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ABSTERACT

This paper reports on efforts to extend the Transformational Implementation (TI} model of Software
Development [1]. In particular, we describe a system that uses Al techniques to automate major portions
of a transformational implementation. The work has focused on the formalization of the goals, strategies,
selection rationale, and finally the transformations used by expert human developers, A system has been
constructed that includes represemtations for each of these problem solving components, as well as
machinery for handling human /system interaction and problem solving control. We will present the sys-
tem and illustrate automation issues through two annotated examples.

1. Introduction

In a previous issue of this journal, Balzer presented the Transformational Implementation (TI) model of
software development [1]. Since that article appeared, several research efforts have been undertaken to
make TI a more useful tool. This paper reports on one sich effort.

A general model of software transformation can be summarized as follows': 1) we start with a formal
specification P (how we arrive at such a specification is a separate research topic), 2) an agent S applies a
transformation T to P to produce a new P, 3) step 2 is repeated until a version of P is produced that
meets implementation conditions (e.g., it is compilable, it is efficient). Figure 1 presents a diagram of the
model.

1A survey and more detailed discussion of transformation systems can be found in |18).
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Figure 1
In the TI model, the specification language P is Gist [12], the agent S is an expert human developer, and

T is taken from a catalog of correctness-preserving transformations® (Section 2 discusses other bindings of
P, S, and T). Hence, the human is responsible for deciding what should be transformed next, and what
transformation to use; the system checks the transformation’s pre-conditions and applies it to produce a

new state. As Balzer noted in [1], the T model provides at least two advantages:
(1) Focus is shifted away from consistency problems and towards design tradeoffs.

(2) The process of developing a program is formalized as a set of transformations. Thus the process

itsell can be viewed as an object of study.

Since Balzer’s article appeared, we have attempted to use the TI model on several realistic problems. This
work has confirmed one of the article's conjectures:

“... it is evident that the developer has nol been freed to consider design tradeoffs. Instcad of a concern for
maintaining consistency, the equally consuming task of directing the low level development has been im-
posed. While the correctness of the program is no longer an issue, keeping track of where one is in a
development, and how to accomplish each step in all its fine detail diverts attention from tradeofl questions.
It is quite clear that if transformation systems are to become useful, this difficulty must be removed.”

One solution is to automate portions of a TI development®. That is, ind a way for the machine to
automatically find and apply a portion of the transformations. This paper reports on our eflorts to bring
about this solution. In particular, we discuss the Glitter system, which uses problem solving techniques to
generate automatically many of the steps of a development. Glitter is a working system implemented in
the expert system writing language Hearsay III [5|. We will present Glitter through an example in section
4. Section 5 contains another, more lengthy example of a Glitter development.

Correctness rests both on Gist’s formal semantics 2ad on pre-conditions attached to transformations. Proofs of correctness
are carried out by inspection; there has been no attempt to date to apply a more formal proof method.

Here, and throughoat the paper, we will use TT development to mean the mapping of a specification into an implementation
uzing transformations.
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2. A Closer Look at the Problem

Glitter traces its roots to prior efforts in the area of transformational development. To produce a working
transformational system, several portions of the abstract model in Bgure 1 must be further specified. First,
the form of the initial P determines both the level of specification, and the form the transformations will
take. If our goal is to specify only what the problem is, as opposed to how to sclve it, we want the initial
P to be a high level specification. On the other hand, if we are interested in applying efliciency tricks in a
production language like Pascal, our initial P may be low level, e.g., Pascal itself. The variety of
specification levels possible is shown by a set of illustrative transformation systems:

° The TI model uses a high level specification language called Gist as the initial starting point. The
designers of Gist have set as a goal freeing the specification writer from any implementation con-
cerns. Thus both data and control representations are defined to allow, through skillful and careful
construclion, implementation-independent specifications. The form of transformations range from
ones that deal with the most abstract design decisions, to ones that involve the nitty-gritty optimi-
zation of operations and data structures.

o  The PSI system (in particular the PECOS/LIBRA components [3]) starts with an abstract algorithm
defined as a Program Model [13]. In a program model, data remains at an abstract level, while con-
trol is more concrete. The form of transformations (called refinements) in PECOS [2] ranges from

intermediate to low level design decisions.

. The Irvine Transformational System [16] starts with a program written in a Pascal-like language.
Transformations are source-to-source, and tend to imvolve optimization of expression evaluation,

although some control optimizations are included.

There are conflicting concerns in choosing the initial level of specification. The lower we start, the better
are the chances of building a complete set of transformations: our software design knowledge zt the lower
levels is better studied. However, the higher we start, the better are the chances of brirging about real
efficiency gains: it is often the high level design decisions that most affect the final space and time taken
by the implementation. Unfortunately, at the higher levels our design knowledge is less formal and not
well charted. The result of this conflict is that systems that attempt to use a completely automatic model
of transformation selection and application have necessarily been forced to use an initial cpecification that
is either below the desired level, or at the right level but not expressive enough to handle realistic prob-
lems. More recent work has attempted to handle high level specifications by involving the user in the
transformation process. This is the first key idea on which Glitter builds: an interactive system stands a

chance of transforming realistic, high level specifications into an efficient implementation.

This brings us to our second decision point, namely the constitution of the agent S. In completely
automatic systems such as PSI, S is a computer-based component that decides 1) what portion of P to
work on, 2) what set of transformations are applicable, and 3) which transformation to apply from the set.
Conversely, in the TI model, S is a human, The human is responsible for all of the above items except
transformation application, which is handled by the system. Other systems such as ZAP [6], CHI [10],
Draco [14], and Glitter attempt to strike a better balance by automating more extensive portions of
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transformation selection and application, and leaving smaller portions to the human. The second key idea
used in Glitter is then that interactive transformation systems can still bave » significant degree of auto-

mation.

Finally, there are various ways to contro} the search for the ‘‘right'* set of transformations. The PSI sys-
tem uses a modified best-first search. Systems such as PDS [4] and the Irvine Transformation System
employ a formal production system approach which applies all transformations until none are applicable
(this type of control is often found in rewrite systems where Church-Rosser propertics hold). The PAD-
DLE system [17] allows backtracking to a decision point. In particular, PADDLE records the set of
transformations used, and allows the user to replay or rerun them to an arbitrary point. Hence, if the user
wishes to try an alternative to the kth transformation applied, he or she may request PADDLE to replay
k-1 transformations. Thus PADDLE treats a sequence of transformation selections and applications as a
program. Parts or all of it can be deleted, modified or executed. This leads to the third key idea used by
Glitter: the process of selecting and applying transformations can be viewed as a product as well. Glitter
declaratively stores all of the information it is able to capture during the transformation process. This can

be used to aid in maintenagce.

To summarize, Glitter is built on three key ideas:

(1) An expert human user must be included in tiie iransformation process if we wish to study realistic
problems.

(2) An interactive model can still include useful automation.

(3) Given that a transformational development is no more static than a normal software development,

we will need to make changes to it. Hence, the process itself becomes an object of study.

The focus of our work is on the second idea. We set out to see how far we could push automation in the
TI model. In doing so, we found ourselves concerned with the third idea as well. Specifically, once we
began to study the transformation process, we noticed a curious thing: only a small part of the process
was being captured by the machine. In particular, the selection and application of a program transforma-
tion was only the tip of the problem solving iceberg. Watching expert human developers, it became clear
that the sophisticated planning necessary to generate one or more transformations would also have to be
represented. Our goals became first to formalize the problem solving steps used to generate transforma-
tion applications, and then to build a problem solving system around them. The formalization would
include the goals, strategies, selection rationale, and finally the transformations used by expert human
developers. The system would include representations for the formal types of knowledge, and machinery
for handling human/system interaction and problem solving control. In the remainder of the paper, we
discuss the degree to which we were able to meet our goals.

3. A Gist Specification of the Package Router Problem

Our intent is to introduce the Glitter model by showing it in action. To do so, we will need to pro-
vide some background material on Gist and the example problem we will use, that of a postal package
router.
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A transformational development using Glitter, starts with a specification written in the Gist language.
The specification is described as a closed-world system, i.e., both the behavior of the process to be imple-
mented, and the environment in which it resides are described. All constraints on the process, including
those placed by the environment, are made explicit. As an example, consider a postal routing process for
distributing packages into destination bins. Packages arrive at a source station, and then slide through a
network of chutes and switches into bins. Figure 2 depicts the network.

source

— — chute

switch

= 'bin

Figure 2

The English description of the problem is as follows:

Consider a routing system for distributing packages into destination bins. The topology of the eystem is a
network consisting of » source, plus a set of binary switches connected by chutes, terminating in bins,
Packages move through the network by gravity feed. A switch setting may be changed only when the
switch is empty. Packages may bunch up, and hence prevent a switch from being set until the entire bunch
passes through. Finally, the destination of a package can only be physically sensed when it is in the source
station (i.e., when it first enters the network); switches and chutes have no sensors for determining package
destination. However, the presence of a package in a chute, switch or bin can be sensed. The problem is
defining a switch controller that will minimise package misrouting,

A Gist specification of the routing process must take several things into consideration. As part of the pro-
cess, the specification should state that the switches behave in a way that provides correct routing when-
ever possible, i.e., the final implementation must move the switches to the proper setting at the right

time. Because the switches are under program control, they are part of the process specification,
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In contrast, the movement of packages through the network is by gravity feed, and is not controllable by
the process, However, since package movement is part of the routing environment, its behavior too must
be specified. In general, a transformational development requires implementing the controllable portions of

the specification so they act in acceptable ways in the uncontrollable environment.

When specifying a process and its environment, the goal is to make a clear and correct statement of
behavior, withou! having to provide an algorithm for aflecting that behavior. Gist provides certain
specification freedoms that allow a specification writer to ignore implementation concerns. In the follow-
ing sections, we will show how these freedoms can be used to specify portions of the package router.

3.1. The objects

Gist provides a relational model of information, i.e., typed objects and relations between them. For
instance, we can use the following to specify objects and rclations in the postal package router problem:

type package;
type location has subtypes (source, chute, switch, bin);

relation LOCATED_AT(package, location)
relation DESTINATION(package, bin)
relation SWITCH_SETTING(switch, chute)

Information may be retrieved via predicates and expressions. Note that the special symbol * can be used

to return a particular relation argument as shown in the second example below!, Also, relational attri-
butes of objects can be retrieved by the syntactic shorthand "object:attribute”, as shown in the third

example,
A package in the domain: & package
The location of package p: LOCATED_AT(p, *)
Tke location of package p: p:LOCATED_AT
Is package p al ite destination? p:LOCATED _AT = p:DESTINATION

It is during development that concerns about data access paths, statistical distribution of operations, size,
etc., are taken into account to select a physical data representation.

A Gist specification allows information to be extracted from a past state without concern for how it might
be made available in the current state,

Has this package ever been al thal switch? package:LOCATED_AT = switch as of cver

*Data Base retrieval in Gist is non-determiniatic (see 3.3 for an example). Hence the ¢ does a non-deterministic match. In this
case, the package router specification, in a section we have omitted in this paper, constrains a package to be at a ringle location at
any one time, i.c, the ® matches uniquely.
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Gist allows information to be specified as an invariant on other data. For instance, we might define the
predicate relation EMPTY_SWITCH on the LOCATED_AT relation®:

Define a relation that holde when a switch is emply.

relation EMPTY_SWITCH(switch)
definition not E package || package:LOCATED_AT = switch

By stating this invariant globally, we make it available throughout the specification. Further, no mainte-
nance of the invariant is required; it is during development that code will be introduced to either maintain

it explicitly, or rederive it when necessary.

3.2. The Actions

Activity in a domain is modeled by the creation and destruction of objects, and the insertion and deletion
of relations among objects. A change to the domain causes a transition to a new state. A Gist specification
denotes one or more scquences of states and transitions. Each such sequence is called a behavior. A
development is the implementation of a particular bebavior.

Creale 8 new package: create package
Route package p to bin b: insert DESTINATION(b, p)
Update the location of p to loct: update p.LOCATED_AT {0 loc2

Demons are Gist's means of providing data-triggered activity. Demons allow the specification of asyn-
chronous actions that trigger on a state change. A demon includes a trigger and a response. The former
consists of a predicate that recognizes state transitions. The latter is exccuted when Lhe trigger predicate
becomes true.

Note the arrivel of a package at a bin:
demon note_arrival{package, bin)
trigger: package: LOCATED_AT = bin

response: update bin:CONTENTS {0 +1
end-demon

3.3. The constraints

Gist allows a non-deterministic choice to be made from among a set of objects or actions.

BWe will uze E 1o stand for the existeatial quantifier.
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Any package at a switch: o package || package:LOCATED_AT = g switch
Set the switch & (non-deterministic!ly) to an outlel:

insert s:.SWITCH_SETTING + s:SWITCH_OUTLET

Non-determinism may also be introduced to model portions of the environment. In the example below,
the non-determinism reflects the choice of either triggering or not triggering the demon on each state tran-

sition.

Creale packages ol random limes:

demon create_package
trigger: Random
response; creale package
end-demon

Gist constraints can be used to set limitations on the environment, or prune the set of non-deterministic

choices. An example of the former is a constraint on the topology of the network:

constraint UNIQUE-ENTRY
alwaye required: forall bin || LOCATION_ON_ROUTE_TO_BIN(source, bin)

end-constraint

An example of a constraint on a non-deterministic choice point will be Jiscussed in detail in the next sec-

tion.

This section has given a brief overview of Gist syntax and semantics, The interested reader should con-
sult [12] for further details.

4. An Introduction to the Glitter Model

In this section we will introduce the major componeats of Glitter by looking at a portion of the transfor-
mational implementation of the Package Router specification. To review briefly, the objects in the router
domain are packages, chutes, switches, and bins. The operations are putting a package into the input
chute, moving it from one location to the next, and changing the setting of a switch. Perhaps the heart of
the Gist specification of the package router is the constraint
MUST_SET_SWITCH_WHEN_HAVE_CHANCE, paraphrased below:
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For every switch s, the following is always prohibited:

1) a package p is in s, and
2) s is set so that p will become misrouted, and
3) at some eatlier time, s was empty and p was the next package due at s

In Gist, this can be represented as

constraini MUST_SET_SWITCH_WHEN_HAVE_CHANCE
alwaye prohibil
exists p|package, s|switch {|
p.LOCATED_AT = s and
SWITCH_SET_WRONG_FOR_PACKAGE(s, p) and
( (p = firaet PACKAGES_DUE_AT_SWITCH({», s)
and
SWITCH_IS_EMPTY(s))
as of everbefore)
end-constraint

The body of MUST_SET_SWITCH_WHEN_HAVE_CHANCE contains references to the relations
LOCATED_AT, SWITCH_SET_WRONG_FOR_PACKAGE, PACKAGES_DUE_AT_SWITCH, and
SWITCH_IS_EMPTY; each is defined elsewhere in the router specification. Our interest here will be with
the derived relation PACKAGES_DUE_AT_SWITCH.® As we can sce, the constraint uses the relation to

refercnce the first of the sequence of packages due at a switch. The definition of this sequence is given
below:

Specification PACKAGE-ROUTER

conslreint MUST_SET_SWITCH_WHEN_HAVE_CHANCE ... end-constraint

relation PACKAGES_DUE_AT_SWITCH(packages|seguence of package, switch)
definition packages =
{plpackage ||
LOCATION_ON_ROUTE_TO_BIN(switch, p:destination) and
not (:LOCATED_AT == switch as of everbefore) and
not MISROUTED(p)}
ordered by :LOCATED_AT = source

end-specification

Abstractly, the sequence is defined as a set ordered by an event. An element of the package set must have
the following characteristics:

%In Volume I of [7], the complete development of the package router is given including the constraint above. Because the
development of the constraint is both leagthy aod complex, we bave chosen the simpler example of
PACKAGES_DUE_AT_SWITCH, cne which we believe still adequately illustrates our points.
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1} for p to get to its destination, it must go through the switch
2) p has never been in the switch
3) p is not currently misrouted

The ordering on the sei is by each package's entrance to the router, ie., pl is ordered before p2 if pi
entered before p2. We will give away the punchline early by saying that the final implementation of the
sequence will be a linked list with functions for adding and deleting packages. That is, after applyiug
appropriate  transformations to the specification, we will replace the definition of
PACKAGES_DUE_AT_SWITCH above with an array of linked lists (one for each switch), and two lisp
functions, add-package and delete-package, for maintaining the lists.

Unfortunately, to get to this rather straightforward implementation, we must replace all derived relations
in the definition of PACKAGES_DUE_AT_SWITCH with new explicit ones, we must do a fair amount of
code movement and hard reasoning to insure that add-package and delete-package end up in places we
have control over, and finally we must do the significant amount of subgoaling and simplification that
always attends a transformational development. This results in over 30 program transformations being
applied. Figure 3 shows a portion of the transformation sequence, in stylized form.
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T1: Define new relation ROUTER_NETWORK#(location, location)

T2: Define code to 1) compute the transitive closure of the router network,
and 2) explicitly store each connection as a ROUTER_NETWORK?* relation

T3: Replace each reference to LOCATION_ON_ROUTE_TO_BIN with referecce
to ROUTER_NETWORK*

T4: Remove LOCATION_ON_ROUTE_TO_BIN from program

T10: Simplify expression (not not p => p}

T11: Simplify expression (p and p =>> p)

T12: Define new relation PACKAGE_LIST(packages, switch)

T13: Define maintenance code for PACKAGE_LIST: add-package, delete-package

T14: Insert maintenance code at point where package destination is ereated

T15: Verify package entrance to router is equivalent to package creation

T16: Verify no change to PACKAGES_DUE_AT_SWITCH between package creation and entrance

T17: Move maintenance code from creation code to entry code

T30: Define array of linked-lists, one for each switch

T31: Replace relation access with linked-list access
Figure 3

The major points to make about the above transformation sequence are that a) it is unstructured, and b)
design decisions are left implicit. Hence, it is hard to generate, understand, and modify. What is clearly
missing are the higher level goals and strategies that organize steps into cokerent wholes, and the criteria
used to choose one transformation over other viable candidates. For example, T1 through T4 are all
focused on removing the LOCATION_ON_ROUTE_TO_BIN relation. This in turn is part of a bigger
goal of removing all derived relations from the definition of PACKAGES_DUE_AT_SWITCH. This in
turn is part of the goal of implementing PACKAGES_DUE_AT_SWITCH, which is finally part of imple-
menting the package router specification. The same type of goal structure can be drawn for each of the
other 27 steps above,

Glitter attempts to formalize the goals, strategies and desige decisions left implicit in transformational
implementations. When successful, it gains two advantages: 1) it allows automation to proceed to a much
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greater extent than working at the primitive transformation level, and 2) it documents much more of the
transformational process, namely the planning space. To see this, we will now turn to the development of
PACKAGES_DUE_AT_SWITCH using Glitter. The user starts by telling Glitter that he or she wishes to
work on the relation PACKAGES_DUE_AT _SWITCH:

User: Develop PACKAGES_DUE_AT_SWITCH

Glitter encorporates a language for stating transformational goals. The syntax of the language is simply
the goal keyword (e.g., Develop) and a set of typed arguments {e.g., a Gist construct). The language has
evolved in two ways: 1) top down by studying the ways expert transformationalists develop programs, and
2) bottom up by studying existing transformational developments, and attempting to infer the goal struc-
ture (see also {7]). It is important to note that a Glitter goal is a representation of a goal to be achieved
and not a function call. A goal derives its semantics from an attached achievement condilion, = piece of
lisp code that monitors for its successful achievement. Thus, the language permits goals to be stated that
may be impossible to achieve in certain situations. This is not viewed as an error, but simply as a dead-

end solution path.

In our example, the user has posted a Develop goal with an argument of the relation
PACKAGES_DUE_AT_SWITCH. The achievement condition for Develop will monitor the relation
PACKAGES_DUE_AT_SWITCH, and signal when it has been successfully implemented. We might now
ask how an expert would tackle the development of PACKAGES DUE_AT SWITCH. There are two
general strategies he or she might employ: 1) explicitly store the sequence for each switch, and define code
to maintain each sequence as packages move around, or 2) try to generate the sequence on demsad from
available information. In Glitter, we have developed a framework for representing and cataloging such
strategies. This framework is built arcund what we call a method. A method has a goal slot, a fiter slot,
and an action slot. We fill the goa!l slot with the goal we wish to achieve (e.g., Develop X), the filter slot
with predicates that will check for situations when the method is not appropriate, and the action slot with
one or more operations useful for achieving the goal. In this case, we need two methods, one called
MAINTAIN and one called REDERIVE. Each will have their goal slot filled with 2 pattern that matches
the type of goal they can achieve, i.e.,

Goal: Develop DR|derived-relation

Each action slot will call for a new goal to be posted:
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Method MAINTAIN
Goal: Develop DR|derived-relation
Action-1: Maintain DR

End Method

Method REDERIVE
Goal: Develop DR{derived-relation
Action-I: Rederive DR

End Method

in Glitter, the posting of a goa! causes all methods to check their goal slots for a match. All such matches
are collected together in a candidate sct. This is the first bit of automation provided by Glitter: it does an
indexed retrieval of the available strategies and tactics. The shift here is away from the user choosing how
to transform something, and towards the user stating what he or she wants done.

Given the two competing strategies, what might we expect an expert to do next? There are certain criteria
for deciding if either is even possible, and which will lead to the better solution. Among these criteria are
a) is there enough information around to rederive, b) is the information too extensive to store explicitly, c)
how often is the information updated, d) how often is it retrieved? The answers to these questions will
lead the expert to choose one strategy over the other. In Glitter, we provide a framework for representing
and cataloging this type of selection information. The framework is based on what we call a selection rule.
The basic form is that of an IF-THEN rule where the antecedent portion checks to see if a certain feature
is present in the current state, and the consequence portion adds a positive or negative weight to one or
more methods in the candidate set. After all selection rules have had a chance to add their votes, the sys-
tem selects the method with the best overall score. Kant provides a similar mechanism in her Libra 5y&-
tem [11].

The evaluation of the left hand side of a selection rule is often beyond the means of the system. In these
cases, the user is asked to supply information. For example, one selection rule that is appropriate for elim-
inating MAINTAIN as a candidate is as follows:

SelectionRule TooBig?
IF the method MAINTAIN is a viable candidate, and
DR represents a (practically) infinjte set
THEN eliminate MAINTAIN as a viable candidate
End SelectionRule

Currently the system can evaluate the second clause above in only limited cases. In general, the system
will ask the user to supply a truth value to any clause of a selection rule that it cannot evaluate. Thus we
will get
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Glitter (SelectionRule question): PACKAGES_DUE_AT_SWITCH represents a (practically) infinite set?

User: no

This dialog will continue as ather selection rules are tried. The final outcome, given the information sup-
plied by the user, will be the selection of MAINTAIN as the method to apply.

We must stop here to make two points, First, the user is often asked some very tough questions during
evaluation of selection rules. One might complain that this is too much effort to expect from the user.
However, the questions asked are oot any different than the questions that must be answered implicitly in
the TI model. The only difference here is that we explicitly represent them and document their answers.

Second, there is a degree of automation and organization that is added. For instance, some mundane types
of analysis are currently carried out by the system, e.g., counting the number of references to a relation.
Questions are “indexed’ so that they are asked at the right moment, and only then if they will shed some
discriminatory light on selection (i.e., while the method is still a viable candidate). Of course even with
all of the above, it still may be too much of a burden on the user. This is more of a general statement on
the transformational paradigm and the state-or-the-art in theorem proving. Our argument i5 that as more
powerful analysis routines are added to the system, they will find a waiting home in the selection rule
framework, and their effect will be immediately felt by the user by increased automation.

Moving back to our example, assume that the MAINTAIN method is chosen. Glitter records this as a
choice point. It records the entire candidate set, the selection rules that applied, and any information sup-
plied by the user. Later, if the MAINTAIN method proves to be a bad choice, the user may move back to
this point, examine the other candidate methods {i.e., REDERIVE), ask to see the record of the selection
process, and choose another method (spawn an alternative solution path) if necessary. To allow this,
Glitter retains two types of information ([5] describes how both (ypes of information are represented in
the Hearsay I implementation of Glitter). First, a record is made of the design-decision tree. Figure 4
shows the tree generated from the 51 steps necessary to develop PACKAGES_DUE_AT_SWITCH (we are
currently only at step 1). It is unary tree because no alternative decisions have yet been explored. The
dotted arc and node represent the later selection of REDERIVE as the method to achieve our injtial
Develop goal,
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The second type of information the system records is the current state of problem solving within each
nede in figure 4. To show this, nodes N1 and N2 are blown up in figure 5.

N1

'q Devalop ...
’ '\
MAINTAIN 6 6RED€RI\’E

Specification PACKAGE-ROUTER
e g,
L = N,
e S
end-specification

Develep..:

| Maintain...

Spacification 'PACMGE-'ROUTER
end-Specification

Figure 5

In node N1, the goal Develop (shown as a squarc) has two candidate methods MAINTAIN and
REDERIVE (shown as diamonds). Two selection rules (shown as triangles) have weighted the two
methods. Also contained in the node is the entire state of the package router program in Gist.

Node N2 in figure 5 represents the outcome of selecting MAINTAIN as the method to apply. The
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selection of the method causes a new goal to be posted:

Glitter: Maintain PACKAGES_DUE_AT_SWITCH

In N2, this is represented as a subgoal under the Develop goal, which in turn has two candidate methods
with their own selection rules. Since the transition from N1 to N2 was brought about by a planning as
opposed to transformation step, the program state in N2 is exactly that of N1. In fact, all development
action to this point has been carried out in the planning space; no changes have been made to the Gist
code. We must go through 3 more levels of subgoals before we reach the first transformation step T1 in
figure 3.

Having introduced the system, we will end this cxample here, and move to a development problem that
better illustrates the low level steps found in a TI development. Before doing so, we summasrize the auto-
mation found in the Glitter development of PACKAGES_DUE_AT_SWITCH. The final number of non-
transformation (i.e., planning) steps used to generate the 31 transformations in figure 3 (and achieve the
Develop goal) was 20. Out of the total 51 steps, 45 were produced by the system. Included in the 45 were
all of the 31 transformations.

5. Another Example

The last section followed the first few steps of a development to show the major components of Glitter. In
this section we will look at an example that better illustrates the many low level steps found in a TI
development. Automating these steps is one of our prime conceras.

To carry the example to the necessary depth in a reasonable number of pages, we will show explicitly only
the goals; we will paraphrase the methods and sclection rules used. We will also omit the selection pro-
cess when it is uninteresting.

The example deals with one of the data structures of the package router specification: the sequence of
packages that have been at the source, i.e., have entered the package router. This sequence is represented
by the relation ALL_PACKAGES. There is only one reference in the specification to ALL_PACKAGES,
that found in the demon that takes care of packages entering the router, i.e., RELEASE-PACKAGE-
INTO-NETWORK. Among other things, the demon will hold up 2 package if its destination is not the
same as the last package to enter. This is to prevent bunching.
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demon RELEASE-PACKAGE-INTO-NETWORK (newp|package)
trigger: newp:LOCATED_AT = the source
response:
if {previous|package ||
previous immediately defore newp wrt ALL_PACKAGES)DESTINATION
neq newp:DESTINATION
then invoke WAIT();

end- d.e.;non
relation ALL_PACKAGES(package_seq | sequence of package)
definilion package_geq) = ...

Suppose that the user turns his or her attention to optimizing the relation ALL_PACKAGES. A goal is
posted to let Glitter know that ALL_PACKAGES is under scrutiny:

User: Optimize ALL_PACKAGES

One method for optimizing a sequence tries to replace the sequence with zero or more individual variables.
This method is useful when only part of a sequence is needed. One of Glitter's selection rules determines
that since there is only one reference to ALL_PACKAGES (something the system can determine automat-
ically), and that reference uses a relative position (again, something the system car determine antomati-
cally), the likelihood of the method succeeding is kigh. Once chosen, the method sets out to replace the
reference to ALL_PACKAGES in RELEASE-PACKAGE-INTO-NETWORK with a reference to a new
variable (represented as a relation). The following subgoal is generated:

Glitter: Fold (previous|package || ...)

That is, replace the expression with a reference to a newly created derived relation. There is a single
method for achieving this goal. lta first action is to get rid of all ties to the local context; we can't fold the
expression into a global relation if we must have ties to local variables, e.g., newp. Hence, a new subgoal
is posted:

Glitter: Globalize (previous|package || ...)

This goal is achieved when the expression contains no local references. One method that is indexed to
this goal attempts to replace a reference to a local varisble with a reference to a relation (others attempt
to replace a variable with its value). Since all relations are global, this will achieve the Globalize goal.
Choosing the method causes a new goal to be posted:
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Glitter: Reformulate newp in (previous|package || ...) as <relation-reference-to $>

The achievement condition attached to the Reformulate goal is a pattern-matcher. Each time the Gist
construct in its first argument changes, it checks to see if it matches the second argument; the $ will
match any relation. In this case, as soon as the variable newp is transformed into any type of relation
reference, the goal is marked as achieved. One of the methods that is a candidate for achieving this
transformation embodies the following piece of knowledge:

If you are trying to replace s variable reference with a reference to a relation, find a relation that defines a
sequence of the same type as the variable. It may be the case that the object referenced by the variable is
also part of the sequence.

One selection rule defined for this method checks to see if the variable reference is part of a larger expres-
sion involving a sequence. In this case it is, so the method is recommended and chosen. This leads to the
goal

Glitter: Reformulate newp in (previous|package || ...} as <relation-reference-to ALL_PACKAGES>

The system knows about various ways to reference a sequesce element, e.g., firsf, last, nth. Each of these
methods will be a candidate here. The system must rely on the user to make a choice. Selection rules
prompt the user as follows:

Glitter (selection rule question}: can newp in (previous|package || ...)
be replaced with last ALL_PACKAGES(*)?

Upner: yes.

At this point the system applies a correctness-preserving program transformation to replace newp with
last ALL_PACKAGES(*}). We now have

demon RELEASE-PACKAGE-INTO-NETWORK){newp|package)
trigger: newp:LOCATED_AT = the source
responee:
if (previous|package ||
previous immediately before last ALL_PACKAGES(*)
wri ALL_PACKAGES):DESTINATION
neg newp:DESTINATION
then invoke WAIT();

end- d.e.;'non
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We are now finished with one portion of the optimization plan for ALL_PACKAGES. To achieve the top
goal, Optimize ALL_PACKAGES, will require another tweanty-nine steps. The final outcome will be as fol-

lows:

relation LAST_PACKAGE(package);

demon RELEASE-PACKAGE-INTO-NETWORK({newp|package)
trigger: newp:LOCATED_AT == the source
responae:
if LAST_PACKAGE(*).DESTINATION zeg newp:DESTINATION
then invoke WAIT();

update LAST_PACKAGE(#*) to newp;

end- d.r:;mn

We want to make three points about this example. First, it shows the automation leverage provided by
Glitter. The user was responsible for initiaily posting the Optimize goal, and for answering questions
about the correctness of replacing the variable newp with an element of ALL,_PACKAGES. In the overal)
problem solving needed to achieve the Optimize goal, these were the only two times the user was involved
in the entire thirty-five step process. Thus, we achieve a greater than ten-to-one automation lever.
Further, the steps automated are just the right type, i.e., the mundane jittering steps so ubiquitous in a
transformational development.

Second, the type of techniques needed to optimize ALL_PACKAGES represent much hard experience in
building transformational developments, i.e., it is expert knowledge. Interning this knowledge in a catalog
allows us to reuse it again and again. Hence, Glitter begins to codify an expert's knowledge about the
transformational process. While cataloging program transformations is not mew (see for instance 121,
cataloging the problem solving knowledge necessary to generate transformation steps is new. And as we
have argued, this is exactly where the power lies in a transformationnl system such as TI.

Third, Glitter documents the problem solving process that went in to optimizing the sequence. We now
know that newp was replaced with laal ALL,_PACKAGES(#) because that is a relation reference, and a
relation is global, and a global reference is ok but a local one is not when we are trying to fold an expres-
sion into a relation, and that was what we were trying to do so that we could replace a reference to
ALL_PACKAGES with a variable, which in turn will allow us to throw away the portions of the sequence
we are not interested in, which fnally is an optimization of the sequence. Is this information useful? When
it comes to maintenance, we answer with an emphatic yes. In the TI model, chanpes to software are
made at the specification level. The question is, given a specification change how much of the original
development can be salvaged. Although we have just begun to explore this question in detail, it is obvious
that the more we know about the problem solving steps, the easier it is to reuse the old development.
Related to maintenance, there is the question of user exploration. Glitter keeps a record of all choice
points reached during a development. This is an getive record in that the user may move to a choice point
and make an alternative decision (as shown in Figure 4). The alternate choice becomes part of the history
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just aa the initial choice,

8. Summary and Further Work

Experience with the Transformational Implementation model described by Balzer [1] pointed out 8 major
weakness: the model was under mechanized. it Jacked a representation of goals, strategies and design deci-
sions. It lacked avtomation. Our reseatch goal was to remedy this problem by providing a new system
that automatically found and applied a significant portion of the transformations in a TI development.
Along the way, we found that we also had to come to grips with the formal representation of the problem
solving components missing from TI.

There are several ways we can assess Glitter's success in achieving our goal. We kept statistics on the two
largest examples attempted using Glitter: the package router and a small text editor. >From a conserva-
tive standpoint, the system averaged a one-to-three ratio between user goals and transformation applica-
tions. This ignores the intermediate problems solving steps generated by Glitter. If we take these into
account, as we argue we should, the system provided better than a one-to-ten ratio between user steps
and system steps. Further, this cannot help but get better. Many of the user steps are required because of
missing system knowledge. As this knowledge is added, we expect reliance on the user to decrease.

While automation was our major concern, we can now see that the problem sclving record — the goals,
strategies, design decisions — generated by Glitter is also of importance. One of our current projects is to
use this record to help in maintenance. In particular, we arc attempting to classify the types of changes a
maintainer might make to a specification, and use these as a guide in salvaging portions of the original
development. We find that deciding whether a high level goal or method is still usable is a potentially
solvable problem. Deciding whether an isolated transformation is still usable is, on the other hand, often
intractable.

Finally, we noted in section 1 the assumption that a Gist specification would be provided to Glitter by
some other process. We have begun to study that specification-construction process more formally.
Specifically, the KATE project [0] is an attempt to reuse Glitter in the development of specifications.
Goals, methods, selection rules, and transformations now are centercd on specification design as opposed
to program design. Among other things, we hope to capture and document the problem solving steps that
lead to a specification such as the Package Router,
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