the rule
must determine that PHIST is a relation. This analysis can be done easily by either human or machine by
looking at the definition of PHIST. Next, the rule must search the specification for references to the rela-
tion. This process is quite tedious and error-prone when done by a human. At least one of the advantages
of encapsulating selection knowledge in Glitter is the automation of mundane analysis problems, e.g.,

searching for references, objects, actions.

Does the above rule help us in our current selection? The first clause is true: there is a candidate method
(DELETE) that, if chosen, will attempt to delete a relation (PHIST). The second one isn't: there is one
reference to PHIST, shown in figure 2.1.7 Hence, this rule can conclude nothing zbout the method
DELETE. However, there does exist a more specific rule dealing with deleting sequences. It can be para.

phrased as

TNotation: obj all represents the value of the attribute (att) of an object (obj). The notation relf ¢} ropresents the value of the
statred argument, in 2.1 the sequence of packages

Page 10

IF 1) a method M attempts to delete a relation X
2) X is a derived relation that defines a sequence S
3) only the last-minus-N element of S is ever referenced
THEN M will be successful (only the end of the sequence is needed)

In the case of the router specification, the specifier used the sequence defined by PHIST to keep track of
all packages that have entered the router. We can conjecture that he was not sure whether all would be
needed when writing the specification, but at least some history would be required by other parts of the
specification. Given the entire history, other' portions of the specification could pick out what was needed.
Notice that this is contrary to what we are taught as programmers. At the programming level, we are con-
ditioned to be economical in both space and time. Whatever the reason for defining PHIST, it leads to a
clear description, and hence is quite proper at the specification level.

;nwhen a new package enters the network, hold it up if its destination is not
;iithe same as the previous package. This helps cut down on bunching, and hence misrouting.

i/ package.new:destination 7 [package preceding package.new in PHIST(*)):destination
then WAIT:

Figure 2.1: reference to PHIST

Lets look at the type of analysis performed by the new rule. Again, checking that PHIST defines a
sequence can be done by looking at the definition. Evaluating the third clause — whether only the last-
minus-N element (N=1 in this case) is referenced — is much more difficult. For the system to answer
correctly (i.e., yes, it is last minus 1} in the router case would require an eight step reasoning process Lhat
is beyond the capabilities of the current system. However, following the partnership model, the system
should do as much of the mundane analysis as possible. In this case that means finding each reference to
PHIST, and verifying with the user that each reference is to the same element.

To reiterate, the system finds all references; the user verifies that each references the same relative posi-
tion within the sequence. Since the left hand side of the rule evaluates to true, the right hand side action
is taken. The only action currently defined for selection rules is that of adding a positive or negative incre-
ment to the weight of one or more methods in the candidate set. After all selection rules have run, the
method with the highest weight is chosen for application.? Hence, the above rule will add some positive
increment to DELETE’'s weight. Other rules will fire, and weight MAINTAIN and REDERIVE accord-
ingly, e.g., maintaining the sequence is straightforward (other than size comsiderations), rederiving the
entire package history on demand is at best intractable. The final outcome will be the system’s selection
of the DELETE method.

BThis i» a simplification. The system actually looks for a clear cut winner, one whose weight is far above all others. Failing
this, it attempts to do more detailed tie-breaking.

Page 11

The DELETE method simply states that to achieve a Develop goal whose argument is X, try achieving a
Delete goal (another goal from Glitter’s vocabulary) whose argument is X. In other words, you may be
able to achieve a more general goal G1 by achieving a more specific goal G2, When the DELETE method
is applied by the system, the delete goal becomes a subgoal of Develop.

We have now completed one cycle of the system: 1) post a goal, 2) find all applicable methods, 3) find all
rules that help select among them, 4} apply the rules, 5) choose and apply the best method, 6) post new
goals and repeat. Figure 2.2 represents this model graphically.

UL
0o

Initial
Problem
Solving Stale

State (D)
s G S
(3,..0) (O
O O

o et e e o e 3 @ & W0

Method Selection
Catalog Rule
Catalog

Figure 2.2: Glitter model

Note the automation lever here: the user posts strategic goals in the outer loop; for cach goal, the system

finds methods and transformations to achieve it in the inner loop. The final output is an exploration tree,

Page 12

where each branch is an or-node, i.e., sibling nodes are altcrnative refinements of the parent node. Each
node contains the current Gist program, and a record of the problem solving state that produced it. A
development is a path from root node to leal node. The next three sections focus on the major com-
ponents of this model: goals, methods, selection rules.

3. Goals: the Development Vocabulary

The next three sections discuss the three major components of the Glitter system: goals, methods, selec-

tion rules. In this, the first, we look at goals.

In the Glitter model, the user is responsible for guiding a development by providing development goals.
The system is responsible for providing the steps which achieve those goals. In this section we look at the
Glitter representation of development goals, what development concepts goals must represent, and how

the goal vocabulary may be extended.

3.1. Goal Representation

A goal descriptor as the formal nolation for statirg development goals in Glitter. A goal descriptor con-

sists of a unique name,” 2 set of typed parameters or slots, and a predicate which tests whether the goal
has been achieved. The goal predicate pravides the semantics of a goal descriptor. It may be called on to
monitor either a pattern or feature becoming manifest, or some action completing. Note that in the
former case a development goal has a life of its own, independent of any method application. That is, the
completion of a method indexed to a goal does not automatically mark the goal achieved; a goal is
achieved only when its predicate becomes true. This allows the flexibility of incremental achievement by
the combination of several method applications (c.f., means-ends analysis).

Diagrammatically we have
Goal <unique name>
Slol-1: < Gisl construct>
Slol-£2: < Gist construct>

Predicate: <lisp code>

3.2. Characterization of the TI Development Space

The set of goal descriptors define the type of development problems that the system can work on. In the
development of Gist specifications using Transformationa) Implementation, the major concern is with
mapping away specification {reedoms to produce efficient code. In general, there are three freedoms that

we must deal with, information, operation, and efficiency (see [10] for related discussion).

We have chosen names which connote action for stylistic reasozs.

Page 13

3.2.1. Mappling Information Freedoms

In a Gist specification, what information is necessary may be specificd without describing how it is to be

computed. The mapping choice can be one of two general stralegies:

° Maintain the necessary information explicitly. That is, store its initial value and incrementally main-

tain it as the program executes (cf. [12]).

. Unfold the code necessary to rederive the information at each place that makes use of the informa-

tion. .

In scction 2, we saw two manifestations of these strategies in the methods MAINTAIN and REDERIVE.

The corresponding goals are

Gosal MaintainInformation
Slotl: a relation

Goal Derivelnformation
Siotl: a relation

3.2.2. Mapping Operation Freedoms

A Gist specification may contain non-deterministic choice points, which allow the specifier to indicate
equally acceptable alternatives. The constant companions of non-determinism are copstraints, which
allow the specifier to declaratively state the limitations of the system. A specification denotes a set of
behaviors governed by its constrained non-determinism. There are two basic strategies for dealing with

constrained non-determinism;

o Backtrack by unfolding a constraint at each place in the program where it might be violated. If the
constraint is violated then control backs up to the most recent choice point and a new choice is

made.

® Predict which choices will lead to violation and don't choose them, i.e. generate only ones that
satisfy all constraints. A general technique is to map the constraint into a demon which watches for
potertial violations and takes appropriate action to insure they don’t occur. We use this type of
control in the package router development. A related technique is to change a backtracking control
into a predictive control by moving constraints into choice points. The development in |8] uses this
strategy (see also [13]).

The following goal, among others, deals with constrained non-determinism:

Page 14

Goal Reformulate
Slot1: 2 constraint
Slotf: <demon template>

Note that as specified, the above goal is specific to handling constraints. In reality, it is more general:

Reformulate will accept any Gist construct in its first slot, and any template in its second.

3.2.3. Mapping Efficlency Freedoms

There are two elliciency concerns that must be dealt with. The first centers on Gist's role as a problem
description language. A problem description should contain what ever information is necessary to convey
the objects, operations and constraints of the problem. In particular, a Gist specification writer need not
be concerned with the eflicient ordering of operations,'® the elimination of unneeded (e.g., redundant,
unused) information or operations, the sharing of information or computations among program paris.
Only if any of the above make the problem description less clear should action be taken to remove them,
before development commences. The relation PHIST introduced in section 2 is 2n example of a Gist
efficiency freedom. Once development started, it was recognized that the relation was unneeded, and
hence it was deleted.

The second cfliciency concern is the choice of concrete representations for abstract Gist constructs, For
example, is it more cflicient to maintain a derived relation or rederive it on demand? [s it more efficient to
backtrack when a choice is made that violates a constraint, or only generate those choices that do mot
violate the constraint? This type of efliciency knowledge resides in Glitter’s selection rules, which are dis-
cussed in section 5. In this section we deal with only the first efficiency concere, mapping away efliciency

freedoms.

Glitter supports three basic efliciency freedom mappings:

° Efficient ordering of operations by making non-deterministic control deterministic and resequencing
actions.

° Removal of unused information or operation structures.

. Sharing of like parts among compound structures by consolidation and factoring.

These clearly do not cover all efliciency concerns. For instance, [14,15] prescribe a set of techniques for
squeezing the last ounce of power from a program. Because these techniques are based on having a con-
crete algorithm in a standard programming language, we expect that they will be applied after the
development process.

Some examples of Glitter goals dealing with mapping efficiency freedoms are given below:

YClearly if the problem itsell calls for a particular ordering then the specification must reBect it.

Page 15

Goal Determinize
Slot!: a non-deterministic action A

Goal Delete
Sloll: a Gist construct C

Goal Consolidate
Slotl: a construct C1
Slot2: a construct C2

3.3. Other Development Concerns

The mapping away of specification freedoms can bLe viewed as the flashy part of a development. Unfor-
tunately, there are other mundane chores that must be performed 2s well. These include, cstablishing
applicability conditions on correctness-preserving transformativns, transforming the program into a state
where another transformation can be applied, simplifying the program, restructuring the program to ease
development. Each of these concerns must have an associated goal vocabulary.

3.3.1. Applicabllity Conditions

Most Glitter methods rely on some program or domain property holding before they can successfully be
applied. A large portion of the development may be committed to showing these applicability conditions
hold currently or making them hold if they don’t. The DEDALUS system [16] automates this process
through the use of an automatic subgoaling mechanism. Barstow [17] further speculates on the automation
of condition proving in a knowledge-based system. The freedoms afforded by Gist make the construction
of a general purpose property prover an unlikely prospect in the foresceable future. Glitter currently has
no automatic means of proving the applicability conditions of methods, hence it becomes the purview of

the human hall of the partnership.
There is a single goal defined for stating conditions:

Goal Show
Slot!: a predicate P

The achievement condition for the Show goal is a Glitter-defined function called PUNT. PUNT specifics
that an instance of the goal is achieved only when explicitly stated by the user. Here, it is up to the user
to determine if P can be shown to hold, and tell the system to mark it as such.

Page 16

3.3.2, Jittering

We define jittering!' to be the process of transforming the current progran state to match the state
required by some devclopment method. Typically, we decide that we wanl to apply some method M that
is inapplicable in the current state. We jitter the state until M can be applied.

In Glitter, jittering is made part of the overall problem solving process. Jittering subgoals arc posted
automatically by the system, and methods are defined [or achieving them. The jittering vocabulary pro-
vided by Glitter is an offshoot of some earlier work on a means-ends problem solver for Ti [18]. Some

examples from the jittering vocabulary follow.

Goal Equivalence
Sloil: a construct C1
Slot2: a construct C2

Goal Swap
Sloti: a construct C1
Slot?: a construct C2

Goel Reformulate
Slgtl: a construct C
Siot?: a template T

3.3.3. Simplification

As a Glitter development progresses, the intermediate forms of the program tend to become messy and
hard to read. A major part of this has to do with the movement of code from one context to another.
Newly introduced code, in combination with its surrounding environment, can often be simplified using

low level rewrite rules. Typical rules include

{and ... false ...) = false
(or ... true ...) = true
(not (not P)) =% P

If P then Aelse A=A

There is a deletcrious interaction between jittering and simplification. Methods used to achieve a jittering
goalwill often change the program into unsimplified states as part of their means of satislying the goal. In
other words, they may move one step back to move two steps forward. If simplification is carried out alter
every step, then the effects of some jittering will be lost, i.e., a method will jitter, a simplification miethod
will anjitter, and hence the jitter goal will never be achieved. For example, a jittering goal may be posted
to change an action statement into a conditional {because some other method only works on conditional
action statements). There is a method in the catalog that can be paraphrased as

Current usage is now conditioning. However, we will atick witl the older term

Page 17

EmhbedInCond: aclion = If true then aciion

However, there is also the following simplification rule:

TrueCond: I true then action = aclion

Systems that apply simplification rules immediately after all development steps {see for instance [19]) can-
not allow the above type of jittering. Glitter finesses the problem by requiring explicit application of

simplification steps, i.c., the user must post a simplification goal to activate simplification rules.

3.5.4. Pragmatlcs

Part of the development process involves practical organizational issues. For instance, breaking a com-
plex expression into a number of simpler cases may facilitate further development. Regrouping = set of
scattered objects may make the specification easier to read. Both of these address not program efficiency,

but problem solving efficiency, whether it be by human or machine.

Casily is an example of a pragmatic goal, which breaks a construct into smaller cases:

Goal Casify
Slot!: a construct C

3.4, Robustness

We view the robustness of the system as the freedom given the developer in carrying out the development

task, There are several aspects to this:

(1) The user should be able to move among all descriptive levels, from stating abstract mapping goals

to naming particular transformations to be applied.

(2) The user should not be restricted to a particular development organization arbitrarily imposed by
the system. The current system errs in the other direction by providing minimal organizational gui-
dance.

(3} There may be two or more equivalent ways of viewing a problem. Given that the goal language
supports multiple descriptions, a means of mapping each onto the known development techniques is
needed. Both Mark [20] and Mostow [21] discuss related problems.

(4) Glitter provides general, domain-independent mechanisms. A means of incorporating domain-specific
information into a development should also be provided.

Page 18

Each of the above is supported by Glitter. The first relies on the Glitter goal vocabulary as we've
presented it, plus two more descriptors for gaining more fine grained control of the system. In particular,
Glitter supplies a Use goal descriptor which allows the user to name 3 particular method to invoke, and a

Manual goal descriptor which allows the user to manually edit the program.

For the second item, organizational restrictions, the user is free to choose the portion of the specification

to work on, and as in (1}, the level.

The third item relies on having a set of "translation” methods that map alternative task descriptions onto
the known techniques. While it is hard to say that the current system has a complete set of such methods,
the current sci has been suflicient for the developments studied. Because it is easy to add new methods to

the system, we see no problem adding new translation methods as they become necessary.

The last item deals with the inclusion of domain-specific information within the development. 1t is likely
a development will involve goals specific to {hat development or application. For instance, in the package
router problem, the user may wish to post a goal OptimizePackageUsage. Glitter provides the user with 2
facility for defining development-dependent goals, such as th's, which remain defined throughout a partic-
ular development. User defined goals take the same form as Glitter goals. Their construction is carried out
interactively at the point in the development where they are needed. Because user goals are no! indexed
into the method catalog, they serve only as a development structuring and documentation aid. They allow
the user to tie application-related steps together into ad hoc methods. Once a domain-specific goal G has
been posted, all subsequent goals posted become subgoals of G until the user marks G as achieved
(domain-specific goals all are defined with the PUNT achievement checker; see section 3.3.1). The use of
ad hoc goals both organizes a development, especially when a large number of steps are necessary to carry

out some task, and documents the problem solving process for maintainers of the system.

4. Development Methods

In the previous section we looked at one component of the Glitter problem solving maodel, the vocabulary
for stating development goals. In this section we look at another component, the methods necessary for
achieving those goals. We will first present the important properties of representing development
knowledge in the T1 domain. Next, we will present Glilter’s method representation, and demonstrate how
it can be used to capture development knowledge. Below is 2 summary of the major points made in this
section.

Knowledge should be aceessible.

Given a large catalog of development methods, finding all methods which might be useful in achiev-
ing a goal becomes a major problem. Searching such a catalog by hand is both tedious and error-

prone. Glitter provides an automatic retrieval system based on goal indexing.
The entire planning epace must be covered.

In Glitter, methods must represent knowledge about the manipulation of not only the program space

Page 19

(i.c., transformations), but the problem space as well, e.g., goal reduction, subgoaling.

In many cases, a chosen method is not direcily applicable in the current stale, i.e., jitlering is neceazary.
Glitter methods provide explicit subgoaling to reach a matching state.

The method represeniation should be analyzalble by other componentis of the sysiem.

In particular, Glitter's selection rules require inforraation about competing raethods including the

actions they propose to take, and the particular goals that triggered them.

4.1. Knowledge Accessibility

Given a problem description (devclopment goal), we would like to find aff relevant methods for solving the
problem. A system that forces the user to manually search a catalog is both wasteful of the uscr's time

amd error-prone, i.e. relevant methods are often overlooked.

In Glitter, each method is indexed to a particular development goal. When a goal is posted, all methods
indexed to it are are formed into a candidate set. Note that this type of indexing is geared towards prob-

lem solving; it may be inadequate for oither browsing type of activities:

° A catalog maintainer may wish to peruse the method catalog for methods that have a certain appli-
cability condition or employ some technique. The CHI system [22] allows a user to retrieve methods
by content, e.g., "Find all transformations which contain X in their left hand side”, "Find all

trapnsformations which rely on property P".

) A developer may be interested in all of the methods which became applicable after a certain pro-
gram change was made. The DRACO system [19] uses mefa-rules to derive information about which

new transformations will be applicable after a particular transformation has fired.

We view both of these capabilities as useful extensions of the current Glitter system. Both rely on a

form of representational transparency discussed in section 4.5.

4.2. Adding new knowledge

As our experience base grows, new development knowledge will need to be added to the catalog. There

_are_several aspects_to this. First, there is the problem of consiructing a method to capture a needed piece

of development knowledge. This is a problem of a) providing the necessary representational power, andT)

defining method-building materials, which allow for quick construction.

The second aspect is what McDermott refers to as sdditivity [23]: the ability to incrementally add new
knowledge to the.system and show that the new knowledge will be used at the appropriate times. In sys-

tems_like_TI, where the user is responsible for searching the method catalog, the addition of each new

mcthod slightly reduces the likelibood of the user collecting all methods applicable to a given goal. That

is-as-the-catalog increases, the additivity property decreases,

Page 20

In Glitter, a method is defined as an independent picce of development knowledge, and interfaces with the
system as a whole through its goal index. Hence, once a method is added, it is immediately usal, - by the
system. However, additivity based on knowledge independence comes at the price of problem solving
efficiency. Other systems use 1 more tightly coupled form of knowledge in an atlempt to cut down on
search [10,24,25]. They pay the price in additivity: the addition of new knowledge to these systems

requires a re-organization of the knowledge base.

4.3. Coverage of the development planning space

Glitter's methods must represent both knowledge about ways of manipulating the program space and

ways of manipulating the problem space. An example of the latter is the following:

DivideAndConquerDemons:
If you wan! to implement a complex demon then Ury splitting it inlo several
simpler demons and implementing each individually {i.c., post a Caeify goal).

An example of the former is:

SplitConjunctiveTrigger:
If you want to eplit ¢ demon inlo sfmpler cases and the demon hes a
conjunctive trigger then apply transformation Split Trigger.

The first method reduces a difficult goal into severa! simpler goals, i.e., it transforms the problem space,
The second method replaces a2 demon with two or more new demons, i.c., it transforms the program space.
In practice, the second achieves the Casify goal posted by the frst.

4.4. Automatic Jittering

Once a user finds a transformation he would like to apply, it is often the case that the transformation’s
left hand side does not match the current state exactly, i.e., subgoaling ié__ﬁecessari.- Glitter provides for
this. In Glitter, given that a particular method has been judged appropriate for achieving the current
development goal (i.e., selected by the user or the system’s selection process), jittering steps necessary to
apply the goal will be automatically generated.

The chronology of building an automatic jittering capability in Glitter is of interest. A predecessor of

Glitter called the Jitterer [18] used a GPS style control structure to automate jittering. In this system, {he
user was responsible for choosing a transformation to apply. If the transformation did not apply, the sys-
tem passed the transformation’s left hand side pattern and the current state to a system called the
Dillerencer [26], which produced a set of difference descriptions which could be viewed as low level editing
commands, e.g., "delete these three constructs and add this one”, commmute these two statements”. These

commands, when applied to the current state, would edit the program into a state that matched the left

Page 21

hand side pattern. i.e., a state from which the transformation could be applied. The problem was how to
map the Differencer’s output onto a sequence of transformations which would actually produce the neces-
sary correctness-preserving changes. Tlie Jitterer's approach was to attempt to translate the description
produced by the Differencer into higher level development goals {the forerunner of Glitter's goals). Each
transformation was augmented with one or more goals which provided the necessary indexing. Hence, once

the translation process was complete, the relevant transformations could be gathered.

There was a major problem with this approach: the translation of the Differencer’s output into higher
level development goals was not practical as a general approach in Gist developments. That is, the
language necessary to describe the changes produced by a T transformation in a Gist development (e.g.,
mapping, casilying, information movement} was at a much higher level than the Differencer’s descrip-

tion.!?

Because of the above problem, a way to eliminate the need for a differencinyg engine in the jitterering pro-
cess was needed. The solution, as embodied in Glitter, was to make each individual method responsible
for the jittering necessary to apply it. In the Jitlerer, the Differencer's role was to produce a set of
"goals”, which when achieved would leave the program in a state where the method transformation was
applicable. The problem was that the goal language was not at the ievel of the transformations which
must achieve them. Glitter's approach is to have each method post the goals needed to produce its pat-
tern, independent of the current state. Thus, each method is responsible for posting a set of goals which
will change the current state into the necessary form. The method must be prepared for the worst case
where all of the subgoals may be necessary; often one or more of the goals will be achieved trivially in the
currenl state, i.e., the current state will partially match the pattern. In some sense, each method can be
viewed as having its own built-in differencer. Using this approach generally results in rup-of-the-mill
backward-chaining control. However, as described in section 3, Glitter goals are independent of methods

and allow a more general GPS type of control if necessary.

The next three sections describe some further aspects of Glitter's approach to jittering.

4.4.1. Eagerness

Given that method M has been selected as the method to employ in achieving goal G, then M should be
eager to apply itsclf. If the program is not in the right state, then part of M's actions will be to remedy
the situation by calling for the necessary jittering steps {posting the necessary sub-goals). As an example,
suppose we are given a method MergeDemons for consolidating two demons with_the same trigger into a
single new demon:

%We have stressed the word general above. There are many cases of Jittering during a development where the necessary
changes are of a mundane low level variety. For example, jittenng logical or arthmetic expressions often involves changes closely
matched to the Differencer’s description.

Page 22

MergeDemons:
Given two congiructs DI and D2, if DI and D2 are boil demons and have the
same trigger and the same local variables then they can be consolidsted into a single
demon,

Suppose that this method has been sclected to consolidate two constructs S1 and §2, i.e., D1 is bound to
S1, and D2 to 52. An eager MergeDemons would do the following: 1) if S1 or 52 are not demons then
change them into demons, 2) if the two triggers are not equivalent then make them cquivalent, 3) if the
local variables are nol equivalent then make them equivalent, and finally 4) replace the two demons with

a consolidated third.

Note the importance of the method selection process here: the philosophy is that if M is selected then M is
the best candidate for the job and is set free Lo change the program in arbitrarily complex ways to reach a
desirzd state. The selcction process becomes an important filter in weeding out unlikely methods, and
henre, potentially costly cxcursions down wrong paths. In effect, we have moved the burden of determin-
ing method applicability from the methods themselves to the selection engine. Section 5 discusses the

system’s selection knowledge in more detail.

4.4.2. Restraint

A positive consequence of the eagerness property is a collection of methods with wide applicability, That
is, methods can represent general development knowledge without being tied to specific cases. Another less
desirous property is that when a development goal is posted, the sel of methods competing for attention
will generally include ones that are unfeasible or unlikely to achieve the particular development goal, i.e.,
overcager methods. We have mentioned the need for a strong selection mechanism to combat this prob-
lem. We may also be able to add local knowledge which will filter out a method under certain conditions.
Such filtering knowledge often has a subjective flavor since the conditions unfeasible and unlikely
currently lack precise definitions. Using the MergeDemons example, it is unlikely that the method should

be attempted if D1 and D2 are not initizlly demons: reformulation of noan-demonic constructs into

demonic ones is a dubious l-l_r-ldertaking.l"'

If a method is erroneously filtered out (i.c., overrestrained), the consequence is that the user will be
responsible for supplying enough of the jittering steps to pass the fiter test. Note that we can simulate
the non-subgoaling Tl model by adding to each method M a pattern P which represents a left-hand-side
pattern. We require that M be considered ounly if P-matches exactly against the appropriate portion of

code.

13This is an overgencralization. It is feasible to refarmalate certain structures (c.£., comstraints) into demon form. Also, if enly
ane construct 1v non-demonic then we may want to compare the method with its competitora before rejecting it.

Page 23

4.4.3. Leve! of Effort

We have described eagerness and restraint as binary choices: a method may ecither elect or reject to pur-
sue a particular subgoal. In some cases, the method may wish to attempt to achieve a subgoal Lo some
level of effort. For instance, MergeDemons may wish to try reformulating one construct as a demon ii the
other is already u demon, but only to a limited extert. After a certain amount of problem solving
resources have been expended, the method will signal abandonment. Glitter currently provides no hooks
for attaching this type of resource utilization knowledge to a method, i.e., the choice remains binary, We
view incorporating this type of knowledge into jiltering in particular, and the Glitter problem solving

engine in general, as an important future project.

4.5. Representational transparency

The Glitter problem solving model is based on the user playing an active role in development planninz.
Such collaboration requires that the human be able to follow the planning process in general and the
effects of individual methods in particular. Further, if the system is to reason about the best method to
apply in a given situation, the ability to examine the effects of ench competing method becomes crueial.
As Davis {27] points out, one powerful means of determining this is to directly analyze the content of each

method,

The internals of a Glitter method are trausparent down to the transformation application level. That s,
the fllers of each field of a method consist of componcuts with analyzable semantics. This is true for zll
but the Apply goal, which names a program transformation to apply. While we can reason that the post-
ing of an Apply goal will lead to a change in the program state, we cannot analyze what the change will
be. The method writer defines his own procedure for carrying out the application of a program transfor-

mation, The analysis of the procedure code is beyond the capabilities of the system,

In section 5, we will present examples of method analysis during the selection process. In the next section

we define the method notation used in Glitter.

4.8. Method Template

A Glitter method represents development knowledge. A method template takes the following form:

Method <unique name>

Goal: < development goal>

Filter: [< boolean expression>|

Action: <development action>
End method

In general, 2 method can be read as "il the goal is G and the following conditions hold {filtering properties
are met) then try the following actions to achieve G”. Below is a further description of each of the

method's fields:

Page 24

Goal fleld: filled with a Glitter development goal {see section 4).

Filter fleld: filled with zero or more boolean expressions. Multiple expressions are assumed to be con-
junctive. All expressions must evaluate to true if the method is to be added to the candidalc set (see
section 5.2). The filter provides a hook for non-subgoalable pre-conditions on a method (see section
4.4.2).

Actlon fleld: filled with an ordered sequence of onc or more devclopment actions. A development
action is either a subgoal to be posted, a transformation application, or the action-majping function

Sorall, which maps one or development actions onto one or more components of a struclure.

Actions are initiated after the mecthod is a) triggered, b) filtered, ¢) sdded to the candidate set and d)
chosen by the sclection engine (see section 5). When all actions have successfully completed, the method
in turn is marked as completed. A method completing and the triggering goal being achieved are
independent events. Thus, a method is not guaranteed to achieve its triggering goal. Sometimes it may
just move goal achievement closer, although no guarantee is made of this either. If the triggering goal is
not achieved when a method finishes, the system collects a new sel of candidate methods, and the selec-

Lion process starts anew..

When adding a new method to the method catalog, the construction process below is used. While this pro-
cess must be currently carried out manually, Chiu [26] discusses ways it might be automated in the
future.

(1) Translate implicit intent into an explicit development goal. Make this goal the trigger of the
method.

(2) If the method requires that the program be in a certain state before it can be applicd, define the
subgozls necessary to bring that state about. Make these part of the action portion of the method

(see ecagerness, section 4.4.1).

(3) If the method has applicability conditions attached to it then define a goal for each and make them
part of the action portion of the method.

(1) Translate the modification carried out by the method into one or more goals. Add each to the action
portion of the method.

(5) Incorporate any local constraints that are possible (see section 4.4.2). If certain instantiations of the

method are unlikely to lead to an achievement of the goal, rule them out by using the Filter ficld.

We will first apply the above method-building process to the method MergeDemons.

MergeDemons:

Given lwo conslructs DI and D2, if D1 and D2 are both demons and have the

same Irigger and the same local variables then under certain condilions they can be consolidated inlo o single
demon,

A slightly sugared notation will be used when presenting the fillers of the various method fields.

Page 25

(1) Goal definition. The eflect of this method is to Consolidale two demons (Consolidate is a built-in

Glitter Goal); this is made the goal of the method.

Method MergeDemons
Guoal: Consolidate D1 and D2
Filter: ...
Action: ...

end method

(2) Define jittering stepe. To carry out the consolidation, several things must be present in the current
siate: 1) two demons with 2) equivalent triggers and 3} equivalent local variables. Syntactically, we

can represent Lhis as (all boldfaced items are pattern variables, others are literal):

demon D1 (vars)
trigger t
response rl

demon D2 (vars)
trigger ¢
response r2

Represented as subgoals, we get the foliowing:

a. Refarmulate D1 as demon
b. Reformulate D2 as demon
¢. Egquivalence triggers of D1 and D2

d. Equivalence declared variables of D1 and D2

The system has a voeabulary for talking about portions of a Gist specification. The terms trigg-re of

and declared varicbles of are examples.

We now have

Method MergeDemons
Goal: Consolidate D1 and D2
Filler: ...
Action-I: Reformulate D1 as demon
Action-2 Reformulate D2 as demon
Action-& Equivalence triggers of D1 and D2
Action-{: Equivalence declared variables of D1 and D2
Aclion-5: ...
end method

(3)

(4)

(5)

Page 26

Subgoal on applicability condition. The applicability condition of MergeDemons is
mergeable_demons, a built-in Glitter predicate that checks whether the two responses rl and r2
can be interleaved to form the new response. After defining the corresponding Show goal {see section
3.3.1) we have:

Method MergeDemons
Goal: Consolidate D1 and D2
Filter: ...
Aclion-1. Reformulate D1 as demon
Action-2 Reformulate D2 as demon
Action-8& Equivalence triggers of D1 and D2
Action-{: Equivalence declared variables of D1 and D2
Action-5 Show mergeable_demons(D1, D2)
Action-6: ...
end method

Define effect. The program transformation we want to carry out is the construction of a new drmon
out of the old two. We define a Lisp procedure that takes as arguments the demons bound to D1
and D2, checks to make sure that the triggers and declared variables are equivalent, builds a new
demon using shared parts, and finally deletes the two old demons and inserts the new. The pro-

cedure is made the argument of 2n Apply goal.

Method MergeDemons
Goal: Consolidate D1 and D2
Filler: ...
Action- I: Reformulate D1 as demon
Aclion-£: Reformulate D2 as demon
Aclion-8 Equivalence triggers of D! and D2
Action-{: Equivalence declared variables of D1 and D2
Action-5 Show mergeable_demons{D1, D2)
Action-6: Apply demon_merge(D1, D2)
end method

Define local constraints. It is improbable that two non-demon structures marked for consolidation
will need to be reformulated into demons. That is, we can view the reformulation of a structure into
a demon as a major step and one beyond simply jittering. Therefore, we add a filter that restricts
our demon merge method to work on only demons, removing the first two reformulation goals. In
eflect we have decided against subgoaling in certain situations, Note the negative consequences of
this decision: any consolidation requiring that the constructs bound to D1 and D2 be reformulated as

demons will not trigger this method; the reformulation goal(s) will have to be supplied by the user.

Page 27

Method MergeDemons
Goal: Consolidate D1 and D2
Filter-a: D1 is a demon
Filter-b: D2 is a demon
Action-1: Equivalence triggers of D1 and D2
Action-2: Equivalence declared variables of D1 and D2
Action-8 Show mergeable_demouns(D1, D2)
Action-4: Apply demon_merge(D1, D2)
end method

The actual MergeDemons method is given below, Note that the two filters have been moved to the
goal statement, and that accessor functions (trigger-of, declaration-of) replace the more informal

descriptions.

Method MergeDemons
Goal: Consolidate D1]demon and D2|demon
Action-I: Equivalence trigger-of|D1] and trigger-of|D2}
Action-£ Equivalence declaration-of{D1] and

declaration-of{D2]

Action-& Show mergeable_demons(D1, D2)
Action-4: Apply demon_merge(D1, D2)

end method

The previous example showed a method that mixed jittering and program transformation. The second
example shows a method that operates strictly in the problem space. The method, called MaintainDerive-

dRelation, can be stated as follows:

MaintaintDerivedRelatlon:
If the goal ia to develop a derived-relalion then iry maintaining it incremenially.

The construction of the corresponding Glitter method follows:

(1) Goal definition. The effect of this method is to Develop a derived-refation.

Method MaintainDerivedRelation
Goal: Develop DR|derlved-relation
Filter: ...

Action: ...
end method

(2) Define jiltering steps. This is a straight goal reduction; there are no jittering steps.

{3) Subgoal on applicability condition. This method has no applicability conditions.

(4)

(5)

Page 2

Define effect. The effect is the transformation of the Develop goal into a more concrete goal, i.e.,

incrementally maintain the relation.

Method MaintainDerivedRelation
Goal: Develop DR|derived-relation
Action: Maintain DR

end method

Define local consiraints. There are several pieces of selection knowledge which pertain to this
method. The first involves comparing it with other competing methods such as the DERIVE method
introduced in section 2. This selection knowledge is defined in terms of selection rules, and will be
applied during method selection as described in section 5. The second piece of selection knowledge
notes that it is not useful to attempt to incrementally maintain a relation which is unchanging, e.g.,
the static relation representing the package router connection matrix of chutes and switches. This
knowledge is placed in the filter. As with all filtering knowledge, it could alternatively have been
made a selection rule, and hence part of the method selection process. We have chosen to place it in
the filter because of its clear discriminatory power. There is a drawback to this placement: statie-
ness can be moderately costly to check for. Since all filter predicates are checked before the selection

engine is invoked, there can be no control over the computation of the static predicate,

Method MaintainDerivedRelation
Goai: Develop DR|derlved-relation
Filter: non-static(DR)

Action: Maintain DR
end method

Each of the methods in Glitter's catalog was defined using sitnilar steps. Currently the catalog contains

approximately 75 methods.

5. The Selection Procesa

This section presents the third and last major component of the Glitter model, the selection engine. Dur-

ing a Glitter development, there arise various points where selections must be made:

(1)
(2)

(3)

Given one or more competing methods, we must decide which if any should be selected.

Given an unachievable goal, we must decide what previous problem solving state the development
be should backed up to,

Given an overall development strategy, we must choose the high level goals which will implement it.

We consider the definition, representation and use of selection knowledge - knowledge useful in making

the right choice in each of the above areas - a necessary component of our model. Glitter's selection

Page 29

knowledge lies in area 1; in this section we will describe how this knowledge is represented and used.
Glitter currently relies on the user to make selections in areas 2 and 3. However, {1} discusses how selec-

tions in these areas might be aulomated in the future.
Before delving into the details of Glitter’s sclection process, we will summarize the important points made
in this section:

Method selection is @ partnership lask.

The machine provides a repository of accumulated selection knowledge and is able to call it forth in
the right situations, Further, the machine will perform detailed and tedious analysis uncomplainingly.

However, insightful reasoning still falls on the shoulders of the user.
The system records ils mislakes.

The system monitors the actions of the user to detect its own selection mistakes; when the user
undoes or overrides a system decision, the system records the nccessary context to allow future

knowledge maintenance.
The problem solving struclure is accessible.

Glitter’s selection process requires access to 1) a method’s internals, 2) the current active goal, and 3)
the goal superstructure. The notion of meta-goal and meta-plan are introduced here as useful con-

cepls.

6.1. The Glitter Selection Process

In this section we present first 2 summary and then a detailed description of one stroke of the Glitter
selection engine. We will use this as the organizational basis for introducing each type of sclection

knowledge found within Glitter.

Selection Process Summary

(1) Goal G1s posted. If G is satisfied in the posting state then it is marked as trivially achieved.

(2} Initlal method candidate set is formed. Given that G is not trivially achieved, all methods that
are indexed to G, and whose filter predicates evaluate to true, are placed in the initial candidate set.

(3) Method agenda formed. Selection rules are run to form an ordered agenda of weighted candidate

methods,

(4) Method chosen from final set, and applled.

We will follow the steps in the selection process in more detail in the following sections.

Page 30

5.2, The Initial candidate set

The activation of a goal G causes several things to happen. First, a check is made on the achievement of
the goal within the current state. If G is achieved then it is marked ns such and a new goal is selected for
activation. I it is not achieved then the method catalog is searched for methods that are indexed to G. If
the filter of a matching method evaluates to true then it is added to the initial method candidate set
(what Davis refers to as the set of plausibly useful Knowledge Sources [27]). If this set turns out to be
empty the user is informed and control reverts back to him. The empty candidate set is an interesting

case which will look into in more detail in settion 5.8.1.

Ouce the initial candidate set is formed, why bother defining a further selection process? Why not simply
try all methods in a breadth-first manner (see for instance, unadorned PECOS [20]). Davis [27] gives one

answer:

Almost all traditional problem-solving structures are susceptible to eaturation, the situation in which so
many applicable knowledge sources are retrieved that it is unrealistic to consider exhaustive, unguided invo-
cation.

Depending on the eagerness of the methods {see section 4.4.1), the initial set may be saturated. However,
Davis lails to mention another aspect of method scheduling: the problem solvirg cost of applying 2
method. Even in cases where only a few methods are competing, their individual resource costs may be
large. For example, assuming that the user's time and knowledge are viewed as resources, then an interac-
tive system like Glitter must be concerned with both timely response, and knowledge utilization. Once
the user passes off a task to the Glitter assistant, he must wait for Glitter to come back before moving to
the next task. Heunce, Glitter cannot be "gone” for arbitrary lengths of time. Further, the user may need
to get involved wilh lower-level problem solving to supply information unavailable or uncomputable by
the system, e.g., applicability conditions on transformations. Using an exhaustive search, the user may be
asked to perform a number of tedious reasoning steps, few of which will may be relevant to the final

choice.

5.3. Forming the method ngenda

The next step is to from the method candidate set into an ordered agenda. This is accomplished by run-
ning selection rules. Such rules embody knowledge on how uscful a method is in achieving a particular

goal, and how it compares with competing methods. The form of selection rules is

Selectlon Rule <unique name>>
IF < selection expression>>
THEN <ordering action>
End Selection Rule

The Gelds of a selection rule are broken out as follows:

Page 31

< unique name>>: provides a unique textual handle.

<selection expression>: in general, some problem solving cvent such as a method joining the ini-

tial candidate set or a goal becoming active,

<method ordering actlon>>: a weighting or ordering action

5.4. Method chosen

The system sclects the highest ranked method from the agenda, and applies it.

If everything runs smoothly then the system will start the selection process anew, and continue until the
user’s goal is achieved. What is generated is an augmented AND/OR tree. The root of the tree is the
user’s goal (an OR node). Under this node are all of the methods that triggered on the goal, plus all of the
selection rules that were used in weighting and ordering the set. One of the methods is chosen and
applied, and it in turn will generate one or more new subgoals (an AND node). The process is repeated

with new candidate methods being collected under each goal, and selection rules run to choaose the best.

The user has complete freedom in traversing the AND/OR tree. Once gaining control, the user can move
to any node, examine what methods are competing, which one was chosen, and what selection knowledge
lead to it being chosen. At this point, the user can choose to follow (select) one of the alternative candi-
date methods. The system will generate a new problem solving context in which to explore the method.

5.5. Profiting from mistakes

Glitter is based on an interactive, partnership model of problem solving. Hence, we expect that the user
will be actively involved during development. However, our goal is to have the machine gradually take
on more and more of the development task. At least part of the knowledge shift from user to machine
will be brought about by fleshing out both the method and selection rule catalogs. This in turn will
brought about by attempting more, and a bigger variety of developments. As other developments are
tackled, we expect deficiencies in the catalogs to become apparent. As they do, we would like Glitter to
attempt to 1) ascertain what type of knowledge is missing, and 2) record the context so that the missing
knowledge can be added later.

5.5.1. Missing methods

Suppose that no methods are found for a posted goal, i.e., the initial method candidate set is empty.
There are two possible causes: 1) the goal is unachievable, or 2) one or more methods for achieving the
goal are missing from the method catalog. To determine which is the case, the system monitors the next

user action.

Page 32

° If the user next docs a manual editing operation on the program, the system infers case 2, i.e., a pro-

gram transformation is missing.
® if the user next posts a subgoal, the system infers case 2, i.e., a method reduction is missing.

® If the user switches to an alternative problem solving context (backtracks), the system infers case 1,

i.e., a deadend has been reached.

The system monitors for cach of the above. For the case that the user fills in some actions of his own, the
system records the state and actions. Frequently these actions can be generalized into 2 method or
transformation to be included in Glitter's catalog. In particular, the goals posted by the user at the top-
level are viewed as comprising an ad hoc method. Hence, ihe user’s organization of a development is
automatically considered for inclusion in the method catalog 2s a general method for developing Gist

specifications.

For the case that the user backtracks, the system records 1) the deadend state, and 2) the state back-
tracked to. At the end of development, the system computes what states 1} were backtracked to, and 2)
are also on the final solution path. These states are listed as likely candidates for stronger selection
knowledge. The assumption is that some missing {or weak) piece of selection knwoledge allowed a wrong
path to be taken intitially, causing backtracking.

5.5.2. Misslng selection rules

Suppose that the user overrides the system’s selected method. There are two possible causes: 1) the
system's choice is wrong, or 2) the user is wrong. The system assumes the former. Any time the user
overrides the system’s method selection, the context is recorded. The assumption is that either a) an exist-
ing rule added an inappropriate weight, b} a selection rule is missing that would have lead to the correct

method being chosen, or ¢) both. Currently it is up to the catalog maintainer to analyze which is the ¢ase,

5.8. Design declsions

Much of Glitter’s selection knowledge focuses on producing an efficient final implementation, i.e., the
selection of appropriate data structures and control structures to map away Gist freedoms. For example,

the following (paraphrased) selection rules are found in Glitter's catalog:

MapDerivedRelation:

Given the goal 18 to map a derived relation R, and given a choice of
masntaining R or recompuling R, choose mainienance over recompulalion
when "the cost of recompuling R” 15 grealer than "the cost of mainteining R™.

MapConstraint:
Given the goal is to map o consiraint C, avoid unfolding C when
backiracking is costly/impossible.

Page 33

Both of the above rules point out a mzjor benefit of a partnership model such as embodied by Glitter:
problem solving can be cooperative. Glitter's analysis routines are not powerful enough to evaluate the
above rules in their entirety. For instance, determining the recomputation costs of a derived relation, or
whether backtracking is possible in a particular domain is beyond the capabilities of the system for the
general case. What Glitter does do is to compute all rule conditions within its power, and then ask
focused questions of the user. In the above rules this means finding all points a relation is referenced and
changed, or finding all points a constraint will nced to be unfolded. This low level analysis is well suited

to the machine. A more concrete example is given below,

Suppose the current goal was to Eguivalence!* expression E1 and expression E2. One candidate method is

as follows:

Method Anchorl
Goal: Equivalence E1 and E2
Aclion: Reformulate E2 as El
End Method

Anchorl attempts to make two expressions equivalent by making the second conform to the first. Other
methods would be competing here: Anchor2 which makes the first conform to the second expression;
Anchor* which makes both conform to some new third expression. The selection process is particularly
important here. Each method is in some sense overeager, having no filtering kunowledge. If chosen
indiscriminately, any can lead to long detours ending in dead-end states. The following selection sule pro-

vides some discrimination:

Selection Rule BuriedlnDefinition
I 1) method Anchorl is a candidate
2} E2 is a reference {o a defined object D
3) the definition of D is reformulatable as E1
THEN: Anchorl is likely to succeed
End Selection Rule

The above rule embodies the following heuristic:

The goal is to make two expressions equivalent. A method M exists for fixing ane of the expressions (E1)
and attempting to make the other (E2) conform. It is known that references to defined objects can often be
“unfolded”, i.e., an instantiated copy of the object can replace the reference, If E2 is a reference to such an
objeet then check if the object is something that can be reformulated into EL. If so, then reward the
method M; there is a good chance of it succeeding.

Glitter can compute the first two conditions of the rule, and hence avoid asking the user questions such as

MAnother goal from Glitter’s development vocabulary.

Page 34

Is Anchor! a candidate method?

Can the body of the definition associated with E£ be reformulsted as EI?

The first question shows an assistant who is unable to amalyze portions of the its own planning space.
The second question shows an assistant who is unwilling to do inundane analysis, e.g., inding the object
that E2 references and printing it out as opposed to forcing the user to search for it. The actual question
Glitter asks the user is .

Can < object referenced by E2> be reformulated ¢ < expression EI>?

For example, suppose that the goal was to make the two expressions below equivalent:

El: not located_at{p|package, s{switch)
E2: empty{s|switch)

To evaluate the LHS of rule BuriedInDefinition, Glitter first checks to see if the method Anchorl is a can-
didate. Assume that it is. Glitter next checks to see if E2 js a reference to a defined object. Assume that it

is as given below:

relation empty(switch)
definition not E package | located_at(package, switch)

Since the answer is yes, Glitter must determine whether the body of the relation "empty” can be reformu-
lated into something matching E1. Glitter is unable to do this in the general case, and so would ask the
user to determine if the body is transformable to El:

Can

not E package | located_at(package, sjswitch)
be reformulated as

not located_at{p|package, sjswitch) ?

We expect it is possible to answer questions like the one above by machine in gpceial cases, In the above
case, a rough hewn rule might notice that the target expression E1 appears in the definition of empty. A
more polished rule might note that a negatively-quantified existential can be transformed into 2
negatively-quantified ground instance. Knowledge of this sort would relieve the user of at least some low
level reasoning; it is one type of knowledge that we expect to incorporate into future versions of the sys-

tem.

Page 35

6.7. Pragmatic Rules

Selection rules also deal with the pragmatics of a transformational development. For instance,

CasifyWhenInDoubt:
Choose a method that will break the curren! ezpression into
simpler cagea when no olher methods look promising.

MergableDemon:
If a demon D lriggers randomly, then any method thal aitempis to merge D
with another demon should meet wilh success.

Note that both of the above rules reference a method by description rather than by name, i.c., "2 method
that casifies” or "a method that merges” as opposed to specific methods like " CasifyDemons™ or "Mer-
geDemons™. Glitter's representation of methods allows selection rules to analyze a method’s fields to

answer questions like this.

5.8. Planning Rules

There is another component to Glitter's selection knowledge that relies on planning as opposed Lo pro-
gram features,]t focuses on producing an efficient development process. It uses the problem solving con-
text to avoid following circuitous routes and blind alleys. It relies on being able to analyze the current
planning state which includes 1) candidate methods, 2) the current goal, and 3) the planning history that
got us to this point, i.e., the AND/OR goal tree.

As in any problem solving domain, it is sometimes difficult to select among competing methods without
knowing the overall goal or goals being pursued. Wilensky [28] defines the notion of a meta-goal to
describe properties that we wish to hold during the planning process and a meéa-plan as an action we can

take to achieve a meta-goal.

Certain Glitter selection rules use the goal tree to detect supergoals (i.e., ancestors of the current goal)
which become easier or harder to achieve with the selection of certain methods. In Wilensky's paradigm of
meta-planning, Glitter's use of the goal trec could be expressed by the following two meta-goals:

Meta-goal 1: Avoid choosing (weight negatively) plans (methods) which cause other goals to become

more diflicult to achieve.

Meta-gozl 2: Choose (weight positively) plans {methods) which cause other goals to become easier to

achieve.

These are actually a cross between several of Wilensky’s meta-goals, including "Don’t waste resources”,
"Achieve as many goals as possible”, "Don’t violate desitable states™. Note, however, that Glitter has no
explicit representation for meta-goals; the above two are only present implicitly. On the other hand, some
of Glitter's rules do act like meta-plans. One such rule recognizes a situation where there exists a super-
goal of deleting some construct C. It rewards a method which avoids scattering C throughout the

Page 36

program, and punishes one that does. Using an analogy, suppose that Mary wants to haul (remove) a bag

of tin cans to the dump'® , but the bag is too big to fit in her wagon. She has several options:!® 1) stomp
(reformulate) the bag until the cans are fiattened to an acceptable size, 2) scatter the cans on the ground,
and use multiple trips to haul then in acceptable subsets. Mary, being a bright meta-planner, recognizes
that the second will make the job much harder, while the first is relatively easy.

6. Summary

There are four automation issues that Glitter addresses: 1) formalization of the development process, 2
detail management, 3) man/machine partnership, and 4) documented history of the development process.
We will look at each in turn.

6.1. Formalization

In using a problem solving approach, at least three things must be formally defined: a notation or vocabu-
lary for stating problems; a notation or vocabulary for describing techniques for solving those problems; a
notation or vocabulary for describing rules for sclecting among competing techniques. The question is how

well has Glitter done in defining each.

Problem Vocabulary

Glitter's gozl descriptors provide a problem vocabulary. Each goal is built to be both problem
independent, and handle a general class of development concerns. If a user wishes to state a goal that
either is problem or development specific, Glitter allows an cscape mechanism through user defined

goals, goals that can be defined dynamically as a development progresses.

A goal both draws its power, and inherits its weakness, from its Lisp achievement condition. The
power comes from using a functional language 2s the basis for describing achievement semantics. Arbi-
trarily complex conditions can be set up for defining goal achievement. The weakness comes from the
inability of the system to reason directly about a goal. Because the lisp code is opaque to the system,

any analysis of the semantics of a goal must rely on built-in descriptions,

Method Voeabulary

Glitter's methods are the repository for problem solving techniques in the TI world. Methods have a
relatively simple form: index, filter, actions. All but a few actions are analyzable by the system. The
construction of a method is based on configuring pre-defined comporents, i.c., goals for the index,

Gist-specific predicates for the filter, goals and transformations for the actions.

The simplicity of a method leads to its weakness: complex control and planning knowledge often

570 the dark ages before recycling centers.

¥hfaybe the most obvious ia Lo get someone else (a graduate student?) to do it.

Page 37

cannot be easily represented. For instance, we might want to encapsulate the technique “try this
action, and if it fails then try that action” in a methed. This type of conditional problem solving is not
easily represented in Glitter.!” Since our partnership model cenlers on playing off strengihs and
weaknesses, this Glitter weakness is mitigated by relying on the user to supply complex problem solv-

ing organization.

Selectlon Vocabulary

As with mcthods, the representation of election knowledge in Glitter takes a simple form. As with
methods, a rule is constructed out of pre-defined components, i.e., the LHS from built-in functions that
access the method candidate set and the planning tree, the RHS from weighting and ordering func-
tions. While representational simplicity makes it casy to construct mew rules and understand existing
ones, as with methods, it leads to weaknesses. For instance, it is quite hard to rationalize weights asso-
ciated with rules. What does it mean for a method to be given a +3 by one rule and -3 by another?
Does the resulting 0 mean that nothing is known about the method? Overall, the weight calculus used
to build the agenda is under-defined.

Another weakness of Glitter's rule-based representation is its reliance on surface [eatures of a problem.
In Kant'’s system [31], we find surface rules augmenting a more formal analysis model, a madel that is
capable of following (i.e., applying) several competing methods down to some depth before deciding
which is best. Such a model is clearly more powerful, however much more difficult in the Gist/TI
world: the PECOS /LIBRA specification language is at a much lower level than Gist.

8.2. Detall management

On the largest development attempted to date, the package router development, Glitter produced 146
out of the total 159 planning steps automatically, The 13 steps provided by thc user were the type of high
level design goals thal are the user’s responsibility in the Glitter model. Out of the 146 steps produced by
Glitter, 60 were actual program transformations. In a very parrow sense, we have leveraged transforma-
tion application from |60 steps/60 transformations] in the TI model to |13 steps/GO0 transformations| in the
Glitter model. However, we argue that the total number of planping steps avtomated is the crucial
number. The non-automation of these steps in the TI model leaves the user to reason informally about the
plan space. Thus the measure of [13 steps/159 steps) is a truer indication of the automation provided by
the system.

8.3. Giitter as a development partner

In an ideal partnership, the strengths of one partner would compensate for the weaknesses of the other.

This should allow the partnership as a whele to tackle much tougher problems than either of its members

ADDLE can handle this case and a wider variety of control strategies in geaeral. However, this is offest by PADDLE's inability
to reason about contrel directly, e.g., there are o meta or scheduling rules in PADDLE.

Page 38

individually. We will show below that Glitter has gone a long way towards mecting this goal.

. Glitier provides a repository for useful development methods. It is unlikely that a single user can

discover or remember the collective store of development techriques.

® Glitler finds all methods that arc applicable to a given goal. It is unlikely that a user can find all
methods that apply to his problem. This is especially true as the catalog of methods grows.

° Glitter handles much of the mundane detail of method application, e.g. finding all places X is refer-

enced, Y is changed. The user is likely.to find these details tedious to compute and easy to miss.

° Glitter finds all selection rules that are applicable to a given selection problem and computes an
ordered set of method candidates. It is unlikely that a user can find all selection rules that apply.
This is especially true of rules that reference methods not by name but by eflect or compatibility
with the overall goal structure,

® Glitter handles much of the mundane detail of rule application, e.g. counting aumber of times X is
referenced, counting number of places where Y must be unfolded. Again, tedious to compute and
easy to miss,

® The user provides overall development organization. Our experieace base is weak in the area of

high level organizational knowledge.

° The user provides insightful reasoning. While progress is slowly being made in automated reasoning,
the complexities of Gist put this beyond the capabilities of the machine,

s The uger provides unavailable information to the selection process. In general, this involves supply-
ing domain-specific information, e.g. how large will some sequence grow, how oftea will some event

occur. In some cases, the system will accept a simple estimate if exact figures are not known.

® The user is responsible for exploring the development space, e.g., backing up from dead-end or los-
ing development paths. Sephisticated control is lacking in Glitter. The user is relied on to compen-

sate.

8.4. The development history

The output of Glitter is the full development exploration tree as pictured below in figure 6.4 {and figure
2.2). While at least one development path must exist from initial specification Lo fina! implementation, no
restrictions are placed on the completeness of the remainder of the tree: not all paths need be explored or

terminate before a final implementation is reached.

Page 39

Flgure 8.4: Development exploration tree

Each node in the trce represents a particular problem solving state. Figure 6.5 shows the problem solving
portion of one node where G-current has been posted, and the methods for achieving it have been gath-
ered in set 5. The next step will be to call the scheduler to choose a2 method among the competitors in S.
Note that the state includes, working from the bottom-up, 1) the current active goal, G-curreat, 2) the
methods competing to achieve it, set 5, 3) the method M applied to generate G-current, 4) the supergoal
G-super that M was chosen to achieve, 5) M's competitors, G) the selection rules that werc used to choose
M from among its competitors, 7) the rest of the goals, methods, and selection rules that lead from the
user-supplied root goal to this peint. In general, we wish to provide the user with a "you-are-there™ per-
spective: any state can be chosen from the exploration tree, and the user can see exactly what goa! was
active, what methods were competing, what selection knowledge was available. From this point the user is
free to further explore an existing arc/path, or strike out on his own by gencrating a new path. In the
next section, we will see how Glitter's form of development rationalization ¢an be used by the machine as
well.

Page 40

G -super
/|
T4
/e - (Selection Rules)

G -current
/]
/ |\
/ | \
(4 t‘] EJ} Candidate Set S

Figure 6.5: Problem solving state

7. Future Work

We are currently exploring two other areas of transformational development where the Glitter model

might be applied: specification construction, and maintenance. In this section, we will look at both.

7.1. Applying Glitter to maintenance

We have argued that the document produced by the development process should be a formal, machine
usable product. In this section, we will look in more detail at how such a product might be used in an
important area of the software lifecycle, software maiatenance. We will present an example of a
modification to the package router development to accommodate a specification change. We stress that

this is strictly speculative; no mairtenance tool currently exists.

Suppose we notice the following:

The package router specification specifies that a package entering the network should be delayed if it does
not have the same destination as the the most recent package to enter the network; this prevents prob-
lematic bunching. However, statistics gathered over time have shown that consecutive packages rarely have

Page 41

the same destination. Hence, most packages entering the router will be delayed. A decision is made to
change the specification: all packages will now be delayed unconditienally. Note that this is a specification
modification as opposed to a development step.

To achieve this modification, assume that the following epecification transformalion is made (section 7.2

discusses a specification tool for making such modifications):

Old Spec:

demon RELEASE_PACKAGE__INTO_NETWORI\'(puckage.new)
trigger package.new:located_at = source
response
begin
;nwhen a new package enters the network, hold it up if its destination is not
;;;the same as the previous package. This helps cut down on bunching,
i;and hence misrouting.

if package.new:deslination # [package preceding package.new in PHIST(*)|:destination
then call WAITJ};

end,

New Spee:

demon RELEASE_PACKAGE_INTO_NETWORK(package.new)
trigger package.new:located_at = source
regponge
begin
i:iDelay new packages to avoid bunching, and hence misrouting

call WAIT|J;

end,

Remember that when using the T1 model, any change to the specification requires a redevelopment.
Naturally, we would like to reuse as much of the old development as possible in reimplementing the new
specification. The original development commenced when the user posted a goal to Develop the relation
PHIST (see section 2). Assume our maintenance tool starts by trying to repost this goal as the first step in
the new development. The goal is still valid, as is the method chosen to achieve it, DELETE (again, sce
section 2). That is, both goal and method reference the definition of the relation PHIST which is still

around (but not shown above).

Assume the maintenance tool chooses to apply the same method. The DELETE method attempts to
remove a relation by first removing all references to it. The re-application of DELETE to the new
epecification produces an interesting result: because we have removed the only refercnce to the relation in
the new specification, the relation definition can be removed without further ado. In practice this means

that all of the problem solving structure below the user’s goal in the original development (22 steps') can
p

Page 42

be eliminated in the new development. Imagine the effort involved in removing these steps given no prob-
lem solving structure (i.e., only the transformation sequence): each transformation application would have
to be examined individually to determine its use in the old development 2nd its potential need in the new.
Our experience has been that 1) pulling a sipgle transformation application out of a long sequence, and

then 2) attempting to describe its role in the sequence is a very diflicult task.

In our hand analysis, the semainder of the router development replay ran just as smoothly, Overall, more
than a third of the original development was trivially deleted, while a majority of the remaining steps
were replayed verbatim. It is clear that radical changes to a specification will require more sophisticated
problem solving to rcuse the old development. However, a starting point for any such effort is a detailed,

rational development history such as produced by Glitter,

7.2. Applying Glitter to specification construction

Our second cxtension involves usimg the Glitter model itself, as opposed io its output, on znother
software development process: specification. The basis of our worl on Glitter has been that sofiware
development can be viewed as a problem solving task, with goals, methods and selection rules. Glitter
supplies a representation for each. We conjecture that software specification can aiso be viewed as prob-
fem solving task. Hence, the Glitter model should be useful in this vew domain. Our current research
focuses on verifying this claim, i.e., applying the Glitter model to the softvare specification process
{32,33]. We briefly describe the new model in the following sections.

7.2.1. Initlal input

Glitter expects a complete, formal specification as input to the development process. What can we expect
as input to the specification process?, Most methodologies would answer a blank piece of paper. However,
recent work by Rich and Waters |[34] and Neighbors [19] show that this does not have to be the case. In
particular, we can attempt to catalog previous specification efforts for use in new but similar problems.
This is the approach we are taking in our specification assistant. The specification writer peruses a catalog
of abstract specification schemas, and composes a skeleton specification out of various domain-specific
components. The final step is the tailoring, interfacing, and smoothing of components into a "concrete”

specification,

7.2.2. Goals

Our original goals were specific to a transformational style of development. Our new goals must focus-on
tailoring abstract components into the desired specification. Goldman [35], among others, has shown that
the specification process can be at least paritally described by a set of general, domain-independent, prob-
lem solving tasks. Such tasks will likely include refine, generalize, apecialize, constrain, instantiale,
deacribe, add_domain_object, among others. These tasks will be the initial goals of the system.

Page 43

7.2.3. Methods (and transformations)

As with software development, there are two concerns in building a software specification,: 1) representing
the problem solving or planning techniques and 2) representing the specification modification techniques.
In the development domain, the task was to find a sequence of correctness preserving transformations that
would move us from specification to implementation. Glitter's techniques centered on automatically gen-
erating such a sequence. In the specification domain, we are concerned with achieving specification goals
through the use of problem solving methods and specification transformations. However, we are no longer
concerned with producing a sequence of correciness preserving transformations, but instead a sequence of
consistency preserving transformations. That is, we expect non-correctness-preserving changes when build-
ing a specification. We need to guarantee that these changes remain consistent with the rest of the

specification. A small example might be usefu! here.

Suppose that the current {incomplete) state of an elevator problem specification included the following

part:

type floor with attribules waiting|integer
type elevator with etlributes num_occupants|integer, location|luur;

demon enter (c|elevator, [}fioor)
trigger: e:location = f
responge: exnum_ocecupants «- e:num_occupants + [waiting

Assume that the above view of an elevator is too abstract for the problem. For instance, the notion of

doors must be added. The user of the specification assistant might do the following'®:

>Refine elevator to include the attribute door with values {open,closed}

To achieve the Refine goal, we want a method that will 1) add an attribute to an object, 2) make sure
that the attribute value's type is well defined, and 3) find all references to the object and make any
changes necessary to accommodate the new attribute. In our elevator example, this means 1) adding the
attribute door to elevator, a simple specification transformation, 2) noting that by describing the explicit
set of all possible values is a valid means of typing an attribute value (if the value type was undefined, we
would want the method to jitter to define it), and 3) finding where an elevator object is referenced, and
checking to see il the addition of doors has any eflect. Among others, we would expect the system to find
the three references to elevator in the cnter demon, and post goals to Refine each to mcet the newly
refined view of elevator. Only one of the three refinement sub-goals is difficult to achieve, the one associ-

ated with the demon trigger:

BWe usc a stylized interaction. The actual interface relies on graplics and user Gll-in to describe a particular poal

Page 44

Refine trigger: e:location = given e:door = {open,closed}

Is it possible for a built-in method to achieve this goal? Not unless we allow domain specific methods.

Such a method might read

If you are dealing with a container-type object that has a location and a door, then entrance and exit
should depend on both the location and the state of the door.

We have not attempted to build this type of domain specific knowledge into the system as of yet. In our
current system, the user would be responsible for supplying the step thzt refined the tripger to include the

door's state:

frigger: e:localion = [gnd e:door = open

7.2.4. Selection rules

In the development domain, selection rules encapsulated knowledge about the computational efficiency of
varioys implementation choices. In the specification domain, our coucern is not with eflicicncy, but with
clarity of the description. Suppose, for example, that the user wished to further conostrain the non-
determinism of a specification. Two alternative methods may be used: add the constraint directly using
the global constraint construct; add the conmstraint implicitly by limiting non-determinism to specific

choices. In our elevator world,

demon move (e|clevator, f{floor)
trigger: exlocation = [and e:door = closed
response: elocation = (a floor)

To constrain movement to either the next floor up or below, we could choose to add to the above state a

new constraint:

Page 45

demon move (e|elevator, f]floor)
irigger: e:location = f and e:door == closed
response: e:location = (a floor)

constraini restrict_movement_to_one_floor (elelevator, f1]loor, f2}foor, S|state)
always e:location == 1in S and
e:location == (2 in next(S) and
adjacent{f1,l2)

Allernatively, we could place the constraint within the demon:

demon move (e|elevator, fjfloor)
Irigger: edlocation = [and exdoor = closed
rerponse: e:location = (a floor || adjacent([,floor))

We would expect our rules to note the strengths and weaknesses of each, e.g., the latter is clearer, the

former is more general,

In summary, the construction of a knowledge-based syste:n for helping a user build a software
specification depends on the solution of a number of problems. To tackle these problems requires a reposi-
tory of expert knowledge. We have found the Glitter framework defined in our work on software develop-

ment to be useful in representing the knowledge in this new domain.

Acknowledgments

Members of the ISI Transformational Implementation Group — Bob Balzer, Martin Feather, Neil Gold-
man, Jack Mostow, and Dave Wile — had a great influence on this work. A further thanks to Martin, Jack
and Dave for reading early drafts of this paper. I'd alse like to thank Phil London and Lee Erman for
their heip on the Hearsay Il implementation of Glitter. The construction of the Glitter system was sup-
ported by National Science Foundation grant MCS-7918792. Current work on applying Glitter to
specilication construction is supported by National Science Fourdation grant DCR-8312578.

References

(1) Fickas, S., Automating the Transformational Development of Software, PhD Thesis, ICS Dept,
Universily of California Irvine, 1982

(2) Partsch, H., Steinbruggen, R., Program Transformation Systems, Compuling Surveys, 15{3), {1983)

(3) Darlington, J., An experimental program transformation and synthesis system, Artificial Intelligence,
16/(1), (1981)

(6)
(7)

8)
(9)

(10)

(1)

(12)

(13)
(14)

(16)

(17)
(18)
{19)
(20)
(21)

(22)

(23)

Page 40

Balzer, R., Goldman, N., and Wile, D., On the Transformational Implementation approach to pro-

gramming, Second International Conference on Software Lngineering, 1976

Cheatham, T., Holloway, G., Townley, J., Program Refinement by Transformation, Proc. 5ih Inler-

national Conference on Software Engineering, 1981

Wile, D., Program Developments: Formal Explanations of Implementations CACM 28(11), 1983
Feather, M., A system for assisting program transformation, A CM Trans. Program. Lang. Syst., 4(1)
(1982)

Balzer, R., Transformational implemen‘mtion: an example, [EEE Trans. Softw. Eng., 7(1) (1981)

London, P., Feather, M., Implementing specification freedoms, Scietice of Compuler Programming,
Number 2, 1982

Balzer, R., Goldman, N., Wile, D., Operational specifications as the basis for rapid prototyping,
SIGSOFT Softw. Eng. Notcs, 7(5) (1982)

Swartout, W., Balzer, R., On the inevitable intertwining of specification and implementation,
CACM 25(7) (1082)

Paige, R., Koenig, S., Finite diflerencing of computable expressions, ACM Trans. Program. Lang.
Syst., 4{3) (1982)

Tappel S., Some algorithm design metheds, Proc. Lol NCAI 1980
Bentley, J., Writing Cflicient Code, Tech Report CMU-(C5-81-116, Carnegie-Mellon University, 1981

Standish, T., Harriman, D., Kibler, D., Neighbors, J., The Irvine Program Transformation Catale-
gue, 1CS Dept., UC Irvine, 1976

Manna, Z., Waldinger, R., A deductive approach to program synthesis, ACM Trans. Program. Lany.
Syst., 2(1) (1980)

Barstow, D., The roles of knowledge and deduction in program synthesis, Proc. 6th IJCAI 1979
Fickas, S. Automatic Goal-Directed Program Transformation, Proc. 1at NCAI, 1980

Neighbors, J., Software construction using components, PhD. Thesis, ICS Dept., UC Irvine, 1980
Mark, W., Rule-based inference in large knowledge bases, Proc. 1st NCAI, 1980

Mostow, D.J., Mechanical Transformation of Task Heuristics into Operational Procedures, PhD.
Thesis, CMU 1981

Green, Cordell, Phillips, Jorge, Westfold, Stephen, Pressburger, Tom, Kedzierski, Beverly, Ange-
branndt, Susan, Mont-Reynaud, Bernard, Tappel, Steve, Rescarch on Knowledge-Based Program-
ming and Algorithm Design - 1981, KKES.U.81.2 K estrel Institute, Kestrel Institute, 1801 Page Mill
Road, Palo Alto, Ca. 94304

McDermott, D., Planning and acting, Cognitive Scicnce, £(2), 1978

(21)

(25)
(26)
(27)
(28)
(29)
(30)

(31)

(32)

(33)

(31)

(35)

Pege 47

Kibler, D., Power, elliciency, and correctness of transformation systems, PhD. Thesis, ICS Dept., UC
Irvine, 1978

Terry, A. Hierarchical control of production systems, PhD. Thesis, ICS Dept. UC Irvine, 1982
Chiu, W., Structure Comparison and Semantic Interpretation of Differences, Proc. 18t NCAJ, 1980
Randall, D., Meta-T2ules: Reasoning about control, Artificial Intelligence, Pages 179-222

Wilensky, R., Meta-planning, Proc. st NCAI 1080

Barstow, D., Knowledge-based program construction, Elsevier North-Hollard, 1979

Erman, L., London, P., and Fickas, S., The design and an example usc of Hearsay-Ill, Proc. 7th
IJCAIL Vancouver, BC, 1981

Kaat, Elaine, Efficiency Considerations in Program Synthesis: A Knowledge-Based Approach, PhD.
Thesis, Stanford, 1979

Fickas, §., Mechanizing software specification: a proposal, Techaical report, CS Dept, U of Oregon,
1984

Fickas, 5., Mechanizing software specification, Proc. Workshop on Modele and Languages for
Software Specification, Orlando, 1984

Rich, C., Waters, R., Formalizing reusable software compouents, Proc. Workshep on Reusability in
Programming,, 1983

Goldman, N., Three dimensions of design development, Proc. Srd NCAI, 1983

