CIS-TR 85-04

Bullding Control Strategies
in & Rule-Based System

Stephen Fickas, David Novick, Rob Reesor

Department of Computer and Information Science
University of Oregon

Building Control Strategies in a Rule-Based System
by

Stephen Fickas
David Novick
Rob Reesor

Computer and Information Science Department
University of Oregon
Eugene, Oregon 97403

January 1985

Abstract

Rule-based systems in which conflict resolution occurs require a control strategy. Many systems use
domain-independent, fixed control strategies. This paper shows that effective conllict resolution often
requires domain-specific knowledge. Moreover, defining control knowledge may be as diflicult as defining
domain knowledge. We present the ORBS model and implementation of a rule-based systems environ-
ment which supports complex and dynamic control strategies, and the interactive development of these
strategies. ORBS and earlier eystems are compared with respect to language, contrel, and environmental
support for development of control. Four examples of control using ORBS are discussed: emulating a con-
ventional system, separating domain knowledge from scheduling iknowledge, using an agenda-based stra-
tegy, and dynamically changing a strategy during execution. The ORBS environment provides machine-
aided construction of scheduling strategies through a catalog of scheduling functions from which strategies
can be constructed, a skeleton scheduler, a scheduling editor, a scheduling tracer, and a break package.
Finally, the paper discusses a model for system implementation of control from user-provided examples.

Tople Area: Expert Systems
Key Words: rule-based systems, control knowledge, interactive environments
Word Count: 5498

Contact: Stephen Fickas, (503) 686-4408, csnet fickas@uoregon

Page 1

1. Introduection

This paper describes a control model for rule-based systems. Although it is part of a particular expert sys-
tem language, we argue that it is general enough to be applied to any rule-based system where conflict
resolution must occur. The model is based on two propositions:

(1) Corflict resolution is a complex process that often requires domain-specific knowledge to be effective.
A fixed control strategy shown to be useful in one domain may be ill-suited in another.

(2) Defining control knowledge may be just as difficult a task as defining domain knowledge. Hence, the
coastruction, debugging, and maintenance of control knowledge should be well supported by the sys-
tem.

In this paper, our main focus is on the problem of control knowledge posed by the Rrst proposition. In
patticular, our model separates domain knowledge from control knowledge, and allows conflict resolution
to be tailored to the problem domain. The expert system writer may define, through a formal interface,
the components of his or her strategy. These components may be selected from a catalog of predefined
primitives or built from scratch.

The last two sections of the paper describe our progress on the problem of support posed by the second
proposition. Qur model supports strategy comstruction by supplying editing, tracing, simulation and
break-point tools. Future work lies in allowing further automation of the construction process.

2. Control Issues for Conflict Resolution

Given a set of activations' competing for control, a rule-based systemn must choose which activation to
apply. This process presents at least two kinds of control decisions, one dealing with competing solutions,
and one dealing with organization or tasking:

(1) The system must choose between alternative solutions. For instance, in a system dealing with the
choice of circuit components, there might exist a rule for every different component choice. In cer-
tain situations, more than one may be a candidate. The system should choose the one that best
meets constraints and performance standards.

(2) The system must order a set of tasks. For example, the choice of components may be one subtask
out of many, e.g., define interfaces, optimize area. The system must insure that dependent tasks are
taken in the right order.

Different expert systems have proposed various approaches to these two control problems. The approach
used will often determine system characteristics in at least three important respects:

. Flexibility. Different applications may require different control sirategies. Is the system flexible
enough to permit different kinds of strategies to be matched to different domains?

) Representation. Control knowledge is an important component of a rule-based system. It should be
represented separately from domain knowledge. Does the system facilitate separation of domain and
control knowledge?

. Dynamic coatrol. A system may deduce control knowledge while executing. Can the system take
advantage of such information?

A system which performs well in some of these aspects may perform poorly with respect to others. Our
goal, then, is to provide a control model that is sufficiently powerlul to perform both kinds of control deci-
sions while maintaining desirable system characieristics.

AR activation represents a unique match of the left band side clauses of a rule agaiust & dats base of facts.

Page 2

3. The ORBS System

Our control model is one piece of a larger environment for building rule-based systems. The environment
is called ORBS (Oregor Rule Based System), and is discussed in detail in [7]. In this paper, we are
interested in both the ORBS control mechanism and parts of the environment that support control.

ORBS traces its direct lineage to two ancestors: Hearsay III [6] and YAPS [1]. An ORBS system contains
a data base of relational n-tuples called facts that may include both Lisp objects and Flavor [11] objects,
a set of forward-chaining rules that trigger on those facts, and a set of scheduling functions that deter-
mine which triggered rule to apply. To illustrate these ideas, we use throughout this paper an ORBS rule
taken from a system that performs silicon compilation. The rule, shown in figure 1, represents the follow-
ing piece of knowledge:

If you are building a ring oscillator that must be both small and fast, then use inverter-type-3 as the basie
building block.

We have chosen this rule not because it is particularly profound, but because it iltustrates the points we
wish to make. In particular, we will show in section 5 how the initial form of the rule in figure 1 can be
modified to represent better the control of the application domain.

(defrule small-fast
(goal (choose-inverter)) ; left-hand side (LHS}
(ring-ose -ro) ; -TO is a pattern variable
test (eq (send -ro 'speed) 'fast)
(eq (send -ro 'area) 'small)
->
(remove 1) ; right-hand sidz (RHS)
(fact ro-cell inverter-3)

status: active ; attributes
author: simoudis)

Figure 1

The LHS is made up of two patterns that will match data base relations of type goal and ring-osc. The
goal relation is used for control, providing a means of stepping through a set of tasks. For the rule to
match, we must be in the ‘‘choose-inverter’ task; i.e., something else must have inserted the goal relation
into the data base. (Figure 3 in section 5.2 shows how this type of control knowledge can be removed from
a rule's LHS.})

The (optional) keyword “test’” marks the beginning of the filtering predicates. In this case, the two predi-
cates ask the ring-oscillator (i.e., the fflavor instance representing the ring-oscillator, bound to -ro) for its
speed and area by sending the appropriate messages. Section 5.3 discusses why we might want to
represent these two predicates as separate pieces of control knowledge.

The “=>"" marks the beginning of the RHS actions, in this case two pre-defined Lisp functions: *‘remove”
removes the fact matching the ith LHS pattern from the data base; “fact’’ adds a relation to the data
base. The *‘::" marks the beginning of further rule attributes: “status’’ is an ORBS-defined attribute,
and “author” a user-defined attribute. An ORBS rule may be extended by zero or more user-defined
attributes. Using an ORBS rule-extension declaration, the author attribute may have been added as fol-
lows:

Poge 3

(add-rule-atts *author)

ORBS gives the rest of the system machinery for accessing the suthor fleld. For instance, we could define
a piece of scheduling knowledge that chooses one rule over another depending on the confidence in the
rule author. Section 5.2 provides a further example of rule extension.

4. Two Example Control Models

In this section we look at two control models, those of YAPS and Hearsay I, which represent widely
different points of view. The contsol model used by YAPS is one found in many traditional rule-based sye-
tems: a fixed, black box model. The Hearsay IIl control model, on the other hand, relies on a tailored
scheduling strategy being constructed for each new problem. Also, the scheduling process itseif is open to
inspection and modification by the application program.

To restate the two control problems introduced in section 2, we have a conflict set containing competing
activations. Competitors may represent 1) alternative solution choices, or 2) alternative taska to be per-
formed.

YAPS

In YAPS, the two control problems are intermixed. First, activations that have been cliosen previously for
invocation are eliminated.” Next, the remaining activation that contains the most recent “tasking” fact in
the data base will be chosen. Thus, the LHS of cach rule typically has a task clause along with domain
clauses (see the small-fast rule in figure 1 of section 2.2). For tie-breaking (i.e., where multiple activations
address the same task), non-tasking facts are checked; the activation with the most recenl non-tasking
fact is chosen. Any remaining ties are broken arbitrarily.

We argue that YAPS (and its predecessor, OPSS [8]) lack the three desirable characteristics of control
that we specified in section 2. In particular, the YAPS control model cannot be changed to suit the prob-
lem domain (it is fixed for all time).® It does not support the explicit representation of control knowledge
(it does not scparate competence from performance knowledge). Although McDermott and Forgy do lay-
out the beginring of a control vocabulary [9], the control model itself remains a black box (its components
cannot be examined or changed).

Hearsay Il

One of Hearsay IlI's design goals was the promotion of control knowledge (also Lnown as scheduling
knowledge) to first-class citizenship. When a Hearsay IIl Knowledge Source (KS) triggers, it crentes an
activation, which is placed on a echeduling blackboard (SBB). The user may deflne acheduling knowledge
sources (SKS) that trigger on this placement. These in turn cause activations to be created and placed on
the scheduling blackboard (the process stops here: an SKS is not allowed to trigger on the placement of an
activation of another SKS). SKS are generally used to organize and order KS activations on the schedul
ing blackboard. Once ordered by SIS, the activations of KS are invoked by o domain scheduler {a piece
of user-defined Interlisp code). It is this scheduler along with the SKS that determines the structure of
the SBB, e.g., a priority queue, an ordered agenda.

®In many rule-based mystems, Hezrsay 11l being one exception, the same set of facts may match a rule on every cycle, thus
causing the same activation to be generated from one cycle to the next,

%0PS5 (but not YAPS) does allow the user to change the built-in strategy by specifying whether either the first clause or any
clause is to be designated a» dominant.

Page 4

To illustrate the Hearsay III approach better, we dcfine a Knowledge Source that corresponds to our
small-fast rule in gection 3:

(DECLARE-KS small-fast (rox y z)

(APAND
(ring-osc ro)
(ROLE-OF timing ro z)
(ROLE-OF x-dimension ro x)
(ROLE-OF y-dimension ro y)
(EQ (quantify-speed z) 'fast)
(EQ (quantify-area x y) 'small))

'choose-inverter

(@ (ro-cell inverter-3)))

Figure 2

The pattern variables of this krowledge source are ro, X, ¥, #; no hyphen is needed to distinguish them
since they are (ormally declared. The “APAND' marks the beginning of the trigger, which consists of
four patterns matching the relations ring-osc and ROLE-OF on the blackboard. The trigger also contains
two filtering predicates using EQ. ‘“choose-inverter” is a scheduling level, which we will discuss shortly.
The body of the knowledge source consists of a function @’ that places an instance of the relation ro-cell
onto the blackboard.

Looking more closely at the scheduling level concept, we might structure the SBB around priority levels.
“‘choose-inverter’” would be one such level. It would have levels above it and below it, e.g., “start-up”,
“order-cells”’. When a KS activation is created, it is placed on the level determined by its scheduling-level
field. We could define a Hearsay III scheduler that simply moves down levels looking for activations. If one
is found, it is fired, and its activation is removed from the SBB. In this way, all “start-up'' activations are
executed before all ““choose-inverter” activations, which are executed before all “order-cells” activations,
and so on. Note that all competing activations are placed on the SBB. This, in conjunction with Hearsay
IIl's ability to spawn new problem solving contexts, makes possible dependency-directed backtracking and
most of its variants,

The Hearsay IIl control model provides flexibility, a separate representation for control knowledge, and
can be changed dynamically. However, our experience® shows it Las two major flaws: 1) over complexity,
compounded by 2} lack of environmental support. For each new application, a scheduling strategy must
be constructed from scratch with barely minimal debugging tools. The representation of control as two
disjoint components -- SKS and a Lisp scheduler — makes it ciumsy to build and maintain scheduling
strategies. As we shall see in the next section, ORBS attempts to remedy both of these problems.

Finally, note that YAPS and Hearsay IIl bound a wide spectrum of control models. While space con-
straints prohibit us from a comprehensive survey, general discussions car be found in {4, 5, 9].

6. Developing Control Strategies in ORBS

The ORBS control model attempts to build on both YAPS and Hearsay IIl. From YAPS it borrows the
notion of successive filtration. This provides a framework that is uniform and simple. This in turn makes
it easy to build scheduling editors, tracers, and break routines. From Hearsay III it borrows the notion of
control as a first-class citizen. Thus, ORBS treats the scheduling process as something that has its own
representation, and is analyzable and modifiable.

One of the anthors, Fickas, has developed various large and small Heamay {1l systemo over the last Gve years.

Page 5

To build a scheduler in ORBS, the user must 1) define a set of scheduling functions in Lisp or choose from
a catalog of pre-existing functions, and 2) declare how the functions are to be combined to form a schedul-
ing strategy. In this section, we show four examples of how control strategies may be developed in ORBS.
The examples demonstrate progressive removal of control knowledge from a rule.

5.1. The YAPS Strategy

We begin with an example in which control knowledge and domain knowledge are intermixed.
Specifically, we will build a scheduling strategy that emulates YAPS. Contrel knowledge, in the form of
goal relations, appears throughout the domain rules for tasking purposes, as in the small-fast rale of figure
1.

YAPS uses the [ollowing control strategy:

(1) Using a history list, eliminate any activations that have been executed on a previous cycle. If alt
activations are eliminated, the system halts.

(2) 1If one or more activations contain the keyword *‘goal’, prefer the activations whose goal patterns
match the goal relations moet recently added lo the data base.

(3) Reaching this step implies that in step (2) either a) there were no goal relations, or b)there were
multiple goal relations. In either case, break ties by looking at non-goal patterns in the LHS, prefer-
ring the activations whose LHS clauses match with relations most recently added to the data base,

(4) If ties still exist, choose an arbitrary activation for execution.

To model this strategy in ORBS, we use four scheduling functions: D2 eliminates already-applied activa-
tions using ORBS’ activation history list; RSIK prefers the rule activation(s) with the most receat “goal”

fact; RSF prefers activation(s) with the most recent pon-goal fact; and ADIY arbitrarily selects among

ties’. These functions, with all the scheduling functions proposed by McDermott and Forgy {9], are con-

tained in the ORBS catalog.

We now must inform ORBS that 1) the functions D2, R5K, R5F, and AD1Y are to be used in scheduling,
and 2) they are to be applied in a certain order. ORBS accepts an extended form of McDermott and
Forgy's scheduling expressions [9] to accomplish this:

[D2] > (RSK goal) > R5F > AD1Y

This defines a scheduling strategy that applies the function D2 to the conflict sct and passes (as denoted
by the “>"') the resulting non-empty conflict set to RSKF. The square brackets indicate that if the D2
function produces an empty conflict set (i.e., all activations have been previously fired) then halt the sys-
tem. The function R5K is applied to the conflict set using “‘goal'’ as the keyword, the resulting conflict
set is passed to R5F. RGSF is applied with the resulting conflict set being passed to AD1Y. AD1Y arbi-
trarily selects one of the remaining activations by deleting all but the first activation in the conflict set.

5.2. The Hearsay III Strategy

The sccond example shows how we can begin removing tasking information from the LHS of ORBS rules,
leaving only domain knowledge (see [4] for a related discussion). In figure 2, we defined a Hearsay Il rule

5The “arbitrary” choice made in YAPS tarns out always to be the first activation in the conflict set. This behavior is
medeled by AD1Y. ORBS’ catalog also provides a “irue" pscudo-random, arbitrary function AD1, as defined by McDermott and
Forgy.

Page 6

that used *‘tasking levels” to represent the order that rules should be ran. It did this by associating with
each rule a specific task level; hence the firing of an activation of a rule can be considered carrying out
part of its associated task. We can achieve similar control in ORBS through the use of user-defined rule
attributes. As a start, we add a new attribute “sched-level” for all rules:

(add-rule-atts 'sched-level)

As each rule is defined, we can fill its sched-level ficld with the approprizte volue. In the VLSI example,
the levels we have chosen are start-up, choose-inverter, and choose-cell. We can now discard the goa! pat-
terns from the LHS of the ORBS rules (and can also discard the goa! relations in the ORBS database),
Thus our new small-fast rule is:

(defrule small-fast
(ring-osc -ro)
test (eq (send -ro 'speed) 'fast)
(eq (send -ro 'area) 'small)
-
(fact ro-cell inverter-3)

status: aclive
author: simoudis
sched-level: choose-inverter)

I'igure 3

We're now half way home. We still have to define a scheduler that can use the sched-level field to order
tasking. In Hearsay III, this was accomplished by writing code that would process the scheduling black-
board levels in the right order. We can do the same thing in ORBS by defining an appropriate scheduling
strategy, as shown in figure 4.

[D2] > (L2 start-up) > (L2 choose-inverter) > (L2 choose-cell) > AD1

Figure 4

The scheduling function (L2 level) prefers activations of rules at the given level®, For example, L2 could
be defined as follows™

(defsched L2 (conflict-set level)
{for activation in conflict-set
when (eq level (level-of activation))
collect activation))

A sophisticated system may be able to glean new control information while it is running. For example,
the system might detect that it frequently encounters a situation where the work done by one rule is
partly undone by a second rule. It would be advantageous, then, to be able to change the level of the first

®We might instead replace the sequence of L2 functions with a single L1 function which takes an ordered list of levels, e .,
(set-strategy (|D2) > (L1 (start-up choose-inverter choose-cell)) > AD1). L1 prefers activations of rules in the order of the levels in
the list,

"Scheduling functions are defined with the function defsched. The Erat argument to & scheduling function must be & list of
activations, which, following the syatax proposed by McDermott and Forgy [0], is left implicit in the sirategy. Subsequent argu-
ments, such a5 a level, are stated explicitly. The function returns a list of activations, or nil if, for instance, no activation is pro-
duced for any rule at a given level,

Page 7

rule to give it preference over the second rule. ORBS makes it possible to do this because a rule’s level is
simply an attribute which may be set or re-set at any time. Moreover, ORBS kecps track of these
changes so that the system can perform at least partial backtracking. Therefore, in ORBS the level of 2
rule may be changed dynamically.

We could include a “‘meta’ level in our list of rule levels in the VLSI example in figure 3, resulting in a
new strategy:

{D2] > (L2 meta) > (L2 start-up) > (L2 choose-inverter) > (L2 choose-cell) > AD1

The meta level shows how the system could change the level of a rule dynamically. Rules which change
control aspects of the system are designated as meta level; activations of these rules are preferred by the
new strategy. Accordingly, we could define a rule;

(defrule change-rule-level
{change-rule-level -r -newlevel -reason) ; a fact has been entered into the database
; suggesting that the level of rule -r be
; resel to -newlevel due to reason -reason.
test (not-equal -r change-rule-level)

-2
(rule-set -rule 'level -newlevel))
sched-level: meta ; level of this rule is meta because
status; active) ; it contains system control knowledge

Rule change-rule-tevel is triggered when a fact suggesting a change of r:le level has been entered into the
database, When rule change-rule-level fires, its RHS changes the level of the chosen domain rule to the
suggested new level. Conceivably, change-rule-level could change its own level, but this is prevented by
the test clause,

5.3. An Agenda-Based Strategy

The rule small-fast (figure 3, section 5.2) uses the attributes “‘speed’’ and “area” as discriminators for
choosing the components of a ring oscillator. As the system evolves, we may discover other factors that
should be considered, e.g., dollar cost, reliability, availability, We could attempt to attach them to the
rule through the test slot as shown below:

{defrule choose-ro
(ring-osc -ro)

test (eq (send -ro 'speed) 'fast)
(eq (send -ro ‘area) 'small)
(cq (send -ro 'dollar-cost) 'low)
(eq (send -ro 'reliability) 'high)
(eq (send -ro 'availability) 'ready)

{fact ro-cell inverter-3)

status: active
author: simoudis
sched-level: choose-inverter)

This rule will choose a ring oscillator that exactly meets the test criteria. This, however, may be too res-
trictive; there may not be a ring oscillator which exactly fits the test. For instance, we may be willing to
accept a fast, small, highly reliable, readily available ring oscillator whose dollar cost is large if there is

Page 8

nothing better available.

Our solulion is to use an agenda-based approach where each scheduling funciion represents one of the
attributes, such as speed, area, and cost. Eazch function adds a weight to the activation depending on its
local merits (ORBS defines a weight field for each activation). In this way, the value-testing predicates
may be moved from the test portion of the small-fast rule (and all other rules dealing with component
selection) to the scheduling functions. Hence we will have a scheduling function for each significant
attribute—AREA, SPEED, and DOLLAR-COST, for example. Finally, we select from the catalog of
scheduling functions a function that chooses the activation(s) with the greatest weight.

The corresponding strategy (in three parts) is as follows:
[D2] > (L1 (start-up choose-inverter choose-cell)) >

As in sections 6.1 and 5.2, D2 eliminates all previously fired activations, and L1 does tasking by prefcrring
activations of rules in order of the levels in the list. This reduces the conflict set to activations concerned
with a single common task. The resulting conflict set is passed through one or more groups of agenda-
weighting functions.

. > AREA > SPEED > DOLLAR-COST > RELIABILITY > AVAILABILITY > ... >

The ellipses represent other groups of functions for other tasks. The functions above weight the activa-
tions based in turn on area, speed, dollar cost, reliability, and availability. The corflict set will be passed
untouched through any weighting groups that do not pertain to the current scheduling level. The result-
ing conflict set is then passed to functions that choose the activation(s) with the greatest weight and, if
necessary, choose an arbitrary activation.

W1 > AD1Y

The final small-fast rule is:

(defrule small-fast
(ring-osc -ro)
->
(fact ro-cell inverter-3)

status: active
author: simoudis
sched-level: choose-inverter)

Thus as a result of the agenda-based strategy, control has been abstracted into the scheduling functions,
and all the scheduling filters have been eliminated from the rule.

5.4. Changing the Strategy Dynamically

Dynamic control presents problems for ruled-based systems in which control knowledge is represented
through relations in the LHS. In such systems, changing the control strategy requires redefining the rules.
Abstracting control knowledge from the application facilitates dynamic control, and ORBS provides tools
for doing this. In section 5.2, we saw an example of dynamic change to system control by changing the
user-defined rule attribute ‘‘sched-level”; the conflict resolution strategy, however, remained unchanged.
We now look at how the scheduling strategy itselfl may be changed dynamically in ORBS. That is, the
strategy used to resolve the conflict set may be changed while a program is running, either hy action of a
rule or by the user at a break.

Page 9

Here is a simple example showing a switch from an optimal-solution best-first search to a heuristic-pruning
search in the face of time constraints. This would be useful if the expert system were interactive and a
Jess-than-optimal solution would be acceptable when an optimal solution cannot be found within a reason-
able response time.

In addition to the regular domain rules, we add the rule nearly-out-of-time:

(defrule nearly-out-of-time ; change strategy if nearly out of time
(time-remaining -tr) ; this fact updated by other rules

test (< -tr critical-time) ; critical-time is a global variable

->

(set-strategy 'fast-search)

status: active
sched-level: change-strategy)

In this example, the initial strategy is
[D2] > (L2 change-strategy) > ASTAR > W2 > AD1

[D2] prunes all previously-fired activations, and causes the system to halt when all activations have been
fired. (L2 change-strategy) prefers rules at level ‘“‘change-strategy"” to domain rules. The test clause
checks whether the remaining time -tr is less than a preset amount of time considered critical for the
proper performance of the system. When time remaining is less than this critical level, then the rule's
test is true and an activation will be produced. The activation of rule nearly-out-of-time will be selected
over activations of all other rules in the conflict set because the L2 function precedes cther functions in
the initial strategy. ASTAR is a uscr-defined function implementing the A#* algorithm (see [10]). ASTAR
sets the weight attribute of each activation directly, based on cost and a conservative heuristic. Once
ASTAR has set the weight attribute of all activations, scheduling function W2 selects the activations with
the lowest weight. If the lowest weight in the conflict set is contained in more than one activation, AD1
selects one of these arbitrarily. Given that functions cost-so-far and cost-remaining are defined appropri-
ately, the scheduling function ASTAR is defined as lollows:

(defsched ASTAR (conflict-set)
(for activation in conflict-set do
(set-activation-attribute activation 'weight
(ptus (cost-so-far activation)
(cost-remaining activation}))))

The new strategy fast-search could be set to
|D2] > {KW2 CMOS) > R5 > AD1

This strategy, in effect, searches using heuristic pruning. In this exarple, the new strategy is based on the
idea that we know that a solution state exists using CMOS, although it may not be the best solution.
Given the time constraint, however, we choose to pursue a possibly noa-optimal solution. Note that the
new strategy no longer contains the scheduling function (L2 change-strategy), which is now unneccssary
because the rule it prefers has already been fired and need not be fircd again.

8. Machlne-Alded Construction of Scheduling Strategles

We have argued that the ORBS model of control gives users the flexibility to build complex contirol stra-
tegies, tailored to specific domain constraints. We have also seen how a catalog of scheduling primitives

Page 10

can provide building blocks for defining new strategies (see (4] for a related discussion). In experimenting
with ORBS, we have found that this is not yet enough support. Typically, a scheduling strategy evolves
over time, just as the corresponding domain knowledge evolves. Indeed, one of the major problems we
encountered building non-trivial systems in Hearsay III, which also provides a flexible scheduling model,
was the lack of support in the construction, testing, debugging, and maintenance of performance
knowledge. Tools exist for the incremental conmstruction of ORBS' domain knowledge, e.g., editors, a
break package, tracing routines. Why not provide the same support for the construction of scheduling
knowledge?

Our answer in ORBS is to view the construction of domain and scheduling knowledge as co-equal tasks.
Hence, we have defined a set of tools for the incremental construction of a scheduling strategy. The tools
include

(1) A skeleton scheduler. Before any scheduling functions are defined, the user may use a skeleton
scheduler to view, trim, and select activations from the conflict set interactively; that is, the user
becomes the scheduler. Thus, the user can separate the task of defining domain knowledge from
that of defining scheduling knowledge.

(2) A scheduling editor. Scheduling functions may be added to and deleted from the skeleton scheduler
incrementally. Thus, partial strategies are possible; the user simulates the inissing pieces.

(3) A scheduling tracer. The user may trace one, some, or all of the scheduling functions.

(4) A break package. The user may select one, some, or all of the scheduling functions as brezk points.
When a broken rule is applied, the ORBS break package is called. From this point, the user can
view system objects (e.g., the data base, rules, the conflict set), modify the current state (e.g., add a
fact to the data base, call the strategy editor), or take over scheduling him or herself using the skele-
ton scheduler,

Our model of systein construction in ORBS, then, is 1) define a prototype domain component incremen-
tally, simulating scheduling functions for the time being; 2) gradually 61l in scheduling functions as they
become apparent and when the domain component becomes stable; and 3) incrementally tune both
domain and scheduling components to the desired state. From our experience with Hearsay Il and
ORBS, we strongly believe that the separation of the two complex tasks into scparately derivable pieces
leads to the tackling of larger problems, faster implementation, and better systems overall.

7. Automating Strategy Construction

The environmental support of strategy construction provided by the current system can be described as
“‘modern programming tools applied to the scheduling problem”. While these tools have been useful, the
construction process remains relatively unautomated. In this section we describe our recent efforts to
remedy this.

The skeleton scheduler is a tool for stubbing out portions of a system while other sections are being buiit.
It allows users to take over scheduling while defining domain knowledge. Once this is accomplished, the
problem is one of translating user simulation into machine strategy. The current model relies on the users
to supply the insight necessary to replace their strategies with existing scheduling functions (or to generate
them from scratch if missing). This is a problem for two reasons: 1) users may not be able to see any
coherent strategy in the scheduling choices they made, and 2) even if a strategy is discerned, users may
not be able to map it onto the system’s scheduling functions.

We are attacking the problem along two fronts. First, we are attempting to categorize the user's schedul-
ing actions in a scheduling vocabulary. For instance, if the user chooses all activations of rule R for k
cycles, but none after that, we might characterize the control as a while-do loop with to-be-determined
exit condition C, or alternatively as a repeat-do loop with count k. This necessarily requires the system to

Page 11

keep a history of not only the user's actions, but pertinent information on each scheduling cycle.

Second, we are attempting to map the scheduling vocabulary onto existing functions. In our revised
moedel, then, users initially simulate control while a domain prototype is constructed, and then ask the
system for help in taking them out of the scheduling loop. Our final goal is a system which can analyze
users’ scheduling actions and recommend a set of pre-defined scheduling functions for replacement. [n its
most general form, this is a problem of learning by example with all of the attendant difficulties.

8, Status and Future Work

A prototype ORBS system has been implemented on a VAYX using the Maryland extension to Franzlisp
[2]:# This system successfully achieves our first goal, that of separating domain and control knowledge so
that control strategiea can be tailored to the problem at hand, and partially meets our second goal, that of
supplying environmental support. Qur current eflorts include

® Broadening the system to allow more straightforward construction of backtracking control strategies.
In practice this means a closer modeling of the Hearsay IIl scheduling blackboard and context
mechanisims,

° Continuing work on automating the strategy construction process, such as the learning by example
problem discussed in the last section.

] Improving organization of the scheduling component catalog. This must include a vocabulary for
talking about control problems.

To summarize, we believe that control in rule-based systems must be treated as a difficult problem. The
solution requires a separate representation, reusable components, and tools to support testing and debug-
ging.

Acknowledgments

Other past and current members of the ORBS project include Michael Hennessy and Bill Robinson from
the University of Oregon, and Bill Bregar from Oregon State University.

This work was partially supported under National Science Foundation grant DCR-8312578.

BCurrent work on the system is being carried cut on a Symbolics 3600.

1]

(2l

(3

[4]

[5]

[6]

7

[8]

Page 12

References

Allen, E.
YAPS: Yet Another Production System,
TR 1148, Computer Science Dept., University of Maryland, 12/83

Allen, E., Trigg, R., Wood, R.
Maryland Franzlisp Environment,
TR 1226, Computer Science Dept., University of Maryland, 11/83

Bobrow,D., Stefik, M.
The LOOPS Manual,
Xerox PARC, Palo Alto, 12/83

Clancey, W.
The Advantages of Abstract Control Knowledge in Expert System Design,
Tech Report HPP-83-17, Computer Science Dept., Stanford, 11/83

Clancey, W., Bock, C.,
MRS/NEOMYCIN: Representing Meta Control in Predicate Calculus
HPP Memo 82-31, Computer Science Dept., Stanford, 11/82

Erman, L., London, P., Fickas, S.
The design and example use of Hearsay IlI,
In 7¢h International Joint Conference on Al, Vancouver, 1981

Fickas, S.,
An Introduction to ORBS
Tech Report CIS-TR-84-02, Computer Science Dept., University of Oregon, 2/84

Forgy, C.,
OPS5 User's Manual,
Tech Report, Computer Science Dept., CMU, 1981

[9] McDermott, J., Forgy, C.

Production system conflict resolution strategies,
In Pattern-Directed Inference Sysiems, Academic Prees, 1978

[10] Nilsson, N.

Principles of Artificial Intelligence,
Tioga Publisking Co., 1080

|11] Weinreb, D, Moon, D.

Objects, Message Passing, and Flavors,
Lisp Machine Manual, Ch. 20, Symbolica Inc., 1981

Note of Omission

Mr. Evangelos Simoudis was a valuable first user of our
system. We neglected to list him in the acknowledge-
ments section, but do so here. His contribution was
appreciated.

