e

CIS-TR 85-08
Deslgn Issues In a Rule-Bascd System

Stephen Fickas, David Novick

Department of Computer and Information Science
University of Oregon

This paper appeared in Proceedings of the ACM SIGPLAN 85 Symposium on
Language Issues in Programming Environments, Volume 20, Number 7, July 1985.

Design Issues in a Rule-Based System

Stephen Fickas
Computer Science Department
University of Oregon

1. Introduction

This paper discusoes & langusge and amocisted exviroamest for
beilding rele-based prograens. The language snd eaviroament are
eacapsulated in a systern we call ORBS (Oregoa Rule Based Sys-
tem). Iz tane with this conference, our foces will be oa the inter-
play belween langusge and eavircament design. However, we will
broaden this somewhal Lo include design coastraints placed by owr
program development model! e well Instead of altempting 8 com-
pete design rationalizatioa of ORBS, we will coscentzate oa desiga
decisions that highlight the couplisg between laaguage, eaviroe-
mest, and development model.

ORBES falbs in (3¢ clase of rele-based aysiems that often in categor-
ised as forward-chaising or dats-driven. Other systems in this
category include OPSS [9], YAPS {2], and all of the Hearsay family
(5. 11, 16). What is often taken 2a the inverse of this set are the
backward-chaising ov goal-directed langpages swch as EMYCIN
[37]. Arguments for snd agaimst the forward sad bsckward
approsches have beem made msay times clewhere (see (12 for
examples of each), and we will pot address the insne further in this
paper.” While we believe that many of the arguntents we make for
the design of ORBS are applicable 1o rule-based systems in general,
any reference to the term rule-bascd should be taken in light of the
classification above.

It is often dillicalt ia a tightly coupled system sach as ORBS to
separate language from caviroament, or even the ORBS eaviron-
ment froe the Lisp enviroament oa which it rests. Further, while
we e the term rule-based 1o describe ORBS, sa ORBS program
may make ese of frame-based, procedursl, and mesmsage-passing
laaguages in carrying owt s computstion, Complicating matters
further, aa ORBS program may be embodded in & program written
in say of these other languages. Some of the mewer Al langunges
argue (see for instance, LOOPS [4]) that this is just right; complex
programs oftes do not Bt into a siagle language, bat instead will
need & variely of representations. We have two things o say shout
this view, First, we belicve K. Our experience in boilding programs
solely with a muje-based laaguage sach 3¢ OPSS was oee of
sitempling to by-pam its ralher rigid and limited representation.
In the same vein, we have felt the sune restrictions when buildiag
purely logic-based, procederal or object-cricated programe.
Second, nol much thought has gowe iato the efiects of throwing
together » haguage salad. How will each language interact with
the others? What is the development model with such a
conglomeration? Becanse ORBS is part of such s salsd, we have
fouad curselves cosstantly runsisg up against these questions. We
atlempt Lo come wp with & few asswers ia the following sections.

"We set the word develepment medel here and throaghest 1he puper Lo mier
o the consiructinn of application programs ssisg ORES, ar sppoved b the develep-
went of ORBS itpelf

hudore rocent elfocts bave ait

Permission 1o copy without fec all or part of this maserial is granted
provided that the copies are not made or distributed for direct
commercial sdvantage, the ACM copyright notice and the title of the

pied Lo combine aspects of both (e 1., {14])

© 1985 ACM 0-89791-165-2/85/006/0208 $00.75

We Baally must sote that our work bailds ca meck good

before us. Past of our goal in the construction of ORBS s 1o

formalise sad support the good idess of past rule-based

By the same token, we have spest frustrating scasions dealing
their ill-designed festares, We bope (o have learned from

expeticaces aa well.

3. Deign Prejudice

Our experience with bailding rule-based uystems has lead ws to &
collection of design prejudices. We state them here not becamss
they are pew — most have been stated 20 part of other laaguage
«fiorts — but becanse they show our bisses.

The development of rule-based programs ie best suiled to an
sncrementel, inleractive approach. Stated in the pegative, we
do sot believe a traditional editfload/rum cycle is conducive
to the coastruction of rele-based programs. While this poiat
may mow seem obviows in Al wystems, we note that mmany
existing rule-based systems are based ca some form of a Bxed
edit/load cyele.

Mapping domain lknowicdge te rule eepresentstion (i,
inewledge acquwiniion) iz difficult’, and ehouid be rupported.
Some resesrcheis have focused o the mapper
(AK.A. knowledge engineer), snd allowing the domais expert
ta directly add, modify and debug rules. Our approach i o
look towards some of the newer work ia kmowledge-based
software development for help. For instasce, part of the
ORBS ewviroament is comcerned with the specification of
rule-based programa.

A problem-indspendent language [ruch ca ORBS) showld pro-
wide generel language conviructs. Languages designed around
specillc problem domains {eg., cognitive modeling) do act
oftes travel well outside of their restricted ares. However, the
wse of geweral Janguage constructa places 3 greater burdes on
the weer to represent bis or her problem-dependent knowledge.
The more general the langunge, the Jem belp & is Ia modeling
specilic domaing.

Rewse can miligale complezity. Given gemeral jangusge-
consiructs, the programmer is faced wilk (he complex task of
deflning more specific domain concepts. We have attempled to
lessea this problem by supplying the programmer with cats-
loga of program pieces that have been indexed arcund domains

"Waews in seme circhee a2 the Frigrabesm boitleneck,
publication and its date appear, and notice is given that copying is by
permission of the Associstion for Computing Machinery. To copy
otherwise, or 1o republish, requires a fee and/or specific permission.

velated problem. The programmer’s task is thea to tailor the
skeleton 10 the problem at band. Section ¢ e
of used componeats ia more detall,

The vapid construction of partial programs iz particularly wre-
Jul in the i-defined domains that we find most apprepriate (o o
rule-based eppreach, This rapid prototyping fsswe cverlaps
with the design of both the language (e.g., strong ve. weak
typlag) and the eavironmest {e.g., compooent cataloging).

As csa be seem above, our development mode! (s based oo 1) rapid
prototyping, 2) remse of composeats, sad 3) a process from the
traditional software lifecycle, specification. We will attempt to
show how each bas had an impact on our desiga decisions.

3. The ORBS Language

ORBS is both & language and cnvirvament for bailding rele-based
progmams, A writlen in ORBS contains & set of tuples in
s dats base, & eet of conditionfaction rules that trigger on those
tuples, and & oct of scheduling functions that determine which trig-
gered rules Lo execute, Figure 1 conveys this graphically.

HATCH o
| 1
: i
\‘ h R T l
. - ————— 1 ACTION

Figure 1

An erample of a rule embodying a piece of circewit design
kmowledge is shown ia Hgure 2. The rule is takes from a larger
ORBS program, writtea by Vaagelis Simoudia, that sutotnales por-
tfoudnailieueompi{ﬂ. We bave chosea this rule because it b
simple, sad it demoustrates some of the interaction between rules,
frames, and message-passing in ORBS. The danger of viewiag such
a rule in isolation is the pigeon-holing of the sysiem as a particular
kisd of problem solver, e.g., clamification, simple syathesis. As we
have stated earlber, cur goal in ORBS is to kaadie a wide-range of
problem types. Simoudis’ compiler, for instance, uses Lwo scparsie
ORBS qystems, ose doing constraint-based problem solviag, sad
the other deaign-rule checking.

1f you are building » ring oscillsior that must be both semall sod
fast, then woe invertariype$ s the busle bullding block.

{rule small-fast
(ving-cec -ro}
test (eq {sead -ro ‘speed) ‘fast)
{eq (sead -ro *srea) ‘umall}

{fact cellchoice -ro invertens)

a

{taak: choces-inverter)
(status: active)
{see-for-rel: simondis))

Figure 2

The LHS (Left Hand Side) is made up of cue or more clagees that
are matched against datla base tuples. Above, the LHS consists of
the single clause (ring-osc -ro), Pattern variables are allowed in 3
clause (they are distinguished. from literals by a prepesded
hypben). The {optionsl) keyword *“test” marks the beginning of
the Bltering predicates. In this case we sssume that -ro has beea
bound to » frame object {discussed in more detail in the mext sec-
tion} with attributes speed sad mres. The function send pases »
mestage Lo the object, asking in this case for the values of its speed
snd srea sttributes. The “=>" marks the beginniag of the RHS
(Right Hand Side) actioas. Each action is o lisp expression; actions
ste evaluated sequentially, In .tlu above case, the action adde a fact
to the data base, As with the Bitering predicales, aa action eam be
any Lisp expression. The ‘i:" marks the begianing of rule attri-
bates (task, status, sad see-for-ref in this ease). Attributes are gett-
able aud settable from both the system and the application pro-
gram.

In the mext 3 sections, we will discuss each of the major language
componeats ~ database, reles, control — in mote detail. In each
scetion, we will Arst give an overview of the composent, and thea
the major design ratiosale.

3.1. The data base

An ORBS datsbase copsists of 1ero or mare tuples, oftea called
Jacts for bistorieal rensons. Each fact can take as argumeats either
Liap objecta or frame objecta. For example, four database facts are
given below,

sue olice)
(actioas (go stop continse))

(Mit {person} (person})
{ring-cec {ring-oscillator))

The notsticn {“name"} represents the instance of & frame object.
Frame objects are defioed in the Moss laaguage, which is based oa
Strobe [16], and is another componeat of oar integrated system for
building knowledge-based programs. A frame objeet implemented
in Moss (hemceforth known simply =a a frume) bas ope or more
slots, For example, the riag-oscillstor (rame from out small-fast
rule contaius the slota x-dimeasioa, y-dimession, ares, and speed.

Esach slot of a rame bas one or more facets, either nser defined or
system defined. Facets can be weed to amign defsult values, do pro-
cedural attackment, and of particelar interest, define data type
iaformation. In the lstter case, the wer can deflae arbitrarily com-
plex “type predicates” through the DATATYPE facet of = slat;
any attempt to mssign & value to s dot must Gret pass asy predi-
cates attached to the DATATYPE facet.

Frames (hemselves are relsted by isberitance: a frame muay have
Scto of mote pareats aad sero or more childres. Slots and facels
are inberited down sacestral chains. For example, u potticn of the
ring oscillator frame has the following structare:

Frame riag-oscillator
{ssper-framen circwil-component graph-object)
{sub-frames uil}
{author simoudis)
{crested July 2, 1084, 2120}
{slot speed
{facet value}
(facet DATATYPE speed-clam)
{elot area
{facet [F-NEEDED enicuiste-aren)
{facet DATATYPE area~cluss)
(slot a-dimension
(facel valee)
{facet DATATYPE real)
{slot y-dimension

The above description of Most is both simplified nad incomplete,
Owr objective is 1o introduce enough of the luagusge oo that the
following discussion caa be understood. In particular, we flad the
interesting topic mot the laaguage iocll, which adds littde o
frame-based lsnguage rescarch, bat the way it interacts when Lied
ia to a rule-based rystem.

Finally, it is important to note that ORBS is implemented in Mosa,
sad in fact, s 3 Moms frame object itsell. In this way, ORBS cas
be viewed a4 oae resource of » knewledge-based program develop-
taent system. In particular, multiple instaatintions of the ORBS
sysiem are possible, allowing separnte ORDS systems to be lnserted
isto 8 lasger application program. For iastance, oae ORBS gystem
cza reside in the datsbase of snother ORBS system (as an asge-
ment of & fact) or be stiached directly 1o a frame elot. We will pee
exampies and discess the ramiications of chis Iater.

Having Gninbed our ovetvicw of tbe ORBS database, we will now
look at the major design decisions that lesd to its current form.

The ORBS database s weakly typed.

We can coatrast this (o dastabase langunges that provide fully
typed objects and relations, The Expert System language Hearsay
I provides such typing®. 1n the following discussion, we will use
Hearsay Il a8 the embodimest of the fully typed approach. We
view the design imues as follows:

e By supporting » full {ype lattice® exteaded o include user-
defined type-checking code, Hearsay T gains all of the atten-
dast error detection capabilities, e.g., a0 attempl to add an
andefined relation or cme with & mis-typed srgument i
fagged immediately.

. The Hearsay Il approach allows more succinct database
queries. By wiing typed pattern variables, we can ask for all
tuples that contain pervon objects, or just tuples that contain
8 subtype of person, ¢.g., studenta.

L] The Henaay III type structare allows domain coacepta to be
organited around class hieracchien.

“Hearnay 1l w based oo the relativaa] database laaguage AP

“Hearsay Ul allews & subiype Lo bave more 1han sue superiype weh the §
ENTITY actisg oz the aniversal slemnt pesree e

210

e Our experience with Hearssy [, 2ad is s more limited
with OPSS keyword declarntions, shows thet coasiderable
Ume must be speat in getting the type Iattice right. It bs sel-
dom the case that the right set of (ypes sad eubiypes csa be
determined without prototypisg sad experimentation.

. Hearsay 111 provides mo clenn way to coatinwe processing oace
s change to the type [attice is made. Instead, the entite ays-
tem must be recompiled, loaded and run (Goodwin discusecs
related problems ia [10).).

. Qur expericnce with weakly typed laaguages, auch ss YAPS
and ORBS, is that initis] prototype programs car be built
quickly. Thest early programs are of emormous belp ia
defining the right frame classes and subclasses.

Our choice of an untyped datsbase wos based Haally ou three con.

cerms. Fint, we are advocsting aa faternctive, fncremental model

of development much like thut proposed by lnterlisp and its swcces-
sots. If we chose to use the Hearnay HI model, thea we would bave
to fad nmtomdeclgngstotkl”ehuiuhmu.
computatios sa (hat procemisg could coaliswe (a capability
atroagly sdvocated by Goodwis llq). We note that at beast ome
promising spproach to incremestal type definition s DUCK's

*“walk" mode [14], which allows a type hierarchy to be defined aad

modified dyoamicslly.

Out second concern i with rapid prototyping. Expeticace with
ORBS hss shown that jnitial {slbeit incomplete) versions of s sys-
tem cas be brought «p quickly. In Hearvay U, cor experience was
the opposite: much of development time was spent in defining sad
debugging the type lattice. Even initial prototypes took sabetantial

eflart to bring up.®

Finally, we find that the incorporatios of frames within the data-
base partly compensates for weak typing. A major coatribution of
the type lattice in Hearsay [Il was the organization of domain
cbjects into & clsaa bierarchy. Frames, lackiag from Hearaay UI,
provide this capability ss well. Further, the DATATYPE faccl in
Mosa allows us Lo type say slot we wish. Thus, we can chooee cer-
tain slots as critical, loave others untyped, sad change cur mind as
development progresses.~*

Gives our choice of weak typiag, we do lose some functionality.
For one, we cuanot as clegantly query the database msing the type
lattice s 2 flicr. Instead, we have to rely on Bltering predicates (o
marrow down the objects snd relaticas we are iaterested in.
Secondly, type errors caught immediately in Hearay [l may mot
masifest themselves until late ia 8 compuistion ia ORBS. If we
misspell a database relstion {e.g., ring-ocs), its effect might be that
a rule that should have matched will mot mateh. Unraveling thia
kind of error. i clesely difficult. This is one point where our choice
of a language festure has aflected our corresponding eaviroament
tools. Specifically, we bave spent considerable cffort buildiag took
that will allow these errors to be pinpointed asd xed. As as
example, the user may query why s particalar rule did sot trigger.
The system will answer with cae or more patiern clamses that
failed Lo match, andfor predicates that returmed ail (the system
keeps a bistory of such events). The user can further inspect a rule
by saking the system to maich & specific database facl against a
speciic LHS clause. The matcher will repott any srgument
mismatches, Once bag has been found, the weer can correct it
and ask the system o vevert to a previous cycle and try again. .

One foal sotz relating to datsbasz typing: in practice, we find that
we wse the ORBS database m & means of orgsaizing frames (The
KEE eystem [13] bas taken this to the extreme by eliminating the
database altogether, instead relying om the system to manage sad
judex feames.). Tuples often represext indexes ss opposed (o

e murt be (air ta Hearsay OF here. Raped prodciyping was oever o ool of
the taaguage. Quite the appesite, the devvlopmant medd amamed that Hamay 1
wonld be uerd fot large problems sbay much time wonld be speat on defining rela-

tisne sad types affline bafore being tranaleted Lo cads

domsain coscepls. The Iatter are now represeated as frames
their sssociated siota. A good example in Lakes from the smallf;
rule, where the complex ring-cscillator frame b indexed n
database by a simple relation

FEE

(ving-cec {ring-cacillator))

Gives this simple wse of the database, we feel that typing bs where
it belongs: in the laaguage that models domaia comcepls, ie.,

frames,
The database ls unstractured.

Langusges like Hearsay I aad BB1 [11] provide the motion of
probiess solving levels for both domais sad control knowledge. As
poisted ost ia [11], this provides s powerful organisational shetrac-
tion in certala plasnisg domains. In Hearsay III, database levels
are sctually classes defined as part of the typlag mechaaiom, That
in, Jevel X in deSned by deaing a clams X; newly erested objects
can be placed in this class, e, placed at this level. Rules
(Ksowledge Somrces) could also be placed in classes in the same
way. la BBI, levels have & second, temporal dimension. This can
be used to track alternative solution paths.

We bave decided against sn explicit representation of database
structure ia ORBS. Owr reasoss are twolold. First, the intredwetion
of levels forces » particalar sbetraet planning view of the world.
Objects in the database must have an amocisted abstract level;
velations are weed o mark interlevel cquaections. While this is
natural for some problem domains, R ¥ artificial sad covater
productive in others.

Secoadly, we Bed that we can simulate the Jevel notion, whea
aceded, by more primitive ORBS mechaaisms, e.g., typing of frame
objeets, explicit level arguments in database relations.

Does this mean that an wastructured databme is best? We would
saswer no, but any strcture added appeam to be problem depes-
deat. This is somewhat of » dilemms in ORBS, which aspires to
problem indepeadence. Our solution is nef to add sew Ianguage
features, but instead 1o rely oa cataloging of skeleton applications
in represcatative domains. In this way, we caa cosfigure the data-
bese siructure to mateh the problem type. For instance, if we wish
to build & plasning system, we may losd In & skeleton that coe-
tains framen, reles, and scheduling fumctions that hasdle multi-
level plaspiag. As example of this type of dymamic system
conBguration s given in section 4.

3.3. Rules

MORBSukmtaiuouotanHSpaﬂnu.nmumm

Blters, oae or more RHS actions, several system-defined Selds, and

mre of more wser-defined flelda. The ORBS

maich fackedule/execute cycle is 28 follows:

(1) Match esch rule against the dats base. Separate activalions
are created for each dillereat mateh.

(2) Make sure each activation passes any flering predicates,
Oses that do are placed In o conflict sel.

(3) The coalict st is passed through & set of scheduling fune-
tions (previonsly defined by the user).

(1) _The catcome is sa execution set comtaining sero or more
sctivations, which are chosen for executioa.

(5} The cycle repests until explicitly halted by the application
program.

211

Mnmphdukqnhx,nmlhukh-ulnl

{rule emall-fast
(riag-osc -ro})
test {eq {sead <ro ‘speed) ‘fast)
(q {send -ro *ares) ‘small)

{fnct cell-choice -ro taverter3)

{task: chocee-Inverter)
states: active)
seo-Tor-ref: simoudis))

Osur model for rule structure comes from a kybrid of YAPS aad
Hearay 1Il. We bave strives for a readable syatax that allows
catension. We have made the following design choloes in deflaiag
our rule represeatation. .

Patiern clauses are scparated from filtering

predicates.

Osly Eterals aad wildcards may appear is o pattern. Mose comphi-
cated predicates may be applied in the optional test sectica. Thin
i in costrast Lo systems Such as OPSS which allow predicates to be
embedded withis a LHS clause, We argue for separation of clauses
aad predicates o8 two grousds: 1) additional syntax must be iatro-
duced withis a clause to describe embedded predicates, syntax
which potestislly introdeces new bugs, and ofien makes clamses
dificult to waderstand, and 2) by separsting matching and predi-
cste applicatios, we have separated two debagging concerna, bn
particular, the ORBS enviroamest contains tocle that sllow 2 weer
to lrace/break the matching of the pattern clauses of a rule andfer
the aatisfaction of its predicates. We have found this eapability
quite valusble in rule debagging. In contrast, gystems like Hearsay
I aad OPSS, which intermix maiching and predieste testing, are
fowad to be more difficilt to debug; more time i speat o narrow-
ing the emror (o one or the other, Thus, to provide the type of
debugging tools seeded Lo overcome the weakly typed database
(see the previous section), the laagusgs mest separnte msiching
from Slteriang.

Rules should be packageable.

This addremes both lasgusge and developmest mode] jesaen, Sys-
tems such = LOOPS allow rules 1o be grouped into related collec-
tions. There i generally an aclivity pointer that designates what
collection is current. Oaly rules from the currest collection are
allowed (o match. AGE [15) uses patters-direcied invocation of
tule package. There are sl Jemt two attractive language propertics
of rele packaging: it allows & complex'space to ba broken into more
understandable pieces; it tends to simplily rule comstruciion and
debugging by allevisting context issnes (c.f., (1]}

ORBS curreatly coataiss oaly s weak sad implicit form of rule
packaging. SpeciBeally, rules can be collected together by placiag
spproprists values ia their attribute Selds. For example, we could
define » rule sttribute grevp, asd et it to interfacing lor ench of
the circuit design rules we wished to package together. Thin b
mote o Jess the approach taken by Hearay LI, grouplag reles by
attributes. While this provides a method of deflalag the elements of
the 2ct, it docs mot provide a means of dellning sttributes of the et
itself, ¢.g., when should it become active, what problem does i
solve, what sigaals the end of aclivation.

There are two other sspects of rule packaging in ORBS that are
worth mestioaing. The Brst is tied to oar desite to remse com-
poaents. Ouns of our design goals is o make program comstraction

pertinent , Simoudia’ collection of
reles dealing with circait Iayout problenss may be weeful in & vew
dealiag with space planning within the CS department.

We would like $o rewse the circuit layout reles in the new space
ing system. As we will see ia section 4, cne of our caviroe-
ment tools allows rules to be packnged sad retrieved for wae in new

%

Asolher type of mle packaging is ORBS is related to the ability o
lostastiste multiple copies of the ORBS wysiem. In this way, rule-
sets can be defined ocparately by placing them In scparate ORBS
wystems. For lastasce, Simoudis® program wses cae ORBS aystem
to edit cirewit layouts, sad a separste ORBS system to do design

vides the ability to rules 22 of the development
mwmlnmnﬁudmmﬂm
ability to package rules ato separte programs, bet provides oaly
limitad puckaging of rules within a single program. Owne of the
problems with exteading the [siter is its interaction with the ORBS
coatrol model discussed in the next section.

1.3 Problem Solving Control

The ORBS scheduler is called when all rule activations kave been
gathered for the current cycle, forming what is knows a¢ & coaflict
oct.” The scheduler uaes o conirsl siralegy to choose amoag com-
peting solutions, and to order sub-tasks withia some larger task. A
coutrol strategy consists of & dirceted acyclic graph with schedubing
Junctions 20 nodes. The scheduling process is catried out by passing
the coalict set slong ares and through modes. Each scheduling
fuaction takes as iapat a set S of rule activations, sad reluems
mome, some or all of S. Geserally, » function either removes or
weighls ooe of more activations. The mew st is in turm paseed
aloag arcs to other scheduling function. The process completes
whea the last scheduling function (as designsied by the weer)
returns sero or more activations for execution. In figure 3, wesce a
simple strategy that 1) passes the initial coaflict set Lo function R2,
2) splits the output of RZ to COST and ENDURANCE, 3) takes
the unios of the two ocutpats, 4) pames_the resulting set to AD],
aad §) passen the cutput of AD1 to the aystem rule-exeocuter.

Wb.wmuanm irely s p g
the rorrent ~ ARF Con withie the sol: all activalives may be mecwlably o

212

Several major design decisions weat into the ORBS control model,
They are lisled befow,

ORBS uses a state-based ms opposed to an
event-driven matching algorithm.

In an event-drivea system, rules are maiched by the occurrence of
some databuse eveatl, (ypically sdding & new fact. For example, in
Hearsay IMl, a knowledge source s matched o the asertion of &
pew relation on the blackboard. Becsuwse an eveat s ocen oaly
oace, such sysiems must keep a record of rule matchings Lo avold
“losing”’ & rule that was wot selected for execution on the same
¢ycle st H matched. In Hearsay NII, rule activations are placed in
a permaaent data sirwcture called u scheduling blackboard. On
ench cycle, the Heamay acheduler must weed through both rules
that matched this cycle, and all walting rele maiches from previows
cycles. Other Al sysicme wee a similar structare called an ageads to
hold peadiag taske.

ORBS utes & state-based matcher, which matches strictly oa the
state of the database, and not on suy sddition or deletion actions.
Coaceptually, the entire conflict et in gesernied snew on ench
cycle. Hence, nlmont no history s peeded between cyelen. The ayo-
tem does record how mbay times & particalar rule has been chosen
for execution.

Our ratiosale for sclecting u state-based approach is based oa two
concetnd. The fint involves the interaction between rules and
objects that can cause side-eflects. Specifieally, the addition of
frame objects asd procedures into s rule-based gystem allows cer-
tain cvents to go unnoticed by the rules. For instance, o rule hos
po means of detecting a frame slol-chaaging event. In the state-
based approach, we cam build rules that coostaatly poll relevaat
frame objects 4o check for certain key valees being preseat.? For
instance, suppose thyt we had o system that mositored & persoa’s
age: -

(rele birthday

(person -p)
(date -month ~day -year)

test (eq (sead -p Dirth-month) -month)
(eq {send -p “birth-day) -day)

{send -p "set-nge (+ (scad -p "age) 1))

= (task: monitor)
{status: active))

(rele legal-voler
(persoca -p)
u; (eq (send -p "sge) 18)
{fact task muil-voler-material -p)

{task: mositor)
{status: active)
(sce-lor-rel; federal-voting-law])}

Is the sbove example, we have wsed a frame Lo record relevaat
iaformation abost a person. If we wsed aa event-drives matcher,
legal-voler would mot see s change (o the dstsbase, sad bhence
would aot trigger. Of course, we could modily the birthday rulbe 0
that it beft & macker in the database that sigaalled & birthday

®This is nel quile or expessivy 20 @ seends;, ORBS wsen an incremental
matcher thal svwids rematehing the pattery of soch mim every cyche

eveal. The legakvoles rule could likewjse be modified (o Lrigger oa
this. Below, we will propase & more general approach 1o this type
of event sigaalling as one way of more asefully coupling rules and

frames.

In & state-based matcher like the oae ORBS employs, the single
clsuse of legabvoter would mateh every cycle; i is wp (o the tesd
predicate to check for the relevast change in the person’s age. We
can uwie & icheduling function Lo guarasies that legalvoler will
cascute oaly once (on's person’s 18ih birthday), and mot costinee
to sead voler pamphiets for Lhe resl of & person’s adult kife.

The second problem deals with mosoloaicity. [n sa eveat-drives
system, s rele R may trigger oa facte knows on cycle |, but R muy
pot be chosen for execution until cycle i+k. In the k intervening
cycles, sew facta may be sdded aad old oaes deleled or modified.
Heace, 8 triggered rele may become out-of-dats while it is waiting.
‘The Heareay 11l approsch is to attempt (o “remateh™ an activation
right before 5t b cxecuted; if it fails Lo rematch, it is ignored. A
state-based maicher does pot have Lo desl with obsolete activa-
tioas. The execution of an sctivation wees the latest facts knowa.
However, asither maiching scheme solves the problem of son-
monotoalc reasoming im gemeral, ez, whal to do with »
fact[hypothesis restiag 08 now erroncons data.

There are otber problemns with the state-based approach. First, the
polliag sirategy sbove oaly can detect the alter-eBects of aa eveat,
sot the evest itsell. Thus, if we want to know any time a slot
vales changes, regardless of its sew valee, we have no cleaa way of
eacoding & corresponding mle. Secosd, it is dilfficalt to build
agesda-based problem solvers, where a vecord of peadiag and com=
peting tasks is kept from cyele to eycle. We see scveral possible
solutions. -

Sohution 1: Unfold the rules

We might “wafold™ rules like legal-voter into the slots themoclves.
Thus, we could attach » rule to the age slot of a person frame that
checks everylime i is changed. This moves us back Lo an event-
driven model In fact, the Mos language sliows such procedural
stiachment. However, we iy to avoid it for several remsons, First,
the disperstment of rules throaghout a set of frames makes it hard
to geserslise, calalog, sad rewse interesting piecen of procedural
knowledge. In our experience, it lends to slot-dependent and dupli-
cate procedures. Wihile some types of ‘procedures do bedong with &
slot, and sot a8 » part of the rule base {e.g, graphics roatines),
many others are ilhsuited as altached procedures.

Second, ORBS provides a sophisticsled aad extensible comtrod
mode) 40 schedule competing taske and subtasks. I is unclear how
this model will be extended to bandle the many mini rele-bases
spread throughout the frame space. For instance, the change of the
age slot b0 18 may trigger two competing attached procedures, ose
advocating a medical career, sne advorating a law career. The oaly
way we bow have of haadliag this type of problem is to attach an
entire ORBS systems (o sa individual slot. Sech an attached rule
Fysiem cab be executed o specified alot-chaaging eveata, Thus, the
persos frame cosld be modifled so that an ORBS system
attached to the age slol. When the persos became 18, the ORBES
syslern could be calied on 10 do the secessary problem solvisg to
determise a carver path.

Belution 3t make frame modification an observable event
An sveat-diives mateher becomes feasible in ORBS if rules ean

detect not oaly the addition and deletion of relations, but the
change of slots s well. Thus, we caa rrtain our explicit rule bass,

Z13

but st the same time allow rules to be associslod with oae or more
slots. Henee, we might dellne the following security rule:

{rule secure=alot

{*changed® «alot -frame)
test (eq (send -frame ‘type) "sccure)
—->

{fact security-alert -slot -frame))

Here, the sysiem must mositor all slot modification, sad relay the
informatioa 1o the rule base, hypothesized above a8 » epecial rels-
tion echanged®. As snothet example, we caa 3dd a clanse
{*changed® age person} to legal-voler Lo mosilor s pervon’s age
slot. Ose part of our current work os ORBS is to integrate both
state-based and eveat-drives ruben” Major lenes favolve rule
represcalation, eveat mositoring (incleding side-cfocts wroaght by
procedures) and sotilication, and extession of Lhe contral modal te
bandle event-driven uﬂnﬁen.

I» wwmmary, we Oad rulm, frames, attached procedurms and
object-oriented programming isteract bn complex wage. Is ORBS,
we view the rule base w0 the primary repository for precedural
ksewledge. By baviag sceems to the rule bese a0 & whole, we can
ressos about this knowledge, ¢.g., generalize it, detoct bags, cata-

log i

Control strategles are tallorable to the problem,

Differeat problems require diflerent costrol sirstegics. Maay exist-
ing rele-based systems provide ouly » ined control slrategy. Whils
it is sometimes possible to implement different control sirategies
weing a fixed sirategy by clever enceding of costrol knowledgs in
domais kaowledge terma, the resulting sysiems b cumbersome to
develop, debug, and maistais. Is general, an entirely sew control
model must be simulated alop the old. Though some langusges
make this simulation process easicr thaa others, we argus that this

is the wroag approach. =

Instead, we have atlempted to explicate the implicil coatrol dec)-
sion points in » rule-based system, sad to make all contrel points
sccessible Lo asd modifilable by the seer or applicstion program [3].
Specilically, owr experience with bduilding rule-based systems in
lsagusges such s OPSS, YAPS, PROLOG, aad Hearsay 1B hae lod
e o conclude that

(1) Coallict rsolution is & complex procem thal often requires
domaig-speciic knowledge 1o be effactive. A “band-wired"
system costrol strategy showa 1o be weeful in cae domain
may be i-swiled in another,

(2) DeBaing control knowledge may be just as difficult » taak 2
defining domain knowledge. Hence, the constraction, dobug-
ging. sod maintenasce of control knowledge sbould be well

suppotied by the system.

In ORBS, a coatrol strategy is neer-dellned. For a user bo build &
scheduler i ORBS, be or she must 1) deline n st of scheduling
fusctioss, and 2) define bow these functions are to be combiaed o
form a coatrol strategy, ie., deBae the ars of the graph. In
ORBS, the enviroament supports this construction process. ORBS
maintaise schaduling composenls found waeful in previos aystems,
These componesta csa range from ladividual scheduling functions
to laurger piscos of coatrel siralegien. ORBS abo supplies a
“masnal” schodules, which allows the nser to incremestally build

®The currest syviem oaly allows slabe-bosed rulbes.

wp 8 control strategy.™ taltially, the manusl scheduler forcen the
weer to make all scheduling dechicns {eg., seloct the nctivations
from the conflict oet to be invoked). As time pases, he woer may
odd is scheduling functions, bet still remain in the scheduling loop.
Evestually, the complete graph will be baiit, forming » coberent
strategy. At this point, the user bas beea completely removed from
the loop. One of the members of the ORBS group, Keith Downing,
bs Jooking st ways that this process might be sutomated by exa-
wising the cholces made by the user, sad comparing them to the
knowa scheduling functions. The goal i for the aystenn to recognise
the strategy being carried out manually by the user, sad replace
the masusl echeduler with the appropriste set of aschoduling func-
tioas.

This eads our discumios of the ORBS laaguage componenta, Wa
oexi take up the enviroament that surrounds them,

4. The ORBS Eavirenmant

The ORBS cavirosmest laciudes the following components: 1) a
specification baguage, KATE, for epecifying sule-based sysiems
[8.7]. 2} graphical editors for msodifyiag rules, Savors, facts, ccatrol
strategics, 3) & break package that supports incremeatal develop-
meat, sad 4) & catalog of wseful domaia sad coutrol pieces that csa
be melded logether to build aew programa,

We belicve the best way (o discams the ORBS eavicoament is by
followiag s amall exsmple of a programmer baildiag an ORBS pro-
gram. Suppose that we wisbed to build an ORBS program that
laid out lab, office, and storage space in » Computer Scieace
department. Oxr st step would be o use Kale to epecily the
componestis of the problem. Owr overall“goal for Kate ie to allow
rubt-based systems to be epecified by a combisstioa of composent
resse and tailoring. Kate maintains & catalog of skeleton com-
poscats from past developmenst eforts. These skeletons are
cutreatly handerafted to represent the “easential” pieces of sa
ORBS progrum for some particalar problem, Each skeletoa con-
hh.uidﬁnu..mdnh,ﬂnmwm.m
mm«mmn.mpmmw.
hey are crafled as composeats to be mixed in (o & larger aystemn.
Two skeletons of interest in our layost problem are CS-Dept-World
asd Cirenit-Design-World. The Srst coataing frames (Facukty, Stall,
Student) and rules (“schedule department meetings st 1000 on
Tuesdays®) desling with department kifc. The second contasine a
:Nm&uiuudbumwph-h.w

Ouce these are Jonded, the Kate editor sllows snwanted pisces Lo
be trimmed (e.g., the Circuit-Design-World frames), relevant pieces
te be further refiaed (eg., Clrcuit-Design-World scheduline
fenctions), asd mising pieces to be ndded (e.g., additional space
planning rules). While cur current reacarch effort is aimed st sup-
plying these adiling operations ut the Jevel at whick they are stated
sbove, curreatly caly primitive addition, deletion, and medilication
sctions are svailsble. Kate does preseat each of the composeats
graphically: frames are shown s sa iaberitance graph; rules are
shows in composent form; the coatrol strategy is represented ae »
gtaph of scheduling fusction nodes and coanecting ares. Each of
these cam be edited graphically se well. For instance, the weer ean
844 sad defete nodes aad arcs from the control steategy by mani-
pulating representative gruph icoms. The graph is akio wsed ms 3
tracing tocl by marking asd highlighting jccns as the scheduling
process execales,

%mlﬂﬂwmhﬂuulumﬁudn;q&.ﬂh
the

ll!': dose by I!t.un for debugging purpesas, or by the runaing program w

214

O-nwhuuilomlurln-u.nlu.udcuuﬂmu
match the hayout problem, we are ready to tost the progam. We
will wee the ORBS bresk package to do Lraciag sad w & platform
from which to patch bugs. The break package sllows us to set
breaks as follows:

s Break oa <pattern> belag added to or deleted from the
data base.

Break when <rule pattern<clamse(s)> matebed.

Bresk when <rule test-clawsed> falls.

Break whes <mle> matched.

Bresk whes «<rule> selocted for execution.

Break after <rule> executed.

Break every eycle.

Break before scheduling functions ren, ufter scheduling func-
tions rus, after s particular functica rus, on empty exscution
set,

Because this ls the St test of our program, we will cantiomsly
piace beesks at the beginning of every cycle, nad al every schedul-
jag fusction. Suppossr thet our first break occurs ut the Aret
scheduling function. We can Interrogate the Praction for its inpat,
in this case the initial conflict sel. Seppose that i ks empty. [is
likely we bave a bug since no rules matched on the rst cycle.
From tlihn&nc_u_d’olle!dbvh;:

® Pretty Prist the conflict set, data base (on say cyche), rule,
process history.

. Add » fact Lo, delete a fact from, or destructively edit a fact
in the data base,

M Add, delete, or edit & rule.
Remaove activations from the coaflict set {not applicable in
this cuse).

e Determine why <rule> did nel lre in cycle k. Answer s
sither “did mol maich”™ or mame of scheduling function that
eliminated <fule> froem the coaflict set.

o Makh <rule> against {<fact>). User chooses sabeet of
facts to maich against <Cruled>, Anvwer is cither "mateh” or
LHS pattern(s) that failed to match.

e Siagle slep the scheduling functions. The bresk package
called after each scheduling fuaction returne.

® Prist process history. This includos, ou & cycle by cycle basis,
what facts were added, what facts were deleted, what active-
tioms were executed,

® Revert to begisaing of previows cycle k (the systems will
restore the databese and rales to thelr oviginal form, but not
associsted frames!),

o Continwe processing.

We have several choices here. First, we can sttempt to determine
which rules should have matched and ask the system what caused
them to mismaich. From this information, we may wish to odit &
rule or the database, revert to the beginaizg of the first cycle, and
costinwe procomsing from there, Debugging continees in this
break /8x/continue cycle.

§. Summary

In this paper, we have attempied to show the Interaction betwees
the design of the ORBS language, snd 1) the development model
used to build ORBS programs, sad 2) the eaviroament that sur
rounds the language. We particularly wole the dificult probless
brought abost by combining varioss laaguage forms — frame-
based, procedural, measage-passing — with a rule-based system.
We have ralionalised ORBS language design In Lernm of the sbove
issuen,

In regards to ORBS 20 the pinaacie of rufe-based languange donign,
we aole all of our sysiem componsals ~ cavircament,
developmeat model, Mom, Kale = are under constant reviaios m
sew desiga problews are wncovered, This leads w1 to believe that
the current lncarnstion of the langunge s for from mature. We
expect mech hard anslysie and experimentation lic ahead of ua.

The ORBS gystem is implemented oa the Symbalice 3000, A pos-
graphics versioa of the system & implemented in Fraactisp waing
the Marylaad Flavors package [3] under Vax Unix 4.2. The sysiem
In akeo being ported 46 & Tektroaix 4404 Al Werkstation (Pegases).

Acknowledgments

Pest sad current members of the ORBS project laclude Alles
Brookes, Kim Dsasewits, Keith Downiag, Michae! Hennessy, David
Norvick, Rob Reesor, and Bill Robiascs from the University of Ore-
gtoa, aad Bl Bregar from Oregos Stale University. Vamgelin
Sicvoudis has been 5 valuable firat weer of the aystem.

We would aleo Eke to thank iwo former members of the Hearsay
I design group, Lee Erman aad Phil Loadon, for thelr comments
on enrlier drafts of this paper,

This work is partially eupported wsder Naticaal Science Founds-
tion grast DCR-£312578,

Raferences
{1} Aikins, J.
Prototypes sand production reles: s knowledge representation
for computer consultstions,
PAD thesis, Compater Scicace Dept, Stanford University, 8/80

|4 Afies, E.
YAPS: Yet Another Production System,
TR 1148, Computer Science Dept,
Usiversity of Maryland, 12/83

(3] Alles, E., Trigg. R, Wood,R.
Marylsad Frassiisp Enviroasoent,
TR 1228, Computer Scicace Dept,

University of Marylaad, 11/83

[4] Bobrow,D., Stefik, M.
The LOOPS Maaual,
Xerox Parc, Palo Alto, 12/83

[5] Ermas, L., Loadon, P., Fickas, S.
The design snd example use of Hearsay 11,
In 74A International Joini Conference an Al, Vancouver, 1681

[6] Fickas, S.
Specification Automstion
International Workshop os Models and Lasguages for Software
Speciflcstion aad Design, Orlando, 4/83
Avallable from Departement d'laformatique, Universite Laval

(7] Fickas, S., Laarsen, D., Lasesea, J.,
Knowledge-based Software Specification,
In Workshop on Knowledge Bascd Dexign, Rutgers Univ., 1984

|8 Fickes, S., Novick, D.
Coatrol in Rele Based Systems: Relaxing Restrictive
Asmmptions,
In 3th Internstisnal Canference on Expert Systems and Their
Applicatisns, Avignon, 1986

215

{9l Forgy,C.
OPSE Referesce Manual,
Computer Science Dept., Carnegle-Melloa Univensity

[10] Goodwis, J.
Why programmiag enviroamests need dyaumic data types,
Interactive Pregramming Envirenments,
Eds. Barstow, Shrobe, Snadewall, McGraw Hill 1084

[11] Hayes-Roth, B.
BB1: sa aschitecture for blackboard aystems that coatrol,
explain, sad leara about their own behavior,
HPP 84-16, Hewristie Programmiag Project,
Stsaford Univemity, 1064

{12] Hayes-Reth, F., Watermaa, D., Lessat, D.
Bailldiag Expert Systeom,
Addisoa-Wesley, 1083 A

[13 The Kmowledge Eagineering Enviroameat,
IatelliCorp, 707 Laure! Street, Meslo Park, Ca. 64028

[14] McDermots, D,
DUCK: A Lisp-besed Deduclive System,
Depariment of Computer Science, Yale University, 1083

{15} Nii, H., and Aiello, N,
AGE: A Knowledge-based Program for Brilding
Knowledge-based Programs,
In Preceedings of 6th International Conference on
Artificial Intelligence, 1979

[16] Smich, R.
Strectured Object Progeamming ia STROBE,
Schlumberger-Doll Research, Ridgeficld, Ct., 1984

[17] van Melle, W. .
A domain-isdependent production-rule system for consuliation

programs,
In Preceedging of §th Internationsl Conference an Artificial
Intelligence, 1970

