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Abstract. The first structure theory in abstract algebra was that of finite
dimensional Lie algebras (Cartan-Killing), followed by the structure theory of
associative algebras (Wedderburn-Artin). These theories determine, in a non-
constructive way, the basic building blocks of the respective algebras (the radical
and the simple components of the factor by the radical). In view of the extensive
computations done in such algebras, it seems important to design efficient algo-
rithms to find these building blocks.

We find polynomial time solutions to a substantial part of these problems.
We restrict our attention to algebras over finite fields and over algebraic number
fields. We succeed in determining the radical (the "bad part” of the algebra) in
polynomial time, using (in the case of prime characteristic) some new algebraic
results developed in this paper. For associative algebras we are able to determine
the simple components as well. This latter result generalizes factorization of
polynomials over the given field. Correspondingly, our algorithm over finite fields
is Las Vegas.

Some of the results generalize to fields given by oracles.

Some fundamental problems remain open. An example: decide whether or not
a given rational algebra is a noncommutative field.

1. Introduction.

We address computational problems in matrix algebras, finite dimensional
associative algebras and Lie algebras over a field F. Analogous problems for finite
permutation groups have been considered by W. M. Kantor and E. M. Luks (see
Babai-Kantor-Luks [1]). For the basic definitions see Section 2.

1.1. Building blocks.

The classical structure theories of associative and Lie algebras (see Jacobson
[8], Herstein [7]) describe the basic building blocks of these algebras. The "bad
part” is the radical. The factor by the radical is semisimple and a semisimple asso-
ciative algebra is a direct sum of simple algebras.



The textbook proofs of these results are not constructive. They mostly start by
picking "any minimal right ideal”. But the minimal right ideals may not cover
more than a tiny fragment of the algebra and might be quite difficuit to find. (In
fact, this problem is still open and is related to 1.6 below.)

1.2. The significance of the results.

Finding the radical and the simple factors of the radical quotient are as essen-
tial to computational algebra as factoring integers and finding composition fac-
tors are to computational number theory and group theory, resp. (A polynomial
time algorithm to find the composition factors of permutation groups has recently
been given by E. M. Luks, cf. [1].)

In addition, such results (on algebras) are likely to have applications to compu-
tational group theory as well since group representations are a major source of
problems on matrix algebras, both associative and Lie. For instance the (open)
problem of finding an invariant subspace for a group representation is a matrix
algebra problem closely related to those discussed here.

1.3. The basic problem.

We want to find the building blocks {radical, simple factors) of a finite dimen-
sional (associative or Lie) algebra in polynomial time.

We note that no such algorithms seem to appear in the literature on computa-
tional algebra (except for the trivial problem of finding the radical of an algebra
of characteristic zero). Thus, we had to find new algorithms rather than just
analyse existing ones. Some of the algorithms require new theoretical results in
algebra (see Section §).

1.4. Connection with factoring polynomials.

The case of commutative associative algebras generalizes the problem of factor-

ing polynomials over F. Indeed, let fcF[z] and let f=g...g where the g, are
irreducible over F. Consider the commutative associative algebra R=F[2}/()).
(Computing with polynomials mod f.) The radical of R comes from the ”degen-
eracy” of f, i.e. the presence of multiple factors: RedR) is generated (as an ideal
of R) by h=g,...qi. The quotient R/RadR) is isomorphic to F{z]/(h). This in turn
is the direct sum of its simple components, i. e. the fields FlzJ/(g) (7=1,....k).
Finding these components is equivalent to factoring f.

Partly for this reason we restrict our base field F to be a finite field or an
slgebraic number ficld (finite extension of the rationals). Some of the results, how-
ever, generalize to fields given by appropriately restricted oracles.

1.5. The main results.

A/. The radical. We find it in deterministic polynomial time, both for associa-
tive and Lie algebras. We note that the difficult case is when F has characterisic

p.

B/. The simple components of an associative semisimple algebra. We find them



both in characteristic zero and in characteristic p. Since the algorithm involves
factoring over F (and over finite extensions of F), our algorithm is deterministic
polynomial time in the former case and polynomial time Las Vegas in the latter.

1.6. Open problems.

A simple associative algebra is isomorphic to a full matrix algebra over a possi-
bly noncommutative field.

The main open problem remaining is to find an explicit isomorphism with such
a full matrix algebra. This would involve finding minimal right ideals,

In particular, we are unable to determine whether or not a given rational alge-
bra is a skew field.

Another important problem is to find the composition factors of a (semisimple)
Lie algebra.

1.7. Acknowledgements.
The authors are indebted to L. Babai for suggesting the problem. Helpful dis-
cussions with S. Becker and E. M. Luks are also acknowledged.

2. Definitions.

A is an associative algebra ( or algebra for short) over the field F if

i) A is a vector space over F

ii) A is equipped with a multiplication *such that <A,+,#> is an associative ring
iii} Mz*y)=(\z) sy=24\y) holds for every z,y€4 and \eF.

For the sake of simplicity we shall write zy instead of z#y. A nonempty subset
Bof A is a subalgebra if it is both a subring and a subspace of A. Similarly, a sub-
space Bis an ideal if it is a ring ideal of A. If Bis an ideal of A then we may take
the factor algebra A/B in the standard way. The algebra A is simple if it has only
trivial ideals ( i.e. (0) and A ) and AA54(0). We say that the algebra A is the
direct sum of its ideals A,A,,...,A; (written as A;+..+4,) if A is the vector-space
direct sum of the subspaces A,

Here we consider finite dimensional algebras only.

The center Z{A) of the algebra A is defined as

AA)={ 2€A ; zy—yz for every yEA }.
If ZA)=A then A is a commutative algebra.
Examples:

i) If the field F* is a finite algebraic extension of the field F then F* is a finite
dimensional simple algebra over F.



ii) M(F), the algebra of all n by n matrices over F, is a simple algebra of dimen-
sion n®. Its center is F.

iii) Subalgebras of MJ{F).

These latter examples are typical as the following well-known representation
theorem shows:

Theorem 1.1. If A is an algebra over F and dimpA=n then A is isomorphic to a
subalgebra of M, ;(F). Moreover if A has an identity element then it is isomorphic
to a subalgebra of M,(F).

This statement is easily proved using the regular representation of A: for each z€4
we may define a linear transformation R:A—A as follows: Rfy)=zy for every
yeA. It is easy to see that the mapping R is an algebra homomorphism. If A has
an identity element then R is injective.

An element z€A is nilpotent if z™=0 for some positive integer m. An element z
is atrongly nilpotent if zy is nilpotent for every y€A. The radical Rad(A} is the set of
strongly nilpotent elements of A. The algebra A is semissimple if it contains no
strongly nilpotent elements, i.e. Rad(A)=0.

RadA) is an ideal of A and A/RadA) is a semisimple algebra. Semisimple alge-
bras obey a very nice structure theorem due to Wedderburn and Artin: if A is a
semisimple algebra over the field F then A is isomorphic to a direct sum of simple
algebras:

A=A+ Ay+..+ Ay,

where the A; are the (uniquely determined) minimal ideals of A. Moreover, each
A; is isomorphic to a full matrix algebra M,(F,) where F; are (not necessarily com-

mutative) fields containing F in their centers. In particular, if A is commutative
then n=1, i. e. F;j=A; .

L is a Lie algebra over the field F if L is a vector space over F equipped by an
F-bilinear multiplication [ ] for which the following identities are valid:

i) [22]=0 for every 2€L
ii) [[zv]z]+][y2l2)+[[22)s]=0 for every z, y, :€L.

We can define the notions subalgebra, ideal, factoralgebra in the usual way. The
derived series of L is the sequence of ideals of L defined by
LO=p, .. O=[L0DLA)). L is solvable if L'™=0 for some n. It is known (Jacobson
[8]) that if L is a finite dimensional Lie algebra then it has a unique maximal solv-
able ideal R(L), the radical of L.

The descending central series of L is the sequence of ideals of L defined as
L=L,..,L'=[L L""). L is called nilpotent if L"=0 for some n. Every finite dimen-
sional Lie algebra L contains a unique maximal nilpotent ideal ML), the nilradical
of L (see Jacobson [8]).



Example:

Il A, BEM{F) then we can define [AB] as [AB|=AB-BA. It is easy to see that this
operation satisfies the requiremnts i) - ii), so if L is a subspace of M {F) and closed
under the operation [ ], then it is a linear Lie algebra.

There is a simple, but usually not faithful representation of abstract Lie algebras
as linear Lie algeras. The adjoint representation ad(L) of a Lie algebra L is defined
as the linear Lie algebra of linear transformations of adz) of L where 2€L and

ad( z)y=][zy] for every yEL.

We remark that a deeper result of Ado and Iwasawa [8, chapter 6] says that
every finite dimensional Lie algebra is actually isomorphic to a linear Lie algebra,
but we shall not need this fact.

Now we specify our input. An algebra A (associative or Lie) can be given by
structure conatants. If the elements g,,...,a, form 2 (linear) basis of A, then by the
distributive law, it is enough to know the elements eQa; i;=1,..,n, where O
stands for the multiplication in question. We can express these products as linear
combinations of the a,.

aOa =3 0 701
for i,j=1,...,n. The coeflicients ,; are called the structure constants.

We also need a representation of the field 7. We assume that F is a finite
extension of its prime field P (P is either a field of prime order or the field of
rationals). Therefore F is a finite dimensional algebra over P. Thus F can be
represented by specifying the structure constants over P with respect to some
basis of F over P. If dimpF=n then F is the extension of P by a single generating
element o of degree n. This fact gives rise to a particularly convenient basis,
{1,a,0%, + - - ,&™'}. To specify the structure constants with respect to this basis
one only has to list the coefficients of the minimum polynomial of a over P.

3. Controlling sizes

In this section we describe some algorithmic tools we shall extensively use in
the sequel. The main purpose of the results of this section is to guarantee that
the size of the numbers involved in our computations will not blow up.

The size |2] of an object z (such as a rational or algebraic number, vector, field,
algebra, element of an algebra) is the length of the string we use to encode z.

We shall solve various systems of linear equations. It is known that this task
can be done in time polynomial in the input size. The proof of the following
observation is a routine exercise.

Proposition 3.1. Let F be either a finite field or an algebraic number field of
size K. Suppose that we have m linear equations with n variables and with



coeflicients from F. Suppose further that the size of the coefficients is not greater
than N. Then this system of linear equations can be solved in time polynomial in
N, m, n and K. In particular, the result has size polynomial in these parameters.

Corollary 3.2. Let F and K be as above. Suppose we have subspaces V,...,V; of
F® represented by bases. Suppose that the size of the coordinates of these vectors
is not greater than M. Then we can compute a basis of the subspace V,nV;N...nV;
in time polynomial in K,M,n,l In particular, this subspace can be represented by
vectors having polynomial size coordinates.

Proof. First we compute a 'dual basis’ for every subspace V; (i.e. a maximal
linearly independent set of linear equations for V;). By Proposition 3.1 this can be
done in time poynomial in K,M,n,l. Then form the union U of these sets of equa-
tions and compute a 'dual basis’ for U. To do this, we have to solve another
linear system whose input size is polynomial in K,M,n,l, so we may use Proposi-
tion 3.1. again. It is obvious that the vectors obtained form a basis of
V,NVN..NV;

We shall have to compute the minimum polynomial minpol(z) of the element
aCA.

Proposition 3.3. Let A be an associative algebra with identity element over the
field F, with basis g,,...,a, and structure constants v;; . Here F is either finite or
an algebraic number field. Suppose that the description of F has size M. Suppose
that |y, <K for every #5k Let a=Y,'\;6; be an element of A and suppose that
INJ<N hold for every coeflicient ;. Then there is an algorithm which computes
minpol(z) over F in time, polynomial in M,n,N and K. In particular, the output
(and the intermediate results) have size polynomial in M,n,N and K.

Proof. (i) We successively compute the first n powers of a. This task can be
done in polynomial time and the size of the coeflicients remains polynomial in
M,n,N and K.

(ii) We determine 1,the identity element of A.We have to solve a system of n
linear equations with coeflicients of size polynomisal in n and K.

(iii) Finally for i=1,2,..,n we test the linear independence of 1 and the first
powers of a until we find a linear dependence. In each step we solve a system of
linear equations whose input is polynomial in M,n,N and K. The first linear
dependence gives the coeflicients of minpolz).

4. The radical
In this section we first sketch how finding the radical of a Lie algebra can be
reduced to the associative case. Subsequently we describe the algorithm for

finding the radical of an associative algebra.

4.1. Reduction of R(L) to ML). In the infinite case R{(L) can be computed



directly, by solving a system of linear equations (cf. Beck-Kolman-Stewart [2, sec-
tion 5|]), derived from a classic trace condition similar to Dickson's theorem (see
Theorem 4.2 below). In the finite case R(L) can be computed by repeated appli-
cation of an ML) procedure. The reason is that ML)CR(L) and R(L)740 implies
that ML)720 because the next to last term J of the derived series of R(L) is an
abelian (i.e [/J/]=0) hence a nilpotent ideal. After finding the nilradical of L, we
repeat this for the factor algebra L,=L/ML) and so on. This process terminates
when we have a Lie algebra L; such that ML;)=0. Now L; is isomorphic to L/R(L)
and we can easily poduce a basis for R(L) by keeping track of the preimages of
the ideals we factored out during the process.

4.2. Reduction of ML) to the associative case. A theorem of Jacobson
allows us to reduce the problem of computing ML) to the problem of computing
the radical in an associative algebra.

Theorem 4.1. (Jacobson {8, p.36].) Let L* denote the associative (matix-) alge-
bra generated by adL). Then an element z€L is in ML) if and only if
ad(z)ERadL").

This theorem shows that given RadL‘), ML) can be computed by solving a sys-
tem of linear equations.

4.3. Associative algebras: reduction to prime fields. By our assumption,
the field F is a finite extension of its prime field P. Let d be the dimension of F
over P and n the dimension of A over F. Then A can be viewed as an algebra of
dimension nd over P. Moreover, the definition of the radical as the set of strongly
nilpotent elements does not depend on the ground field. Henceforth we assume
F=P.

4.4. Characteristic zero. If F=Q then we may use the following characteriza-
tion of the radical due to Dickson.

Theorem 4.2. (Dickson [6],pp. 106-108.) Let A be a subalgebra of A (F) where
charF'=0. Then z€Rad{A) if and only il Tr(zy)=0 {or every ycA.

Corollary 4.3. Let F be a field of characteristic zero and A a matrix algebra
over F. Let the elements g,,s,,...,8, form a linear basis of A over the field 7. Then
z€Rad A) if and only if Tr(ze)=0 for ¢=1,...,n.

This statement shows that Rad A) can be obtained by solving a system of linear
equations with small and easily computable coefficients.

4.6. Prime characteristic. This is the difficult case to which the rest of this
section and the entire next section will be devoted. For this case, we had to
develop an apparently new, tractable construction of the radical. Let F=GHp),
ACMJp) a matrix al$ebra with dimpA=n or n-1 and let ! be the integer defined
by the inequalities p'<n<p"!. Let A* denote the set of matrices obtained by
adjoining 7 the identity matrix of M,(p) to A.

We shall find ideals [,,},...,/; and functions g;: I, ,~ GFp) for 0<i<I with the



following properties:

1. I,=A and I=RadA).

2. g; is a linear function on 1.

3. I={ z€l., ; g{zy)=0 for every ycA'}.

4. g(z) can be computed in time polynomial in n and log(p) for every 2€A.

These properties immediately show that if a basis of J; is given then a basis of I;
can be obtained by solving a system of linear equations over GF(p). The
coefficients of these equations can be obtained in polynomial time and we obtain
the radical after I<log(n) such steps.

In order to compute gfz) we shall under certain circumstances
divide mod p residuc classes by p. More precisely, the function g; is defined as fol-
lows. Let X be an integral matrix and s=X modp. Compute the integer
u="Tr{X"). It will turn out that for z€/,, this number will be divisible by p'. Let
gdz) = ufp' medp.

This somewhat mysterious definition clearly justifies the above claim of fast
computability but it leaves a lot to be proved. The justification follows in the
next section.

5. Approximating the radical

In this section we prove the claims made in the previous section.

Let p denote a prime number and n a positive integer. Let M, and M/p)
denote the rings of all n by n matrices over the integers Z and over the p-element
field Z,, respectively. ¢ will denote the ring homomorphism from M, to MJp)
induced by the Z—Z, epimorphism.

Matrices over Z will be denoted by capitals (4,B,X,Y); the corresponding 1. c.
letters will indicate matrices over Z,.

We want to speak about Tr{a?)modp*') where a€M/p) simply by choosing an
arbitrary matrix A€M, for which ¢(A)=s and taking Tf(A*)modp™!'). This pro-
cedure is justified by the following lemma.

Lemma 5.1. If A=B mod p where A,BEM, and i is an arbitrary nonnegative
integer then _
Tr(A?)= T B")mod (p'*}).

Proof. Let P=B-A. Here every entry of the integral matrix P is divisible by p.
First we notice that if B,,...,B; are integer matrices and m of them equal P then
every element of the product matrix B=B5,B,...B, is divisible by p™ In particular,
T B)=0mod p™).

Now if we expand the left hand side of the stated congruence we obtain



TH B )=Tr(A+ PP )= TH 2,5,..Z,)

where Z=A or Z=P and the summation ranges over all the 2¥ such products. If
G=<nr> denotes the cyclic group of order p' then we may define an action of G
on these words by setting

N2 2y..2 =2 2.2, .

i.e. m acts as a cyclic shift. Clearly if V and W are two products from the same
G-orbit then Tr(V)=Tr W) because THXY)=Tr(YX) [or any X, YEM,. If the orbit
of the product V has p' elements then the contribution of this orbit to the sum is
P Tr( V). But, in this case »” leaves V fixed, i.e. V can be obtained as the p™-th
power of the product of its first p’ factors.

It Vis not A? then at least p'/ of the matrices Z; is P. Now using the trivial ine-
quality p™’>i-j+1 , we conclude that every element and hence the trace of V is
divisible by p*’*!' and the contribution of the orbit is divisible by p™'. On the
other hand A? forms a one element orbit, proving the Lemma.

The following result provides a tool for inductive proofs.

Lemma 5.2. Let H be a multiplicatively closed subset of M,, and & a positive
integer and suppose that Tr(X*) is divisible by p**! for every XeH and 0<i<k.
Then for every X,YeH

TH(X+ YV )=TrH X" )+ Tr( Y¥) mod (p**).

Proof. We expand the left hand side of the congruence as in Lemma 5.1 and
obtain that

TH(X+ VW)=L T 22,...2))

where Z—=X or Z=Y and the summation ranges over all of the 2* such products.
Again, we consider the orbits of the cyclic shifts. If the orbit of the product Vv
has ¢ elements then the contribution of this orbit to the sum is p/Tr( V). But, in
this case, as in Lemma 5.1, the matrix V can be obtained as the p*’-th power of
the product of its first g/ factors. Using our assumption, if ;520 then Tr(V) is
divisible by p¥/*! .On the other hand, VEH thus the sum of the orbit is divisible
by p**'. The one-element orbits correspond to the right hand side of the
congruence.

Let now F be a field and feF]z] a monic polynomial:
A)=z"+0,2" '+ 0,2" *+... 44,
If aj,a,, . . . ,a, are the roots of f( in an appropriate extension of F ) then let

‘£=E,"=1"}



for i=1,2,...,n. The elements s; can be expressed by ay,a,,...,a, using the well-known
Newton - Girard identities:

‘l+al=0
2+a;8,+2a,=0

23+a;8,+a,8,+3a,=0

8, taje, +...+a, 18,-+na=0.
The next two results establish a trace condition for nilpotence.

Lemma 5.3. Let H ble a multiplicatively closed subset of M, and suppose that
for every XeH , Tr(X?) is divisible by p"' where [ is defined by the inequalities
p' < n < p*'. Then ¢(X) is nilpotent for every XeH.

Proof. It suffices to prove that ¢(X)"=¢v(x’l) is nilpotent. If fis the characteristic
polynomial (with leading coeflicient one) of Y=X? over the rationals then ¢(Y) is
nilpotent if and only if every g, is divisible by p. We shall use the Newton -
Girard identities for the polynomial f. Using the fact that s=Tr ¥Y')=Tr{(X))
and X'eH we conclude that s, is divisible by p*!. Now from the Newton - Girard
formulae we obtain that
ia =0 modp) for every 0<i<n.

On the other hand, from the definition of I it follows that s is not divisible by p™!
hence g, is divisible by p, and the statement follows.

Lemma 5.4. Let XeM, be a matrix for which ¢(X) is nilpotent. Then for every
i>0 _

Tr{ X*)==0mod (p**!).
Proof. If ¢(X) is nilpotent then it is similar (over Z,) to a strictly upper triangu-
lar matrix. Or, in terms of integer matrices, there exist A,B,P,R,UceM, such that
if 7is the identity matrix in M, then

AXB=U+P , BA=I+R, U"=0 and

$(P)=¢(R)=0 .
Now using Lemma 5.1

0="Tr V)= Tr{{U+P)")=Tr{(AXB)")

where the congruence is mod(p**!). Similarly,



TH{(AXB)P)=Tr{(BAX)")=TH(X+RX)").

Observing that ¢(RX)=0 , we may use Lemma 5.1 again and we obtain that
TH(X+RXP)=TrX") modp™").

Combining these equalities and congruences we see that
Tr{( X*)=0mod (p').

Now suppose that A is a subalgebra of M,(p). Our aim here is to construct a des-
cending chain of ideals of A,
A=I,22 - - - DI=RadA)
such that given I; the ideal 7, is computable in time polynomial in n and logp.
For 0<i<llet

I={ z€A ; Tr{(zy)")=0mod(p'*") for every yEA* and for every0<;<i}.

For the deﬁnition of A’ see §ection 4.5. We remark that for vcA the residue
Tr{(u")modp'*') is Tr(UP)mod(p’*") where U is an arbitrary integer matrix for which

#(U)=u. (See Lemma 5.1.)
From the definition it is immediate that

A=I_12102...211.
Using our lemmas, we can prove the following:

Theorem 5.6. I, is an ideal of A for every k (-1<k<I) and [=Rad A).

Proof. I, is obviously an ideal, so we may suppose that ¥>0. If 2€I; and ucA
then obviously zuel;. In order to prove urEl; we observe that

TA((UX) V)P )=TH(X(YU)").

Now we have to prove that I, is an additive subgroup of A. This is true for
because Tr is a linear function. So we may suppose that k>0. As [, is multiplica-
tively closed, the same is true for its preimage J; in M,

Ji={ XeM, ; $(X)el; }.

We shall apply Lemma 5.2 for H=J;. Let X,YeJ; and for and UeM, such that
#U)eA’. Now for any 0<;<k we have

TA((X+ NP )=Tr{((XU+ YUY )=
=Tr((XU)®)+ Tr(( YUY)=0 mod(p™*").

The last congruence follows from

TH(XUP)=0 modp*!)



and

TH(YUY)=0 modp'*").
Finally we show that [=RadA). Indeed, if z€RadA) then zy is nilpotent for

every ycA°’. If Uis an arbitrary integral matrix for which ¢(U)==zy then U is nilpo-
tent modp) and from Lemma 5.4 we obtain that

Tr{(z2y))=0mod(p""")
for every >0, i.e. 2€l, The reverse containment immediately follows from
Lemma 5.3 if we define # to be H=J; and the proof is complete.

For 0<i<{! we define the function f; :M,—Q by

f.(X)=ﬁp—‘:@—-

Let

J; = {XeM,|¢( X)L}
If XeJ,_, then f{X) is an integer and if X,Y€J., then
(1) J{X+V={{X)+{{¥) mod(p).
Indeed, if +==0 then this is immediate and if i>0 then we may use Lemma 5.2.
Now for 0<i<! we define the functions g, :I; ,—Z, as follows:

gdz)=f{X) mod p)
where X is an arbitrary integer matrix for which ¢(X)=2. The definition is obvi-
ously unambiguous if =0. To see this for ¢>0, let X,Y integral matrices for which
#(X)=¢(Y)=z then Lemma 5.1. implies that

TH(X?)=Tr{ Y )modp™").
But now X,YeJ_, , so p' divides T+(X") and T Y*) hence

Tr().("') =T YP') mod{p).
r 7

Now we summarize these facts in the following:

Theorem 5.6.
(i) The functions g; are Z;-linear on I, for every 0<i<I.

(ii)) I={z2€I.;; g{zy)=0 for every y€EA* }.



Proof. (i) Immediate consequence of (1).
(ii) This is a simple reformulation of the definition of 7, Indeed, g{zy)=0 if and

only if Tr{(zy)") is divisible by p™*!.

Theorems 5.5. and 5.6. together with our remarks in Subsection 4.5 immedi-
ately imply the following result.

Theorem 5.7. Let A be an associative algebra of dimension n over the field
GFp) given by structure constants. Then we can compute a basis of RadA4) in
time polynomial in n and logp.

Proof. First we compute the regular representation of A (c¢f. Theorem 2.1).
Now we have a matrix algebra over GF(p) and we can successively determine the
ideals I; by solving systems of linear equations over GF(p).

8. Fields, polynomials, commutative algebras

In this section we establish effective versions of some the basic facts from algebra
needed for the decomposition of semisimple associative algebras. First we deal
with fields of characteristic zero. @ will denote the field of rational numbers. If a
is an element of an algebra over the field F then minpol(z) will denote the
defining polynomial of a (i.e. the smallest degrec polynomial feFlz] with leading
coefficient 1 for which {a)=0). The field F in consideration will be clear from the
context.

Proposition 6.1. Let F,F’ be isomorphic (field-) extensions of the field Q. Sup-
pose that we have elements a,,4,,...,6,€F and b,,b,,...,b,€F* such that

a) ling<gy,...,a,>=F and

ling<by,....b,>=F"
b) there is no field isomorphism ¢ :F—F* for which

#a;)="b, for every i=1,2,...,n.
Then there exist integers a,, . . . ,a, such that 0<a,;<2n and over the field @

minpolz;a'dl(z)sémfnpolz:albl(z).

Proof. By contradiction. If the assertion is false then for every such choice of
the integer vector @=(a, . . . ,a,) there is an isomorphism ¢ (depending on @ ) for
which ¢(} 1a;a,)=Y.7ab;. In this case we say that the isomorphism ¢ belongs to
the vector . We choose a prime p, 2n>p>n and consider the vectors & for which

0<a;<p hold for i=1,.,n. As dimgF=dimoF'<n, there are at most n isomor-
phisms from F to F'. By our hypothesis, as every @ has at least one isomorphism

n L]
belonging to it, there is an isomorphism ¢ which belongs to at least p?>p?=p""



of these vectors. Every proper subspace has at most p™! elements, therefore these
vectors cannot be in a proper subspace modulo p. So we may suppose that ¢
belongs to the modulo p independent vectors @', ...,a@" These vectors are
linearly independent over @ as well. Using the fact that

lﬁ:E '-:___1(!1','0,—'2?:10,';5,', j=l,...,n
we obtain the following system of linear equations
:'=lajl(¢( ai')_bl')=0 for j=1,..,n

the matrix of which is nonsingular. This implies that ¢(a,)=>b, for every s=1,...,n, a
contradiction.

It is a well known fact that finite extensions of fields of characteristic zero can be
generated by a single element. The next proposition is an eflective version of this.

Proposition 8.2. Let F be an algebraic number field with dimgF==n and let
8y,...,4,, be a generating set of F over the rationals. Then there exist integers
ay, .. ,0,, 0<a;<n’such that F=Q(Ya;a).

Proof. The textbook proof of the theorem on simple extensions immediately
gives the following fact.

Il @(a) and @Q(b) are two simple algebraic extensions of @ with respective dimen-
sions kK over @ then there exists an integer a,0<a<k¥ such that
X a,b)= QN a+ab).

Now let F=¢a,,...,q;). Observing that dimgoF;<n and dimgQ(a;,)<n ,the result
follows by induction on s.

The next corollary will guarantee that if A is isomorphic to a direct sum of alge-
braic number fields then A has "small” zero divisors.

Corollary 6.3. Let F,F* be algebraic number fields. Suppose a,,...,s, is a linear
generating set of F over @ and similarly let b,, . . . ,b, be a linear generating set of
F’. Suppose further that there is no isomorphism ¢ : #—~F"* such that ¢(s)=8; for
every 1<i<n. Then there exist integers a;, . . . ,a, 0<a;<mazx(n’2n) such that

mfnpolz a0 z)F# m:'npols a.b.( z).

Proof. If Fis not isomorphic to F* then one of them (say F) is not isomorphic to
a subfield of the other. By Proposition 6.2 there exists a=Y,la;s; €F for which
F=0Q{a) and 0<a,<n’. Using these coeflicients a; the assertion follows in this case.
Il Fis isomorphic to F* then Proposition 6.1. gives the desired result.

Now suppose that A is a semisimple commutative algebra over the field F. Let
A=A+ A,+...+A; be the Wedderburn - Artin decomposition of A where the sum-
mands are fields and they are the minimal ideals of A. Every element b of A can
uniquely be represented as



b= bi+b2+"‘+ bk

where b€A, In particular, we can represent the basis elements a; as
8;=a,+ap+..+a; where a; belongs to A, A is a finite dimensional algebra over
F,30 every bEA is algebraic over F. As A is semisimple and commutative, it does
not contain nilpotent elements. This immediately implies that minpol{z), the
minimum polyromial of b over F, has no multiple factors over F. The following
two propositions establish a connection between factoring polynomials and
decomposing algebras. They state well known facts. We include their proofs here
because they contain ideas essential for our decomposition method.

Proposition 6.4. Let p be a polynomial with coefficients from F, 4, b, b; as
above. Then

(i) minpoly(z)= l.c.m.(minpoly(z2),...,minpoly(z)).

(ii) If p(b,) is not zero then the ideal p(b)A contains A;

(iii) If p(b,)=0 then p(b)A does not contain A,

Proof: (i) A is a direct sum of the subspaces A; hence =0 if and only if =0 for
every i. The direct summands are ideals, thus if z€4; ¥€A; and 54 then zy=0.
The latter implies that for any polynormal P, p(b)--E"p(b,), so p(b)=0 if and only
if g(b,)=0 for every i. Now the statement follows immediately.

(ii) 0£p(b)p(b)EA; and A, is a minimal ideal.

(iii) For each z€A the i-th component of zp(b) is 0.

Proposition 6.6. Let A be as above. Let t€A and suppose that
minpoly(z)=fz)i(z) where f,g€F[z] nonconstant relatively prime polynomials. Then
A can be decomposed as a direct sum of ideals A=5J where I=fb)A and
J=g(b)A. Moreover these ideals also have identity elements.

Proof. It is immediate that I and J are ideals and fb)40,4(b)520 imply that
I#(0) and J#4(0). Now let u,v€F[z] such that fu+gv=1. Then

(2) Ao b)+g(b)v(b)=1

kolds (here 1 is the identity element of A). First we observe that e=fb)u(b) is the
identity element of I. Indeed, ecf and multiplying (2) by ) we obtain efb)=/0b).
If z€1 then z=/b)y for some ycA and ez=ef(b)y=/{b)y=2. Similarly, d=g(b){(b) is
the identity element of J. Now using the fact that de=0 we deduce that if zeinJ
then z=ezr=edz==0 hence /NJ=(0). Finally if 2€A then from (2) we obtain that
ez+dr=z , where the fist term is from 7 and the second is from J, i.e. I and J gen-
erate A. The proposition is proved.

7. Semisimple associative algebras

7.1. Reduction to the commutative case. If A is a semisimple associative
algebra then first we compute B, the center of A. A basis of B can be obtained



by solving a system of linear equations. The center is a commutative semisimple
algebra, more precisely, it is a direct sum of fields.

Suppose that we are able to find the Wedderburn-Artin decomposition of B to
its simple components (fields B,):

.B=Bl+32+...+B£.

Then it is easy to see that A is the direct sum of the simple ideals BA ,
=1,2,...,k and these components can be computed effectively.

7.2. Finding the decomposition over Q

In this section we outline a deterministic polynomial time algorithm that com-
putes the minimal ideals of a given semisimple commutative algebra over Q. Let
A be a semisimple commutative algebra over @, with basis g,,...,a, and structure
constants v .Suppose that |v;;| <K for every i,4,k.

Let A,,A,,...,A; denote the minimal ideals of A. Every element €A can be
uniquely represented as a sum

(3)  b=byt+by+..+b
where b,€A,. In particular, we can represent the basis elements of A as
a=a,+ap+..-Fay ﬂ@'EA,'

For any fixed j the elements a,;a,,,...,a,; generate A; as a linear subspace.

Let ¢,,¢,,...,¢; denote the primitive idempotents of A (i.e. the identity elements of
the fields A4,,4,,..,4;). We can express them as rational linear combinations of
8yyeeny Bl

e=ecyttentt...+e;,0,

First we prove that the result of the decomposition process can be represented in
polynomial size.

Proposition 7.1. The coeflicients e; have size polynomial in n 2nd K.

Proof: Without loss of generality we may assume that /=1. For each r,r=2,...k,
there exists an element b (depending on r) such that

i) the coeflicients of b are polynomially bounded in n and

ii) if we consider the representation (3) of b then minpoly(2) and minpol;(2) are
different.

Indeed, we use Cor. 6.3 for the fields 4,, A, and for their linear generating sets
ay,..,0;4 and a,,,...,a,, respectively. As A, and A, are fields, these are different
irreducible polynomials over Q. Now we notice that if p, denotes minpol,(z) then

then p(5,) is not zero,hence the ideal B,=p(b)A contains A, but it does not con-
tain A, by Prop. 6.4. On the other hand from Cor. 6.3 it follows that p{z) is a
factor of minpoly(z) so it has "small” coefficients (in terms of n and K) hence p{b)



and B, can be represented by vectors with small coordinates. As A,=B,NB,N...NB;
, A; can also be represented by small vectors. ¢, is the identity element of A,
hence it can be obtained by solving the system of linear equations:

e c=C;
where the elements ¢,,...,c; form a @-basis of A,. The size of input is polynomial in
n and K thus the coeflicients e,,,...,¢,, are small as we wanted to show.

Corollary 7.2. Every idempotent of A has coefficients of size polynomial in n
and K.

Proof. Every idempoicnt is a sum of at most n primitive idempotents. Now
using Prop. 7.1 the statement follows.

Corollary 7.3. Suppose that /is an ideal of the algebra A and that 7 is given
by a @linear basis ¢,,c,,...,c;. Suppose that the size of the coeflicients of ¢; (with
respect to the basis gy,...,a,) is bounded by N. Then there is a polynomial p(z,y)
and an algorithm (called REDUCTION) in the sequel) which runs in time polyno-
mial in n, N and K and computes another basis of /. Moreover the coefficients of
the new basis vectors have size less than g{n,K).

Proof. The procedure REDUCTIOMI) runs as follows:

i) First we compute e the identity element 7 as in Prop.7.1. This part of the algo-
rithm runs in time, polynomial in n, ¥ and K.

i) Now, using the fact that /=ecA, we select a maximal linearly independent set
from the elements ea,ca,,...,ca,. These vectors obviously form a @-basis of I and
using Cor. 7.2 we obtain the result stated. We remark that this part of the algo-
rithm also runs in time, polynomial in n and K.

Bases obtained via procedure REDUCTIOMN) will be referred as standard bases.

To obtain succint representations of the intermediate fields we may encounter,
we develop a simple procedure PRIMELEM) which computes a single generating
element of a subfield of A. The subfield is given by two generating elements.

The input of PRIMELEM) is a Q-algebra A, and two elements a,0€A for which
Xa,b) is a field. These elements are given as linear combinations of the basis vec-
tors of A. The procedure outputs an element c=a+ab for which @(¢c)=(q,) and
a is an integer and 0<a <n®. We shall employ an auxiliary integer variable j.

procedure PRIMELEMA, a,b)
begin
5:=0;

for k=0 to »n’ do begin



Step 1. compute f the minimal polynomial of a+kb
Step 2. if deg(f)>7 then si=de/);

end for

return(a+sb);

end procedure

Proposition 7.4. PRIMELEM is correct and terminates in time polynomial in
the input size.

Proof. As we remarked in the proof of Prop. 8.2, such an element ¢ exists. We
know that for each & Q(a+kb)C Qa,b), and Qa+kb)=Q(a,b) if and only if
dim oG atkb)=dimyQ{a,b). But dimyQ(a+kb)=deg(f), thus ¢ generates Q(a,b) if and
only if minpol(z) has maximal degree. From Prop. 3.3 it follows that PRIMELEM
runs in time, polynomial in the input size.

Now we are in the position to describe our main subroutine SPLITI(). Its input is
a semisimple commutative algebra A and an ideal 7 of A given by a linear basis
over Q. It tests whether [ is indecomposable or not. In the latter case it finds a
proper decomposition of I as a direct sum of ideals /=/+1, and returns a stan-
dard basis of I; and a standard basis of /,. As mentioned in the Introduction, the
algorithm will use a procedure for factoring over @ and its finite extensions. Such
polynomial time algorithms exist (Lenstra-Lenstra-Lovssz [12], Chistov-Grigoryev
(5], Landau [10], A. K. Lenstra [11]).

procedure SPLITI1(A,}
begin

Step l.initialize variables b,,...,5; to be the given basis vectors of 7 and let
var=1 i.e. the identity element of I

for i:=1 to k do begin

Step 2. compute f, the minimal polynomial of b, over the field

Avar);

Step 3. find the irreducible factors of f over Q(var) using an
appropriate factoring algorithm;

Step 4. i f=gh is a proper factorization then return ideals
REDUCTIOMAg(b)) and  REDUCTIOMAKb))  else let
vari=PRIMELEMA, var, b,);

(* by semisimplicity, f cannot have multiple factors #)



end
Step 5. return the message ” Iis a field ”;
end

Proposition 7.5. Suppose that I is represented by basis vectors whose coordi-
nates have size less than N. Then SPLITI is correct and runs in time, polynomial
in n, N, K.

Proof. First we notice that in each step I contains the field @(var) as a subalge-
bra (actually,f is an algebra over Q(var)) and if we passed the +th cycle then
@(var) contains the elements b;,b,,...,b; and if we terminate at Step 5 then 7is a
field. >From Prop. 6.5 it follows that if we terminate at Step 4 then SPLIT1
gives a proper decomposition of I, otherwise Iis a field. The correctness is proved.
As k<n, it is enough to show that each step takes only polynomial amount of
time. This follows immediately from Prop. 3.3, Prop. 7.4, Cor. 7.3 provided that
we have a polynomial bound on the sizes of elements stored in variable var. But
these elements are always of the form {b,+5Lby+...4+b, where the coefficients {; are
rational integers and for each s |l|<n®.

Now we describe our program MAIN1(). The input of the program is an algebra
A given by structure constants -, , where ij,k=1,..,n. Its output is a list MINID
whose elements are the minimal ideals of A represented by standard bases. It uses
an auxiliary list ID which consist of the ideals to be decomposed and an auxiliary
variable id of type "ideal”.
program MAINI(A)
begin
Step 1. initialize two empty lists ID and MINID respectively;
Step 2. put A on the list ID;
Step 3. while ID is not empty do begin
a) id:=first element of ID;

b) call SPLIT1(A,sd);

c) if id was a field then put it on the list MINID;

d) if SPLIT1 returned two ideals then put them on the

list ID;
end while

end program

Theorem 7.8. Let A, n, K be as zbove.Then MAINI gives us the Artin -



Wedderburn decomposition of A in time polynomial in n and K.

Proof. After each pass of the while loop we cither get a minimal idezl of A or
obtain a finer decompositon of A (the ideals on the two lists form a direct decom-
position of A), so there are at most 2n-1 passes. We have to prove only that each
step takes a polynomial amount of time and this is immediate except for step b).
The ideals in consideration are always stored by reduced bases so by Cor. 7.3
they have size polynomial in n and K and the rest of the statement foliows from
Prop. 7.5.

7.3. Finding the decomposition over finite fiels

As in the infinite case, it is enough to find the Wedderburn-Artin decomposition
over the prime field, so we may suppose that A is an n dimensional algebra over
the field F=GFp) for some prime p. The algebra A is given by structure con-
stants -;; where v;€F and ij,/=1,..,n . We remark that in this case all subspaces
of A have small representation in terms of log(p) and n, so we don't need pro-
cedures like REDUCTION. We may begin with SPLIT2(), the finite counterpart of
SPLIT1().

The input of SPLIT? is a pair A, I, where [is an ideal of A and it returns either

i) a proper direct sum /=I+1 or

ii) a message saying that /is a field.

The procedure uses an auxiliary variable field which stores a subfield of B given
by a basis and structure constants over the prime field. We include here an infor-
mal description of SPLIT2. It is very similar to SPLIT1 except it is simpler
because we don’t have to worry about the size of representations of fields and
subspaces constructed. It also employs a factoring procedure over finite fields.
For example it may use the Las Vegas methods of Berlckamp (3], or Rabin [13]
with expected running time polynomial in n and log(p) or the deterministic algo-
rithm of Berlekamp (cf. [3] and [9, section 4.6.2]) with running time polynomial in
nand p.

procedure SPLIT2(A, )
begin

Step l.initialize variables §,,...,b; to be the given basis vectors of I and let
Jield=F, the ground field of I,

(* 7 has an identity element, so we may suppose that it contains F *)
for i:=1 to k do begin
Step 2. compute £, the minimal polynomial of 4, over the field field,

Step 3. find the irreducible factors of f over field using an appropri-
ate factoring algorithm;



Step 4. Il f=gh is a nontrivial factorization then return bases of
ideals Ig(b,) and INb,) else let field:=ficldb);
(* by semisimplicity, f cannot have multiple factors *)

end
Step 5. return the message ” 7is a field ”;
end

Proposition 7.7. Procedure SPLIT2 is correct. It is either a polynomial time
Las Vegas algorithm (polynomial in log(p) and n, i.e. in the size of the input), or a
deterministic algorithm, polynomial time in p and n, depending on the factoring
method employed.

Proof. We notice that if we passed the i-th cycle then the field field contains the
elements b,,...,b;, This implies that if we terminate at Step 5. then [ is a field.
From Prop. 6.5 it follows that il we terminate at Step 4. then we have a proper
decomposition. The correctness is proved.

Step 3 runs in expected time, polynomial in n and log(p), or deterministic polyno-
mial time in n and p depending on the factoring method we use. Prop. 3.3
implies that Step 2 runs in time, polynomial in n and logp). We can compute
either a basis for fieldb,) at Step 4. using a basis of field or bases for the ideals
Ig(b,), IK(b;) in time polynomial in n and logp). Observing that there are at most n
cycles, the proposition is proved.

We have established a procedure which finds a proper decomposition into two
direct summands if this is possible (i.e. if I is not a field). We can use this pro-
cedure to find the Wedderburn-Artin components in the same way as we did in
the infinite case. Actually the same program MAIN will do the job if we replace
SPLIT1 with SPLIT2. We summarize the results of this subsection in the follow-
ing:

Theorem 7.8. There exists a Las Vegas algorithm for finding the Wedderburn-
Artin decomposition of a finite dimensional commutative semisimple algebra A
over a finite field F=GH(q) in time polynomial in dimpA and log(q).

Moreover the above problem can be solved deterministically in time, polynomial
in dimpA ,p and m where p=charF and g=p™.

Proof. Using Prop. 7.7 in place of Prop. 7.5, we can conclude as in Theorem
7.8.

8. Fields given by oracles

Some of the above results extend to fields given by appropriate oracles. Sup-
pose that we have an associative algebra A over the field of quotients of an
integral domain D of characteristic zero. Let Xz) denote the input length of an
z€D in the given representation of D. Suppose that the following inequalities hold



for the length function { (see also Borodin-Cook-Pippenger [4]):

{z-y)< maz{ {z), y)}+O(1) and

{29) SAa)+Ag)+Ollog max{ Xz),Xy) })
for every z,yeD. If we have oracles for subtraction and multiplication in D then
we have a polynomial time oracle algorithm to compute Rad(A). The main reason
for this is that under these conditions we can effectively solve systems of linear
equations, so we can use Cor. 4.3 as in the case of algebraic number fields.
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