CIS-TR 85-05

Control Knowledgs In Expert Systemas;
Relaxing Restrictive Assumptions

Stephen Fickes, David Novick

Depastment of Computer and Information Science
University of Oregon

Control Knowledge in Expert Systems:
Relaxing Restrictive Assumptions

by

Stephen Fickas
David Novick

Computer and Information Science Department
University of Oregon
Eugene, Oregon 97403 USA

Telephone (503} 686-4408
cspet fickas@uoregon

February 1985

Abstract

Many expert systems use fixed, domain-independent control strategies. These systems often embody
assumptions about control and control knowledge which limit the utility of application programs. This
papet shows that effective control often requires domain-specific knowledge. We present the ORBS model
and implementation of a rule-based systems environment which attempts to expose, and give users access
to, hidden control points. ORBS provides a language for defining control strategies, and sepports the
interactive development of these strategies. We discuss the process of explicating control knowledge
through a process of refining an application rule.

Paga 1l

1. Introduction

This paper presents our recent work in control of expert systems. In particular, our interests lie in the
definition and construction of control strategies for problems requiring sophisticated use of human and
machine resources. Our research suggests that traditional expert systetns, which rely on a fixed, non-
analyzable contro] model are well suited for only limited problem domains, and make it difficult to
address problems of termination and higher-order knowledge.

Over the past five years, we have built various expert systems using languages with fixed control stra-
tegies. We have come to learn that these systems embody and thus require adherence to many assump-
tions about the nature of contral. These assumptions are often tied Lo some particular problem domain,
e.g., modeling human cognition or solving problems in predicate logic. \While it is sometimes possible to
override these assumptions by clever encoding of control knowledge in domain kpowledge terms, the
resulting system is cumbersome to develop, debug, and maintain. In general, an entirely new control
model must be simulated atop the old. Though some languages make this simulation process easier than
others, we argue that this is the wrong approach.

Instead, we have attempted 1) to explicate the implicit control decision points in a rule-based system, and
2) to make all control poiats accessible to and modifiable by the user or application program. Specifically,
our experience with building rule-based systems in languages such as OPS3 [9], YAPS [1], PROLOG [4],
and Hearsay Il [6] led us to conclude that

(1) Conflict resolution is a complex process that often requires domain-specific knowledge to be effective.
A “bard-wired' system control strategy shown to be useful in one domain may be ill-suited in
another.

(2) Defining control knowledge may be just as difficult a task as defining domain knowledge. Hence, the
construction, debugging, and maintenance of control knowledge should be well supported by the sys-
tem. -

We present a model that separates domzin knowledge from control knowledge, and 2llows a control stra-
tegy to be tailored to the problem domain. We argue that this degree of Aexibility is only possible if all
control decisions are made explicit and accessible to the application program. Although the model we
describe is part of a particular expert system language, we argue that it is general enough to be applied to
any rule-based system where control is nn issue.

The next section discusses the particula:r control decisions an expert system must face. Section 3 intro-
duces the ORBS control model. Section 4 presents the gradual evolution of domain and coatrol
knowledge in a small portion of a VLSI design system. In this example, we point out how the trznsforma-
tion of implicit coatrol to explicit control allows us to tailor control knowledge to our design problem.

2. Control Issues In Expert Sys.:ma

Given a set of activations’ competing for control, a rule-based systern must choose which, if any, activa-
tion to apply. This process presents at least two types of primitive or Grst-order control decisions, one
dealing with competing solutions, one dealing with organization or tasking:

(1) The system must choose between alternative solutions. For instance, in a system dealing with the
choice of circuit components, there might exist an activation for every different compoanent choice.
The system should choose the one that best meets constraints and performance standards.

lAn activation represents a unique match of the left band side clanses of a rule against a data base of facts.

Page 2

(2) The system must order a set of tasks. For example, the choice of components may be one subtask
out of many, e.g., define interfaces, optimize area. The system must insure that dependent tasks are
taken in the right order.

In addition to these first-order concerns, the system must also deal with termination and bigher-orders of
control:

(1) The system must decide when to halt. Reasons for halting may vary from 2} finding a solution to b)
giving up wheo all attempts at solution have proved (utile.

(2) The system must assess whether the current control strategy is still applicable, or possibly may
choose between competing strategies. Can the control strategy be examined and changed by the
application program?

Different expert systems have proposed various approaches to these three control problems. The approach
used will often determine system characteristics in ut least three important respects:

) Flexibility. Diflerent applications may require dilferent control strategies. Is the system flexible
enough to permit different kinds of strategies to be matched to diferent domains?

» Representation. Control knowledge is an important component of a ruie-based system. It should
have representational and environmental support on a par with domain knowledge. Does the system
provide an explicit representation of control knowledge?

. Accessibility. Can the application program access control points? In particular, we suggest that the
black-box model of control is inadequate for sophisticated expert systems.

A system which performs well in some of these aspects may perform poorly with respect to others. Ouwr
goal is to provide a coutrol model which is sufficiently powerful to perform all types of control decisions
while maintaining desirable system characleristics.

3. The ORBS System

Our control model is one piece of a larger environment for building rule-based systems. The environment
is called ORBS (Oregon Rule Based System), and is discussed in detail in [7]. In this paper, we are
interested in both the ORBS control mechanism and parts of the environment t':at support control.

ORBS traces its direct lineage to two ancestors: Hearsay III |6] and YAPS [I]. Ap ORBS system contains
a data base of relational n-tuples called facts that may include both Lisp objects and Flaver {11] objects,
a set of forward-chaining rules that trigger on those facts, and a set of scheduling functions that deter-
mine which triggered rule to apply. To illustrate these ideas, we use throughout this paper an ORBS rule
taken from an interactive system that assists a silicon compiler. The rule shown ia Figure 1, written in
the YAPS style of control, represents the following piece of knowledge: “If you are building a ring oscilla-
tor that must be both small and {ast, then use inverter-type-3 as the basic buildiag block."

Page 3

(defrule choose-inverter-3
{(goal (choose-inverter)) ; left-hand side (LHS)
{ring-0sc -ro) ; -r0 is a pattern variable
test (eq (send -ro 'speed) 'fast)
(eq (send ~ro area) 'small)
->
(remove 1) ; right-hand side (RHS)
(fact ro-cell inverter-3)

status: active ; attributes
author: simoudis)

Figure 1

The LHS is made up of two patterns that will match data base relations of type goal and ring-osc. The
goal relation is used for control, providing 2 means of stepping through a set of tasks. For the rule to
match, we must be in the ‘‘choose-inverter’ task; i.e., some other process in the system must have
inserted the goal relation into the data base. (Figure 3 in section 4 shows how this type of coatrol
knowledge can be removed from a rule's LHS.)

The optional keyword ‘‘test” marks the beginning of the filtering predicates. In this case, the two predi-
cates ask the ring-oscillator (i.e., the favor instance representing the ring-oscillator, bound to -ro) for its
speed and area by sending the appropriate messages. Section 4 discusses why we might want to represent
these two predicates as separate pieces of control knowledge.

The “~>" marks the beginning of the RIHS aciions, in this case two pre-defined Lisp fungtions: “‘remove”
removes the fact matching the ith LHS pattern from the data base; “fact” adds a relation to the data
base. In general, any evaluable Lisp expression may appear on the RHS of a rule. In this way, an ORBS
rule is more akin to a Hearsay ICnowledge Source than a traditional production which allows only certain
restricted data base actions to appear as actions. While such productions can often be run either forward
or backward, an ORBS rule is limited to forward-chaining.

The *:::"" marks the beginning of further rule attributes: 'status” is an ORBS-defined zttribute, and
“‘author” a user-defined attribute. An ORBS rule may be cxtended by zero or more user-defined attri-
butes. Using an ORBS rule-extension declaration, the attribute “author’ was added as follows:

(add-rule-attribute "author)

ORBS gives the rest of the system machinery {or accessing the author field. For instance, we could define
a piece of control knowledge that chooses one rule over another depending on the confidence in the rule
author. Section 4 provides a further example of rule extension.

The matching process produces zero or more activations. This is called the conflict set. Each cycle pro-

duces a new conflict set.® An activation reprosents the mateh of a rule’s LHS against facts in the database,
The activations in the conflict set muy represent competing sclutions or cooperating tasks to ke com-
pleted. We may want to choose none, one, some, or all activations for invocation. In ORBS, the choice is
made by the control strategy defined by the system developer. That is, ORBS has no built-in control stra-
tegy such as YAPS or PROLOG lLave. Ruther, ORBS provides tools for constructing a control strategy.
To build a control strategy in ORBS, the developer 1) defines a set of scheduling functions in Lisp or
chooses from a catalog of pre-existing functions, and 2) declares how the fuactions are to be combined to
form a conirol strategy. The latter is done by using a modific! furm of McDermott and Forg;'s

®For sake of eficiency, ORBS incrementally maintains the conflict set from cycle to cycle.

Page 4

scheduling expressions [10]. Here is an abstract example:
[F1] > (F2 argl) > (F3 = F4) > [F5|

The initial conllict set CS is passed to the scheduling function F1. F1 returns a new, possibly empty,
conflict set C5°, which is a subset of CS. If CS’ is non-empty, it is always passed on to the next function.
If CS’ is empty, we have two choices: 1) pass along the empty set (i.e., CS'), or 2) treat F1 as a no-
operation and pass along the original conllict set CS. The brackets specify that CS' is to be passed along,
empty or not. If a function lacks brackets, then a return value of the empty set will cause the function to
be ignored.

The function F2 takes an argument, That is, when it is called, it will be passed both the current conflict
set CS’ and argl.

The next two functions, F3 and F4, are combined using the intersection operator: the results of F2 (i.e.,
CS’) are passed to both lunctions, and their results are intersected.

Finally, FS is called with the results of the intersection. The conflict set returned by F5 becomes the exe-
cution set ES. The activations in EC ate passed to the activation-invoker and their RHS actions are
invoked. This ends the cycle.

Figure 2 provides a graphical view of the ORBS system.

CONFLICT RESOLVE EXECUTION
MATCH "~ RET | CONFLICTS SET

| NVOKE
ACTION

-

DATABASE R ~

Figure 2

A complete cycle represents a match [resolve-conflicts/invoke-action process.

4. Expliclt Control Representation In ORBS

In this section we take a closer look at the choose-inverter-3 rule from Figure 1. In particular, we will gra-
dually refine it into a rule that better represents both our domain and control kno'ledge in the VL.SI
design problem. The refinement process as we present it lere corresponds closely to the actual evolution
of our ideas on control. That is, our initial VLSI system did little to represent coantrol explicitly. As prob-
lems with this approach became apparent, we began to seek out hidden control decisions and make them

Page 5

accessible to the application program. Each time this was dome, new and powerful control strategies
became apparent.

Our first attempt to build a VLSI svstem using ORBS was based on a control model we were familiar
with—YAPS. Hence, we defined a control strategy in ORBS that modeled that of YAPS,

The YAPS Strategy

YAPS uses the following control strategy:

(1) Using a history list, eliminate activations that have been executed on any previous cycle.

(2) If one or more activations contain the Lieyword “goal”’, prefer the activations whose goal paiterns
match the goal relations most recently added to the data base. {(Control knowledge, in the form of
goal relations, appears throughout the domain rules for tasking purpases, as in the choose-inverter-3
rule of Gyure 1.)

(3) Reaching this step implies that in step (2) either a) there were no goal relaticns, or b)there were
multiple goal relations. In either case, break ties by looking at non-goal patterns in the LHS, prefer-
ring the activations whose LHS clauses match with relations most recently added to the data base.

(4) If ties still exist, choose an arbitrary activation for execution.
(5) Halt the system il no activations remain.

To model the YAPS strategy, we use five ORBS scheduling functions: D2 eliminates already-applied
activations;® RSK prefers the rule activations with the most recent “‘goal” fact; RSF prefers activations
with the most recent non-goal fact; AD1Y arbitrarily selects among ties; HECS halts the system if the
conflict set is empty., These functions, along with ail the scheduling functions proposed by McDermott
and Forgy [10], are part of the ORBS catalog of scheduling functions.

We now must inform ORBS that 1) the furctions D2, R5K, RSF, AD1Y and HECS are to be used in
scheduling, and 2) they are to be applied in a certain order. ORBS accepts an extended form of McDer-
mott and Forgy's scheduling expressions [10] to accomplish this:

[D2] > (RSK goal) > RSF > AD1Y > HECS

This defines a control strategy that applies the function D2 to the conflict set and passes (as denoted by
the *“>") the resulting counflict set to [15KF. The square brackets indicate that if the D2 fuaction pro-
duces an empty conflict set (i.e., all activations have been previovsly fired) then pass the empty conflict
set along. If we remove the square brackets [rom D2, then if D2 produces an empty conflict set, the func-
tion i1s ignored, i.e., the original conflict set is passed along. The function R5K is applied to the conflict
set using “goal' as the keyword. The resulting coanflict set, if non-empty, is passed to R5F. RSF is
applied with the resulting conilict set being passed to AD1Y. AD1Y arbitrarily selects one of the remain-
ing activations by deleting all but the first activction in the conflict set. If HECS receives an empty
conflict set, say for instance because D2 eliminates all activations, it halts the system. Note that il we
take HECS out of the strategy, as we shall do shortly, the system will continue to cycle until some other
process explicitly halts the system.

Making tasking information explicit

YAPS (like its predecessor, OPS5 [9]) does noi support the explicit representation of control knowledge;

3ORBS keeps a li':t of all previously iavoked activations.

Pagze 3

domain and control knowledge are intermixed. Although McDermott and Forgy do lay out the beginning
of a control vocabulary [10], the control model itself remains a black box: its components cannot be exam-
ined or changed. The YAPS form of the choose-inverter-3 rule would loock generally the same as the
ORBS rule in Figure 1 without the attribute ficlds.

Qur first step separates out tasking (i.e.. control) information from domain (i.e., LHS) information. To do
this, we associate with each rule in our system a specific task. First we define a rule attribute “task”:

(add-rule-attribute 'task)

As each rule is defined, we can Bl its task field with the appropriate value. In the VLSI example, the
tasks we have identified are start-up, choose-inverter, and choose-cell. We can now discard the goal pat-
terns from the LHS of the rule inFigure 1 (and discard the goal relations in the ORBS database as well).
Thus our new choose-inverter-3 rule is:

(defrule choose-inverter-3
(ring-osc -ro)
test (eq (send -ro 'speed) 'fast)
(eq (send -ro 'area) 'small)
->
(fact ro-cell inverter-3)

status: active
author: simoudis
task: choose-inverter)

Figure 3

Thus far we have removed the tasking information from the domain knowledge database and the rule's
LHS. We still have to define a scheduler that can use the rule's task field to order tasking. We do this in
ORBS by modifying our original strategy as follows:

[D2] > (L2 start-up) > (L2 choose-inverter) > (L2 choose-cell) > AD1Y > HECS

Flgure 4

Here we have replaced the recency rule R5 with more explicit tasking rules. The scheduling function (L2
task) prefers activations of rules associated with the given task‘. For example, L2 could be defined as fol-
lows®:

{defsched L2 (conflict-set task)
(for sctivation in conflict-set
when (eq task (get-attribute activation 'task))
collect activation))

This process of refinement of control can be summarized in two steps. First, we removed the need to store

*We might instead replace the sequence of L2 functions with the single L1 function iz ORBS's catalog which takes an ordered
list of tasks, e g., (set-strategy (|D2] > (L1 (mart-wp choose-inverter choosecell)) > AD1 > HECS). LI prefers activations of rules
in the order of the tasks in the list,

5Scheduling functions are defined with the function defsched. The first argument to a scheduling function mast be a list of
activations, which, following the syntax proposed by McDermott and Forgy, is left implicit o the strategy. Subsequent acguments,
such as the task in L2, are stated explicitly. The fonction returns zero or more activations.

Pace 7

tasking information (through goal relations) in the domain data base; this moves us towards our goal of
explicit representation of control information. Second, we moved control information to a new field
specificaily defined to hold it. This field is readable and writable by other portions of the system, and
hence allows an application program a certain amouant of introspection and dynamic restructuring of it
control strategy.

Multiple activations per cycle

By including AD1Y, our control strategy aliows only one activation per cycle to be invoked. Many sys-
tems have such a bard-wired decision on the number of activations that can be invoked on any cycle. In
the VLSI domain this is o+ erly restrictive: we find that we can safely execute all activations of a particu-
lar task type. That is, all rule ordering is handled through the task field and the L2 functions. We can
guarantee thai invoking two rules of the same type during the same cycle will not interfere with each
other. To allow multiple activations, we simply remove the AD1Y function:

[D2] > (L2 meta) > (L2 start-up) > (L2 choose-inverter) > (L2 choose-cell) > HECS

In general, a control strategy can specify one, some or all activations ia a conflict set to be invoked by
including the appropriate scheduling function.

Explicit representation of selection knowledge

The rule choose-inverter-3 uses the attributes ‘‘speed'’ and ‘‘area’” as discriminators for choosing the com-
ponents of a ring oscillator. As the VLSI system evi:ved, we discovered other factors that should be con-
sidered, e.g., dollar cost, reliability, and availability. Our first approach was to attack each to the rule
through the rule’s test slot as shown below:

(defrule choose-iaverter-3
(ring-osc -ro)

test {eq (send -ro 'speed) 'fasi)
{eq {send -ro 'area) ’small)
{ey (send -ro 'dollar-cost) 'low)
{eq {send -ro 'reliability) 'high)
{eq {send -ro 'availability) 'ready)

(fact ro-cell inverter-3)

status: active
author: simoudis
task: choose-inverter)

This rule will choose a ring oscillator that exactly meets the test criteria. This, however, was too restric-
tive; there may not be a ring oscillator which exactly fits the test. For instance, we may be willing to
accept a fast, sinall, highly reliable, readily available ring oscillotor whose dollar cost is large if there is
nothing better available.

Qur solution uses an agenda-based approach where rach scheduling function represents one of the attri-
butes, such as speed, arca, and cost. Each function adds a weight to the activation depending on its local
merits (ORBS provides a pre-defined weight feld f{or each activation). In this way, the value-testing
predicates may be moved from the test portion of the choose-inverter-3 rule (and all other rules dealing
with component selection) to the scheduling functions. Henre we will have u scheduling function for each
significant attribute, e.g., AREA, SPEED, and DOLLAR-COST. To conclude the agenda strategy, we

Page 8

select from the catalog of scheduling funciions W1, a function that chooses the activation(s) with the
greatest weight.

The corresponding strategy (in three parts) is as follows:
[D2] > (L1 (start-up choose-inverter choose-cell}} >

As we have discussed earlier, D2 eliminates all previously fired activations, and L1 does tasking by prefer-
ring activations of rules in order of the tasks in the list. This reduces the conflict set to activations con-
cerned with a single common task. The resulting conflict set is passed through one or more groups of
agenda-weighting functions.

. > AREA > SPEED > DOLLAR-COST > RELIABILITY > AVAILABILITY > ... >

The ellipses represent other groups of functions for other tasks. The scheduling functions shown weight
the activations based in turn on area, spseed, dollar cost, reliability, and availability., The conflict set will
be passed untouched through any weigiiting groups that do not pertain to the current scheduling task.
The resulting conflict set is then passed to W1 which chooses th:e activations with the greatest weight.

W1 > HECS

Thus the new choose-inverter-3 rule is:

{defrule choose-inverter-3
(ring-osc -ro)

->
(fact ro-cell inverter-3}

status: active
author: simoudis
task: choose-inverter)

Now, control knowledge relevant to choosiag among alternatives is explicitly represented in the coatrol
strategy itsell.

When should the system halt?

Until now our control strategy has included the scheduling lunction HECS. HECS causes the system to
balt when the conflict set is nil by calling the ORBS function Aall-orbs. In fact, this decision was “hard-
wired"” into the system imitially. That is, the system would alwzys balt when the coatrol sicategy pio-
duced an empty set of activations. Like the decision to allow only one activation invocation per cycle, we
quickly ran into cases where this was overly restrictive. In particular, 2n empty conflict set in our VLSI
system signals that we are stuck. In this case, we would like to ask the user to loosen some of the problem
constraints before deciding to give up (i.e., hait). To bring this about, we replace HECS with VLSI-LC, a
scheduling function that interacts with the user to add and remove [zcts from the database when the

conflict set is nil ®

As an example, suppose that the task is choose-inverter and the conflict set is nil wiien VLSI-LC is callog.

9 Note that VLSI-LC was built from scratch for the VLSI application. The strategy io which it is used includes schedaling
fupctioas hke W1, L1, and D2, which are all pant of the ©RES catalog and can be used across applicaticn domains.

Page 0

This means that rules like small-fast kave all been trimmed from the conflict set because none was found
to meet the user's constraints, as represented by scheduling rules such as AREA, SPEED, DOLLAR-
COST, RELIABILITY, AVAILABILITY. At this point, the uscr is given the chance to loosen one or more
constraints so that the system can try again. For instance, the user may set a higher cost limit. Ounce
this is done, the system activatjon-invoker is called in the normal way. Since the conflict set is nil, it does
nothing and a new match cycle is started.

When does the system hait? Strictly speaking, whenever the function halt-orbs is called. This function can
be called any place a normal Lisp function can be called, such as from the RHS of a rule, from a break, or
from a scheduling {unction. Its action is to halt after the current cycle is complete. A cycle is completed
after the activation-invoker finishes. In our VLSI example, there are two types of system halts. The first
occurs when a solution has been found. A rule moritors {or this, and, among other actions on its RHS, it
calls orbs-halt. The second occurs when the system is hopelessly stuck. A part of VLSI-LC checks to see
if the user is willing to loosen the current set of constraints. If not, halt-urbs is called and the system gives

up.

Higher levels of control

Other than our termination example above, we thus far Gave seen examples of what we might call first.
order control knowledge--knowledge that deals directly with the conflict set. As others have noted (see for
instance |5]), higher orders of control knowledge may exist. In the VLS system, we have run into such a
case: when a certain time threshold is reached, we wish to change from an agenda-based strategy to a
quick-and-dirty control strategy. We will first describe how we implemented this control knowledge in
ORBS, and then discuss its limitations.

We will represent our strategy-switching knowledge as a domain ruie:

(defrule nearly-out-of-time ; change strategy if nearly out of time
(time-remaining -tr) ; this fact maintained by system

test (< -tr critical-time) ; critical-time is a global variable

->

(set-strategy 'fast-search)

status: active
task: change-strategy)

We want this rule to fire when the time we have remaining to find a soluiion falls below a given thres-
bold. Further, an activation of this rule should be given top priority; strategy changing (second-order con-
trol) takes precedence over choosing among VLSI rules (first~order controt). We have defined a new task
change-strategy. We can place an L2 scheduling function in the current strategy such that nearly-out-of-
time (and other strategy changing rules) wil! be given first priority:

[D2] > (L2 change-strategy) > (L2 start-up) > (L2 choose-component) ...

When and if rule nearly-out-of-time is invoked, it causes the above scheduling strategy to be changed to
the one below:

ID2] > (L2 start-up) > ((L2 choose-component) * (COMP-TYPE CMCS)) ...
The scheduling function COMP-TYPE is ¢ne specifically toailored to the VLSI application. it represents

knowledge that a CMOS implementation is always possible, While it might not always be the best, we
will use it when time runs out. By accessing appropriate fields in an activation, COMP-TYPL determines

Page 10

if the proposed component uses CMOS technology. If not, it trims the activation from the conflict sct.”

Second-order control knowledge presents problems for ruled-based systems in which control is represented
through relations in the LHS. In such systems, changing the control strategy requires redefining the rules.
In ORBS, we have extracted control from domain knowledge, and so avoid the problems of redefining
rules. However, the implementation of second-order control as a domain rule points out other problems.
First, we have reintroduced control knowledge into the domain portion of our system, as a rule now rather
than as a goal relation. Second, we have mixed second-order control knowledge with first-order control
knowledge by placing our second-order change-strategy functior among the first-order tasking and com-
ponent selection functions. Thus we are back to simulating a more generzl control model on top of the
language. We view the problem s another maanifestation of the same problem we initially set out to
solve: a control model resting on implicit assumptions. For instance, we currently assume that the only
interesting conflict sets are empty and non-empty ones. In some cases, however, we might be interested in
the size of the set. For instance, we may wish to halt when the number of competing alternatives is two or
less. This type of control knowledge is best stated explicitly and only once. In the current CRBS system,
it would require placing a scheduling function F after each scheduling function that removed aiternatives.
F would have to check the size of the current conflict set, and halt the system if it became less than three.
Without an explicit representation of the two-candidate rule, maintenance of the control strategy becomes
problematic.

One of our current projects is the definition of a ccatrol vocabulary that allows a richer statement of pol-
icy. In it, we could explicitly state control knowledge such as

Whenever the conflict set containe only two alternatives, Aalt.
If the time remaining is less than THRSH then switch to o quick-and-dirty control etrategy.

Whenever the conflict set contains more thas N activations use alternate strategy S,

Among other things, it appears that this will require a “‘control database'’ separate ficm the domain data-
base, one similar to Hearsay III's scheduling blackboard [6].

6. Conclusions

We have shown through examples that a fixed control strategy can lead to problems when dealing with a
domain that requires sophisticated use of both machine and human resources. In particular, fixed stra-
tegies embody assumptions that often lead to awkward simulation of better suited control models. We
have illustrated four assumptions that should rightfuily be made explicit, but are generally buried in
domain knowledge or system code: tasking, invoking multiple activations, selection criteria, and halting.
The ORBS control model represents each of these {our as contro)] decisions with an explicit representation
and under supervision of the application program. By combining these decisions in various ways, the sys-
tem developer can tailor a control model to the application at hand. In general, we have found this flexi-
bility has allowed us to build bigger, more complex systems in less time. More important, it has allowed
us to maintain them reliably over time.

Is ORBS the last word in control? No, for several reasons. First, we lack a representation of control
beyond the first-order. As we saw in the last example of section 4, we currently must mede! socond-order
knowiedge on top of domain and first-order knowiledge. As we have pointed out, a better solution to this
problem will require us to make our first-order assumptions explicit.

A second problem with the ORBS medei is lack of an explicit representation of backtracking coatrol.
There are two parts to this proulem: choice points and strategy.

"Read (A ¢ B) as the intemsection of activations returned by A and B. ORBS provides union (+) and weighting (£) scheduling
operators as well

Page 11

5.1. Backtracking Choice Polnis

An underlying mechanism is nccded to record choice points, and return to them when nccessary. Hearsay
Il provides this through its Hypothetical Reasoning fzacility. In Hearsay III, the system can be told that a
choice is being made between competing alternatives in state S. The system will spavwwn a new problem
solving state S’ for the choice. If the choice eventually turns out to ke bad, it is possible to return to
state 5 and try nnother alternative, which spawns another new state (a sibling of S'). ORBS currently has
no analcgous facility.

5.2. Backtracking Strategy

The secand part of the backtracking control problem is defining a strategy. PROLOG provides a fixed,
depth-first search strategy. As we have argued with respect to other mosiels of control, this is too infexible
for many problems. In Hearsay III, while the mechanism is there, there is no explicit means to represent it.
That is, while the system developer is (ree to define any Licktracking strategy he or she sees fit, all of this
must be done within Lisp code; Hearsay III lacks an explicit representation of a control strategy, back-
tracking or otherwise. In ORBS, we have so far resisted the temptation of adding a Hearsay III siyle
backtracking mechanism withou! an accompanying representation, i.e., a language for specifying back-
tracking strategies. While this seems a particularly tough nut to crack in general, we are ercouraged by
others making progress on more limited forms of the problem [3].

In summary, we view the current ORBS system as ar intermediate point along the route to a2 flexible,
extensible, and explicit model of contrcl. We have Rushed out a number of control decisions that were
hidden within domain knowledge or code in earlier systems. We have also shown that other assemptions
remain to be explicated.

3. Status

The ORBS system runs on a VAX using the Maryland extension to Iranalisp [2], and on a Symbolics
3500. Problem solving control is one of several problems we are working on in ORBS. Others include

(1) The construction of an interactive, graphics environment for building and debugging expert systems.

(2) The use of Software Engineering techniques in developing expert systems. For example, we are
experimenting with a specification language, ICATE [8]|, for specifying compouents of a problem
suited to an expert system implementation. KATE will eventually be mapped into ORBS objects,
rules, and scheduling functions.

{3) Automating strategy construction. ORBS currently keeps a history of conflict resolution. The state
of the data base, the conflict set, the action of the scheduling rules, and the activations chosen to
fire are recorded for each cycle. We are experimenting with this data to allow the system to learn
what control strategies are applicable to what problems.

Acknowledgments
Other past and current members of the ORBS project include Allen Brooks, Kim Dannewitz, Michael
Hennessy, Rob Reesor and Bill Robinsen from the University of Oregon, and Bill Bregar from Oregon
State University.

This work was partially supported under National Science Foundation grant DCR-8312578.

(1]

(4]

(51

l6]

7]

(8]

(ol

References

Allen, E.
YAPS: Yet Another Production System,
TR 1146, Computer Science Dept., University of Maryland, 12/83

Allen, E., Trigg, R., Wood, R.
Maryvland Franzlisp Environment,
TR 1226, Computer Science Dept., University of Maryland, 11/83

Clancey, W., Bock, C.,
MRS/NEOMYCIN: Representing Mcta Cortrol in Predicate Calculus
HPP Memo 82-31, Computer Science Dept., Stanford, 11/82

Clocksin, W., Mellish, C.
Programming in Prolog,
Springer-Verlag, 1981

Davis, R.

Applications of Meta Level Knowledge to the Construction, Maintenance,
and Use of Large Knowledge Bases,

In Knowledge-based Systems in Artificial Intelligence,

Davis & Lenant (Eds.), MeGraw-Hill, Nev York, 1982

£rmaa, L., London, P., Fickas, S.
The design and example use of Haarsay III,
In 7th International Joint Conference on Al, Vancouver, 1981

Fickas, S.,
An Introduction to ORBS

Tech Report CIS-TR-84-02, Computer Science Dept., University of Oregoa, 2/84

Fickas, S., Laursen, D., Laursen, J.,
Knowledge-based Software Specification,
In Workshop on Knowledge Based Design, Rutgers Univ., 1084

Forgy, C.,
OPS5 User's Manual,
Tech Report, Computer Science Dept., CMU, 1981

{10] McDermott, J., Forgy, C.

Production system coaflict 1esolution strategjes,
Iz Patiern-Directed Inference Systems, Academic Preas, 1978

Page 12

Page 13

[11] Weinzeb, D, Moon, D.
Objects, Message Passing, and Flavors,
Lisp Machine Manual, Ch. 20, Symbolics Inc., 1981

Note of Omission

Mr. Evangelos Simoudis was a valuable first user of our
system. We neglected to list him in the acknowledge-
ments section, but do so here. His contribution was
appreciated.

