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Abstract. We develop fast parallel solutions to a number of basic problems involving
solvable and nilpotent permutation groups. Testing sclvability is in NC, and RNC
includes, for solvable groups, finding order, testing membership, finding the derived
series and finding a composition series. Additionally, for nilpotent groups, one can, in
RNC, find the center, a central composition series, and point-wise stabilizers of sets.
There are applications to graph isomorphism. In fact, we exhibit a class of vertex-
colored graphs for which determining isomorphism is NC-equivalent to computing ranks
of matrices over small fields. A useful tool is the observation that the problem of finding
the smallest subspace containing a given set of vectors and closed under a given set of
linear transformations (all over a small field) belongs to RNC.

1. Introduction and statement of results

We present several new fast parallel algorithms for dealing with permutation
groups, along with implications for graph isomorphism. Until now little was known
about the parallel complexity of non-Abelian permutation group problems (see [Mc84],
[Re85]). Techniques developed for Abelian groups [McCo85], combining clementary
number theory with properties of tramnsitive Abelian groups, do not generalize. Among
other things, we now place in NC or RNC fundamental questions about solvable and nil-
potent groups that were not long known to be in P. Applications put graph isomor-
phism instances into RNC. The randomness (R in RNC) arises from the need for lincar
algebra over tiny fields F, (where “tiny” means that the value of p is bounded by the
length of the problem encoding). In fact, we show that linear algebra (e.g., finding
ranks) over tiny fields is NC-equivalent to a subcase of graph isomorphism.
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An essential tool for dealing with permutation groups that are (succinctly)
represented only by generators (we assume all groups are so specified) is a membership
test. The permutation group membership problem (GM) consists of determining
whether a given permutation belongs to the generated group. Furst, Hopcroft and Luks
showed that a variant of Sims’ algorithm [$i70] for GM could be implemented in polyno-
mial time [FuHoLu80a], but the only subcase known to be in RNC was that of Abelian
groups [McCo83]. In [Mc84] the latter subcase was shown NC-equivalent to computing
the rank of a matrix over a tiny field F.

Theorem 1.1. GM restricted to solvable permutation groups belongs to the complexity
class RNC.

Theorem 1.1 yields, as special cases, RNC solutions to GM restricted to nilpotent
groups, and thus to p-groups (positively answering a question from [McCo85]). We also
show

Theorem 1.2. Computing the order of a solvable permutation group belongs to RNC.
The following result forms an important tool in several subsequent algorithms.

Theorem 1.3. Computing the normal closure NCL{H) of a subgroup I/ of a solvable
permutation group G belongs to RNC.

The normal closure NCL{S) of a set Sin a containing group @ is the smallest sub-
group containing S and normal in G. For example, this enables us to get at the strue-
tural underpinnings of the group:

Corollary 1.4. Computing the derived series and a composition series of a solvable
permutation group belongs to RNC.

Note, though the derived series has poly-log length, a composition series nced not.

Now consider the pointwise set stabilizer problem (POINTSET). Given a permuta-
tion group G and a subset of the points on which G acts, POINTSET consists of com-
puting the largest subgroup of G fixing each point in the subset. (By contrast, the set
stabilizer problem SET would permit mapping points in the subset to other points in the
subset.) Theorem 1.3 is also instrumental in the proof of

Theorem 1.5. POINTSET for nilpotent groups belongs to RINC.

Pointwisc set stabilizers play an early and important role in the development of
fast sequential algorithms [FuHoLu80]. Though they arrive herc at a much later stage
(and, in fact, are not yet available for general groups), they are still of great value. For
example, they are used in

Theorem 1.8. Let G be a permutation group in a class of groups X and let H be an
arbitrary permutation group such that G normalizes H (i.e. H is normal in the group
generated by G and H). Then computing the centralizer Cg(H) NC-reduces to solving
POINTSET for the class X.

Corollary 1.7. Let H be an arbitrary permutation group normalized by a milpotent
permutation group G. Computing C'H) belongs to RNC.
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The centralizer C{H) consists of the elements of G that commute with all of H A
special case of theorem 1.8 involves finding centralizers of normal subgroups (when
H< @) and, if H=G, we get another important structural result:

Corollary 1.8. The center of a nilpotent permutation group can be computed in RNC.
Even more structural information on a nilpotent group is attainable:
Theorem 1.9. A central series for a nilpotcent group can be computed in RNC.

Proofs of the theorems stated thus far exploit the fact that much of linear algebra
over tiny fields F, can be performed in RNC ([BoGaHo82}, [Ga84]). We establish the fol-
lowing tool:

Theorem 1.10. RNC contains the following problem: Given a subset A of Fg (»
tiny), and a set T of linear transformations of Fg (described by matrices), find (a basis
for) the smallest subspace that contains A and is closed under the action of 7.

Given the persistence of (R)NC in the above it is satisfying to know that
Theorem 1.11. Testing a permutation group for sclvability belongs to NC.

Theorem 1.11 is, in fact, a consequence of the next theorem. Define a property as
“hereditary’ if whenever the property holds for a group G it bolds for any subgroup and
any quotient group of G, and whenever the property holds for both a normal subgroup
Nof G and for G/N it holds for G. Examples of hereditary properties include solvabil-
ity, being a p-group, and having hounded non-Abelian composition factors.

Theorem 1.12. Testing a permutation group for a hereditary property NCtreduces to
testing that property for a primitive permutation group.

Since it is known that a bound on the non-Abelian composition factors imposes a
polynomial-bound on the size of a primitive permutation group {BaCaPa82], testing for
small non-Abelian composition factors is also in NC. We observe that this class of
groups arises in testing isomorphism of graphs of bounded valence [Lu82].

Define N to be the class of vertex-colored graphs for which the automorphism
group within each color class is contained in a nilpotent, small (i.e. polynomial order)
group that is computable in NC.

Examples. The automorphism group within each color class is nilpotent if, for exam-
ple,

-it is a directed cycle {cyclic group)

-it is a connected trivalent graph with a distinguished edge (2-group)

-it is a p-ary tree with a cyclic orientation imposed on the children of each node (p-

group).

Let m be the size of the color class. In the first example the group is transparent and of
order m. In the second, it is computable in sequential time O(m®) and bas size 2™2
[GHLSWB82], so we could allow m to be as large as O{logn). In the third, the conditions
are satisfied with m = O(log,n). Note that it is not cssential that every color class be
restricted. The containing group might be influenced by interconnections with other
classes.
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Theorem 1.13. If a graph is in N then generators for its automorphism group can be
computed in RNC.

Instances of computability of automorphism groups typically facilitate isomorphism
testing [Lu82]; for example, if one can compute the automorphism group of the disjoint
union of two connected graphs then isomorphism is tested by seeing whether an auto-
morphism switches the connected components (note, in the above examples, that the dis-
joint union of connected trivalent graphs with distinguished edges has a 2-group for
automorphism group). Here, too, our automorphism group technique has isomorphism-
testing implications, though, to broaden the applicability, we establisk this connection in
another way (remark 3.5). We can test isomorphism in RNC when the color classes are
as described above. As we have indicated the R in RNC stems back to our exploitation
of linear algebra in working with solvable and nilpotent groups. Thus, the following
result is striking

Theorem 1.14. Computing the rank of a matrix over a tiny field is NC-equivaleat to
determining isomorphism in a certain NC-recognizable class of graphs.

This reduction is particularly interesting in light of the fact that the question of
whether linear algebra over tiny fields belongs to NC (as opposed to RNC) remains open.

We conclude with comments on open problems.

2. Background and notation

We assume familiarity with the complexity classes NC [Pi79], RNC [Co83], and P
(see [HoUl79]) generalized to include more than just decision problems (see [Co85]).
Informally, we say that problem A NC-reduces to problem B if B € NC implies A € NC
and B € RNC implies A € RNC (see [Co83] for a more precise formulation). A is NC-
equivalent to B if A NC-reduces to B ard B NC-reduces to A. We refer the reader to
[Ha59] for definitions and basic facts about solvable groups, nilpotent groups, commuta-
tors, commutator subgroups, central series, derived series, and composition scries. Our
notation is mostly that of [Wi64].

We write H< G when H is a subgroup of a group G. With § a set of group ele-
ments, <S> represents the group generated by S. Let gk belong to a group G. The
commutator {g,h] is defined as the element g'5'gh and we write g* for the conjugate of
g by b, that is, hlgh. Group G “acts” on a set {3 if there is a homomorphism
¢:G — Sym(f1). In such a case we write af for the image of a€f] under ge@, and I'?
for the set of images of elements of TCQ under g. Gy is the setwise stabilizer of I, that
is, the group of all elements in G which map I" to itself. 'CQ is a G-orbit if, for each
a,f€l’, a’=4 for some gEG. @ acts transitively on TCO if I is a G-orbit. A G-block is
a set 'C() such that either I''MI'=® or =T holds for each g€G. If T is a G-block
then G acts naturally on the G-block system {I'¥|g€G}. Il G acted tramsitively on (2,
then a G-block system partitions {1 into G-blocks of equal size. We say that G acts
primitively on {1 if 22 cannot be broken up into nontrivial (i.e. sizes # 1 or [{1]) G-blocks.
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For our purposes, an algebra is a vector space equipped with an associative nulti-
plication that distributes over linear combinations. For example, a set of matrices over
F, closed under matrix addition and under matrix multiplication is an algebra.

» p

3. Proofa

Consider theorems 1.1 and 1.2 , denoting by G the given group. Sequential algo-
rithms for GM proceed by first constructing a linear length tower of subgroups of G
fixing progressively more points [FuHoLu80a]. The set of “strong generztors” computed
by these algorithms is the union of complete sets of coset representatives for each succes-
sive quotient space in this tower. Not only does this procedure not seem to parallelize,
but even if a set of strong generators were given as input, one could only “sift” the test
permutation through the underlying tower, one notch at a time, resulting in a linear
time parallel solution at best.

Our solvable GM algorithm proceeds instead by constructing a subgroup tower of
length (logn)?, where n is the size of the point set on which G acts, through which it is
possible to ‘'sift”” group elements in RNC. For nilpotent groups, the tower of the last
paragraph will be computable in RNC also, but only following the development of our
pointwise set stabilizer algorithm below.

Definition (structure forest). A structure forest for a permutation group G is a forest
on which G acts as automorphisms {fixing the roots of the individual trees), whose leaves
form the permutation domain, and such that the stabilizer within G of apy node (= set
of subtended leaves) acts trivially or primitively on the children of this node. (When G
is solvable, the Pélfy-Wolf bound on the order of primitive solvable groups ([Pa82],
[Wo82]) ensures that the stabilizer of a node restricted to the children of this node has
order polynomial in the number of children.)

Typical sequential methods for constructing such = forest (requiring at a “primi-
tive' node, the subgroup fixing the blocks) lead either to “‘blow-ups’ in the sizes of gen-
erating sets, or to sequential “sifts” through linear-height towers of groups. As had
occurred independently to Reif [Re85], we can avoid these pitfalls, so that

Proposition 3.1. NC® contains the problem of computing a structure forest for an
arbitrary permutation group G.

Proof. First we break up the point set into orbits [McCo83]. (Each orbit gives rise to a
tree in the forest and we build each tree in parallel.) Now if @ acts transitively on Q1 and
if ACTClis a Gr-block, then A is in fact a G-block. This suggests picking a non-
trivial G-block of smallest size, say ' (in NC? [Si67], [Mc84], [Re85]). The previous state-
ment guarantees that not only G but also Gp then acts {transitively and) primitively on
I'. HenceT can be made a set of leaves with common parent. Images of ' under G yield
the other subtrees at the bottom level. The procedure is repeated with the parents so
created {in effect with the G-action on the G-block system containing I'). After logn
iterations (hence NC®) each tree is complete. 3

Definition (power-commutator basis of a group). A power-commutater basis {PCB) of
a group G is an ordered sequence (by,p,), . . . (bmPm) b; € G, p; >1 an integer, 1<i<m,



such that

1} each g€ G is uniquely expressible in the canonical form b:‘ st b:,’;‘, 0<e,< g,
0<i<m,

2} for each pair of integers 1,5, 1 <i<j<m, the canonical expression for the commutator
[b;,b] satisfies e;=ey= - - - =¢; = 0, and

3) for each integer ¢, 1<i<m, the canonical expression for the element b‘,—" also satisfies
€ =€g== + - - =¢; =,

Definition (PCB of a group relative to a normal subgroup). Given K a pormal sub-

group of a group G, a power-commutator basis for G relative to I{ (PCB of G rel K) is

an ordered sequence (by,py), . . . (bpPm), b; € G, p; >1 an integer, 1<s<m, such that

{(b;K,p)}1<i<mis a PCB for G/K. With respect to this PCB “sifting an element g € G

means “co;n—puting the unique 4 € K such that the product gh™? is expressible in the

form bi‘ con b:,’,", 0<e¢;<p;, 0<i<m.” If the PCB is understood, we denote the induced
function G — K by SIFT; i.c., in the previous sentence, h=SIFT(g).

Observe that if ¢ : G — H is a group epimorphism with (b,p,),<;<, a PCB for H,
then (¢7{b),p)1<i<m i5 a PCB for G rel Keryp. Note also that if (b,-,;,-)_l<,-<,,, is a PCB
for a group, then for =1,...,m1, <b;y,...,bp,> is a normal ;ubgroup of
<by ... ,by>.

Computing PCBs is crucial to most of our algorithms, and a PCB for a group G

exists if and only if G is a solvable group. Much of the usefulness of power-commutator
bases stems from the following two propositions.

Proposition 3.2. Let K be a normal subgroup of G, and let {{(6;0,)},<i<m be a PCB
for G rel K. Denote by S the set of images under SIFT of gencrators for G, of commu-
tators [b;,b], 1<i<j<m, and of powers b:-", 1<i<m. Then K = NCLAS).

Proof. That NCL{S)C K follows by normality of K. So let kK. Since gencrators for G
were sifted, ¥ can be written as a product of PCB clements and of elements of S.

Migrating occurrences of b; to the left (given that b'sb, € NCLJS) whenever
sENCLG(S) and that §7'bb, can be expressed without b, for 7>1) and reducing the

resulting exponent of b, modulo p, (reexpressing b as required), then repeating for
by by, - - -, we can express k as

btb? - - - bma , 0<e;<p;, 1<i<m,

with o€ NCLAS)CK. It follows that b:’ v b:,’,“EK and hence that
€y=¢€;= * + - ==€,=0 (by the uniqueness criterion in the definition of PCB for G rel K).
Therefore ke NCL{S). Hence KCNCLS). O

Proposition 3.3. Let K; € K, < G with K| and K, each normal in G. Then a PCB
for G rel K| is obtained by appending a PCB for K, rel K, to a PCB for G rel K.

Proof. To show that [b,}] is expressible appropriately when b; belongs to the PCB for
G rel K, and b; to that for K, rel K|, we appeal to normality of K;. Other properties
are straightforward to verify. 0



e

Theorems 1.1 and 1.2 (Proofs). We compute a PCB, for the input (solvable) group
G, for which it is possible to compute SIFT in RNC. Sifting then answers the member-
ship question, and the order of G'is p;ps - * - pp.

Let F be the structure forest for G as computed per proposition 3.1 . Consider
level ¢, 0<i<logn, as the level of all the nodes at distance s from a root in F (n is the
degree of G). Denote the action of G on nodes at level <: by ¢, Note that the kernel
of this action, Kerg,, fixes all nodes at height <i and that G/Ker¢; may be viewed as
the induced action on the forest obtained by pruning all trees to height i. These kernels
form a logn height group tower of normal subgroups of G and we proceed, inductively,
finding PCBs for the quoticnts G/Kerg, (employing proposition 3.3 ). So suppose induc-
tively that we have a PCB for G rel Kerg;, and that with respect to this PCB we can
compute SIFT in RNC. We write K for Kerd;, and S for a known set (computed by
sifting, proposition 3.2 ) for which K = NCL{S). It suffices to show how to extend our
PCB to a PCB for G rel Kerg,,,.

We first treat the case of nilpotent G (think p-group). At each level & node we
compute generators for the subgroup of G stablizing that nede; this may be done using
Schreier’s techrique (see [Ha59)), the number of generators growing by a factor equal to
the index of the subgroup in G < the number of level & nodes. These subgroups act
primitively, thus as cyclic groups of prime order, on the children of the corresponding
node. We form the “‘vector space” L by taking the direct product of these primitive
actions acting on all the children, more precisely a product of vector spaces of different
characteristics. (There are other ways to obtain L; we follow this one with a view
toward the generalization to the general solvable case.) Now, K acts on the level &+1
nodes as a subgroup of L. Writing ¢ for this K-action, we claim that we can compute a
PCB for K rel Kery in RNC. To see this note that G acts by conjugation (hence as
homomorphism, i.e., linear transformations} on the ‘vector space” L (homomorphisms
must preserve parts of different characteristics). Recalling that = NCL{5), Imy is
then the smallest subspace containing 4/(5) and closed under the linear transformations
induced by generators of G. We can therefore obtain a basis (kence a PCB) jor the sub-
space Imy by theorem 1.10 and so, having kept track of inverse images throughout, a
PCB for K rel Kery. This proves our claim. Now observing that Kery=Ker¢,,,, we
appeal to proposition 3.3 and produce the desired PCB for G rel ierg;,,. We point out
that one can sift through this PCB by siftirg, in succession, through the two PCB’s that
form it; hence, the process remains in RNC.

The rest of the proof is devoted to the general solvable case. Here the step from K
to Kerd;,, is still too large (K/Keré,,, is not a vector space), so we nced to refine this
step of the normal series, inserting O{logn) groups whose successive factor groups can be
viewed as vector spaces. We will be able to compute PCBs for successive quotients in
sequence, and to use proposition 3.3 to paste these PCBs into a PCB for K rel Kergdy,,.

To describe the first stage in the refinement process, note that X on the level k+1
nodes acts as a subgroup of a direct product of primitive solvable groups. We compute,
as in the nilpotent case, these primitive solvable groups, each acting on a set of children
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of a level k£ node. Denoting by L the direct product of the small groups thus computed
(hence L contains the image of the action of K on all level k41 nodes), we compute a
characteristic subgroup A of L such that L/A is a product of elementary Abelian groups
(indeed there exists a prime p for which T/< 77,[T,T}> is nontrivial elementary Abelian
whenever T is a nontrivial solvable group; but since we wish to preserve the conjugation
action of G on L/A, the same “nontrivial” p must be chosen for each level & node in a
G-orbit). Note that A, too, is a direct product of groups, one for each level k node (in
fact, that’s how we find it).

We claim that we can compute a PCB for the *vector space” Im1, where
v: K — LJA,

which will yicld a PCB for K rel Kery. For this we observe that G acts by conjugation
on L, inducing actions on A and L{A. In other words conjugation by an element of G
induces a linear transformation within the ‘“vector space’ LfA, and recalling that
K=NCL{S) we can use theorem 1.10 as before. (Computing the vectors and matrices
assumed by theorem 1.10 requires a cyclic decomposition of L/A and the ability to
express an arbitrary group element in terms of the basis; [McCo85] describes parallel
algorithms for such problems.) This proves the claim, and we can further obtain a PCB
for G rel Kery by proposition 3.3 . Again, sifting through this PCB remairs in RNC.

This completes the description of the first refinement stage. At this point we have
gone from a2 PCB for ¢ rel K to a PCB for G rel the subgroup Kery of K. The stage is
then repeated, with K replaced by Kery and L replaced by A (Kery < A), until L
becomes trivial (this occurs within O{logn) stages since at each stage the order of each
non-trivial component of L is at least halved). At that point, Kery fixes all level k+1
nodes; Hence Kery = Kerg;,, and we have a PCB for G rel Ker¢y,,. O

Theorem 1.3 (Proof). Writing N for NCL(H), we compute s PCB for N by
duplicating the strategy described in the proof of theorem 1.1 . What changes is the
specification of the elements whose images under SIFT, given a PCB for N rel (£ MN),
form a set S for which KMIN = NCLS) (K is the kernel which ‘‘shrinks” from G to 1
in O(log’n) stages). The proof of proposition 3.2 extends provided we now sift: the
commutators and powers (as before) of PCB elements, and, in lieu of gencrators for G,
the generators for H as well as each PCB element conjugated by each generator of G.
The spanned ‘‘vector space” is closed up, as before under the action of G. {J

Corollary 1.4 (Proof). The length of the derived series is O{log®n), and successive
commutator subgroups are obtained from theorem 1.3 using the fact that [G,G] =
NCLg{[g,h] | 9,hES) whenever S is a generating set for G. Now 2 composition series for
G is formed by the subgroups <{b;};<;> for 1</<min the PCB computed in the proof
of theorem 1.1, since the ps are prime integers. [

Theorem 1.5 (Proof). This prool bears a superficial resemblance to that of
theorem 1.1 . Initially we mark nodes, in the structure forest I for G, which subtend
leaves to be fixed. From gencrators for the group G, fixing the marked nodes at level &
(available inductively), we compute generators for G}.,, again by looking at the induced
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action on the level k,k+1 trees extracted from F (but this time only those with marked
roots, noting that G} fixes these roots and that an unmarked root cannot have marked
descendants). Iterating this process eventually yiclds generators for the group fixing
exactly the marked leaves.

To describe how to compute generators for G, from generators for G}, write K
for Gy and L for the image of K on the aforementioned trees (as in the nilpotent case of
theorem 1.1 L is a direct product of vector spaces). We compute (componentwise and
in NC) the largest subgroup H of L that fixes the marked level k+1 nodes (so that H
includes the image of Gy,)). Then we consider the quoticnt space L/H (this assumes a
single characteristic for L; extending to the case of a product of spaces of different
characteristics is no problem) and we compute a basis for Imy, where

v:K — LJH,

(in RNC, using the rank algorithm as in [McCo85}) in order to deduce a PCB for
K rel Kery. But Kery is precisely the set of elements in K which fix the marked level
k+1 nodes, that is, Keryy=Gj,,. So a gencrating set for G, is obtained from the PCB
for K rel Kery by applying proposition 3.2 and theorem 1.3 . ]

Theorem 1.8 (Proof). The technique is a parallelized version of an algsrithm in
[Lu85]. Write C for Cg(H) and (2 for the relevant point set. We form, for each genera-
tor A of H, the set

I, = {(z7"} | €0} C nxQ.

Observing that g€ G commutes with a generator A of Hiff g {(on 02X () stabilizes I';, ima-
gine (1X{1 colored (in NC) in such a way that two points share a color iff they belong to
exactly the same sets I'y. We claim that by refining the color partition until each color
class becomes a G-block (working on each G-orbit in parallel and successively seeking
any nontrivial intersection of color classes with an image, under generators of G, of the
smallest color class and using the intersections to refine colorings), we maintain the pro-
perty that g€ G preserves each color class il g€C. To conclude from this refinement we
consider the action of G on the set made up of f} together with the colored classes as
additional points and we obtain C as the pointwise set stabilizer of the additional points.

To prove our claim, note that G normalizing H implies that C is normal in G.
Hence if C preserves color class I' then, for any g€ G, I'C = I'497°C) — 19 g preserved
by C also. In other words we lose no element of C if we insist on preserving not only
each original color class T but I'? for each g€ as well. That is, we lose no element of C
if we refine until each class is a G-block. [

Theorem 1.10 (Proof). First we obtain a basis ¢ for the matrix algebra with iden-
tity, r, generated by T, and second we compute a basis for B-—Span(aA)CFd Bis a
subspace of F" containing A and closed under T because B is closed under Span{o) and
the latter mcludes the identity transformation as well as each matrix in 7. B is the
smallest such subspace because linear closure under a set of linear transformations
implies closure under the span of this set,
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The first step is performed in stages. Write r; for the subspace of of r spanned by
all products of i matrices in T (with the identity transformation thrown into 7). Stage j
computes a basis for the subspace 7, by forming the product of each pair of basis
matrices for 7., and then by computing in RNC a basis for the new span using the
techniques in [BoGaHo82). 2logd stages suffice because the dimension of ris at most &,
7iCryy for each ¢, and r=r whenever r,=r;,,. The second step is in RNC by
[BoGaHo82). O

We postponed the demonstration of theorem 1.9 so as to capitalize on some ideas in
the last proof.

Theorem 1.9 (Proof). Suppose G=<5>. We may assume that G is a p-group,
for general nilpotent G can be factored as a direct product of p-groups [Mc84] and it is
an easy matter to reassemble central series of the factors into one for G. We have seen
in the proof of Theorem 1.1 that a normal series

G=d0)2dl)2 ... ZG’(’)EI

can be constructed in which each quotient (,‘(ﬂ/ G denoted below by V, is an elemen-
tary abelian p-group (vector space over F,). Furthermore, we have a convenient
representation domain in which to work with V in the kk+1 slice of the structure forest.
We need to show that, for each &, we can insert G-normal subgroups

B = ff0) > o > . > Him = gli)
so that [G,Hm]SHU“). Equivalently, we need to insert G-invariant subspaces
V== sz V(I)Z R vim—g

so that, for g€G, v€ VY, v+ is in W*) (note that we switch to the additive notation
in V in viewing [g,v]). Each ¢ in G induces a linear transformation t, of V where
tfv) = v-v?. Let T = {¢,|4ES}. We compute, as in the proof of Theorem 1.10 , 7,
the linear span of the set of all products of ¢ elements from 7. This time, however, we
need 7, for all i=1,2, ... ,dim(V). Clearly, these can be computed in parallcl once we
have determined the 7, (note that 7,,4 is spanned by the products of basis elements of 7,
and 7). We claim that we may take Vm=r,( V). It is immediate that
W= gpanT{ W), so that V> Wi+ fallows inductively from V> W1, To see that
V9 is G-invariant, it suffices to note that it is invariant under S, but, for s€S, v€ Vm,

v = ot {v) € VWt < Y,
This equation also gives the congruence
v = v mod (WH))

for all g in a generating set, and so the congruence holds for all ge@, whence
v-v%€ VW), Finally, we need to show that, if m= dim( V), V™=0. For this, recall that
the nilpotency of G implies that there is an M so that, for all Ak, ky, . . . ,h£G,

(ag + =+ [yl ]]...) = 1.
But this implies that 7,=0. Knowing, then, that the sequence WU> V> 2. ..
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will reach 0 eventually, we must simply conclude that this happens within m steps.
For this, observe that once equality V/==Wi*1) happens, then the sequence is stable (by
induction) thereafter. But the sequence of dimensions m=dim V%) dim V(") dimV® . . .
can strictly decrease at most m times. [J

We remark that the proof may be extended to produce a central composition series
by inserting, if necessary, arbitrary intermediate spaces so that dimensions go down by
1 in each step.

Theorems 1.11 and 1.12 (Proofs). Theorem 1.11 follows from theorem 1.12
once we observe that solvability is a hereditary property and that the P2lfy-Wolf bound
reduces testing solvability of a primitive solvable group to testing solvability of a group
having order polynomial in its degree (hence in NC by brute force).

Theorem 1.12 generalizes a technique used in [Mc84] to test nilpotency in NC.
Each transitive constituent of the group is tested for the hereditary property P in parel-
lel. We compute a structure tree for the transitive group G (propositicn 3.1 ). With S
the set of children of the root, P holds for @ iff P holds for both the G-action on S and
for the stabilizer within G of any one node in § restricted to the lcaves subtended. To
see this note that the (restricted) stabilizers of each node in S are images of conjugate
subgroups in G whose direct product contains the kernel of the G-action. Now G acts
on S, and from a generating set of size r for G we can compute by Schreier’s method (see
{[HaS9]} a generating set of size r[S] for the stabilizer of some node a€S. Applying this
argument recursively to the stabilizer acting on the children of a, eventually we reach
the bottom of the structure tree with a generating set bounded in size by r times the
number of leaves in the tree (i.e. r times the degree of G). [

Remark 3.4. The basic divide-and-conquer technique used in the last proof has
other applications. Suppose we consider the question of whether a prime p divides the
order of G, a possibly easier problem than computing the order. This time we observe
that property holds for G iff it holds for at lcast one transitive constituent, and it holds
for a tramsitive group iff it holds cither for the (primitive) group acting on a set of maxi-
mal blocks or for the subgroup fixing one block, in its action within that block. Con-
sider, for example, groups with bounded non-zbelian composition factors. It is known
[BaCaPa82] that primitive groups in this class have polynomially bounded order. Thus
testing whether p divides the order is in NC. Note, though, that we do not know how to
find the order.

Theorem 1.13 (Proof). We compute generators for AufX), X in N, by reduction
to POINTSET for nilpotent groups, as follows. Write G for the direct product of the
automorphism groups in the color classes of X. By definition of M, G restricted to a pair
of color classes is a direct product K of two NC-computable polynomial-size nilpotent
groups. Then by brute force and in NC we can compute the subgroup H of K mapping
edges to edges, and we can describe the (right) action of K as permutations of cosets of
H. Computing AufX) then is an instance of POINTSET for nilpotent groups if we
extend the action of G to the union of all such cosets of all groups H {(one group H and
corresponding K for each pair of color classes) and if we take the trivial cosets H as the
points to be fixed. We conclude by theorem 1.5 . 0
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Remark 3.5. New graph automorphism algorithms often lead to new graph iso-
morphism tests. A typical procedure is to apply the automorphism group construction
to the disjoint union of connected graphs to be tested, then to check whether some ele-
ment switches the components. Thus, theorem 1.13 applies if the union of the graphs
belong to N. Unfortunately, that limits the applicability since the disjoint union, for
example, of two directed cycles does not have a nilpotent automorphism group (except if
the cycles have size 2°). It is possible to get around this difficulty in a way that retains
isomorphism testing for the graph examples to which we have been able to apply
theorem 1.13 (e.g., the illustrations given for N). We outline the idea here, promising
full details at a later date. We imitate the algorithm for Auf(X) in theorem 1.13 to
compute Jso(X,Y), the set of all isomorphisms from X to Y directly (an anslogous
approach is exploited in [GHLSW82]). We assume this time that

(1) we know the small nilpotent automorphism group in each color class of X.
(2) we know a single isomorphism in each color class of X to corresponding color class

of Y.

Forming G as in the proof of theorem 1.13 , and gluing the isomorphisms together we
form a set Gf that contains fso(X,Y). The set GJis, strictly speaking, not a coset of G
though it bechaves like one and fao( X,Y), if not empty, is a subcoset (with corresponding
subgroup Auf(X)). A reduction similar to that in theorem 1.13 leads this time to the
POINTSET-TRANSPORTER problem (PST): we are given G acting on A, an injection
fA — B, and sequences ay, .. .,a, and b, ... b, in A, B respectively; the problem is
to determine if there are elements of Gf that map g;to b, for =1, ., .. ,m and, if so, out-
put the ‘‘subcoset” of these. We can solve PST for nilpotent G in a manner analogous
to POINTSET. A forest over {A) is copied, via f, from the structure forest on A. In
addition to markings in the forest over A, edges (a,b,) are drawn and these lift to
corresponding edges between parents, etc. (if this procedure does not produce a target
for some parent or if two parents have a common target, the answer is “empty”).
Again, we proceed down the tree, cutting the coset Gf to a pointset-transporter at suc-
cessive levels. When we get to level &, G is the pointwise stabilizer of the marked nodes
and we view its ‘‘vector space action” on the children of these nodes. We nced now ele-
ments of Gf that map each marked child, ¢, to its partner, d. This is equivalent to
finding the subcoset of G mapping each ¢ to f(d). This again translates to a linear
algebra problem, though not a homogeneous one. If not empty, the answer is a subcoset,
Hg, of G and we lift the subspace interpretation of H back to G by the same sifting and
normal closure procedure as before.

Theorem 1.14 (Proof). We show that the question of whether
v € Span(y,, . . .,v,), given v, v, . ..,v, € F‘;, is NC-reducible to an instance of graph
NONisomorphism. The resulting graphs lie in a class covered by remark 3.5 above and
so isomorphism is testable in RNC. (Actually, we could get around using that remark
by observing that the linear algebra problem is reconstructible in NC from the specific
graphs).

First we build a graph Y for which F";=Aut( Y) (we are considering only the addi-
tive group of the space). For this take d disjoint directed p-cycles A, . . . , Ay, each p-
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cycle colored uniformly, d distinct colors. We claim (see next paragraph) that for any
wE F‘; it is possible to augment ¥, without yet changing the automorphism group, so
that it contains a colored p-cycle Cy=(cy, . . .,c,,), with the following property: any
element z € F: maps ¢; to €., (Where 2w denotes dot product of vectors and all
arithmetic is mod p). If C, is then colored, but non uniformly, the automorphisms of
the resulting graph are orthogonal to w. Including such augmentations for v, .. . v,
produces a graph whose automorphism group is the orthogonal complement of
Span(v), . ..,v,). Noting that the fundamental question can be restated “Is this
orthogonal complement orthogonal to o!" we augment further to include a p-cycle
reflecting the dot product with v. The question then is whether the points in this (as yet
uncolored) p-cycle are fixed by all automorphisms. To turn this into a graph isomor-
phism question, we make two copies of the last graph. In cach we now color the critical
p-cycle C,, p-1 points red, one point blue (red and blue have not been used before). But
we make sure different points are individualized in the two copies. The resulting two
graphs are NON-isomorphic iff the points of C, are fixed by all graph automorphisms. It
doesn’t matter which two differcnt points were colored blue, since if any automorphism
acted non-trivially on C,, some power of it would map one of these points to the other.

It remains to prove the claim concerned with augmenting Y to contain the p-cycle
C, wE€ F;'. In the following, new cycles added to Y are always colored with new colors.
Let A=(qy,...,a,,) and B={(by, .. .,b, ) be cycles and let r,8€Z, be nonzero. A
basic building block in the construction of C, is yet another new eycle U, called the
“(r,8)-sum of A and B", having the property that an automorphism of the new graph
that maps a, to ¢; and &) to b; necessarily maps u; to i1 color a “square grid” d;;
(0<4,/<p-1), and join d;; to each of a; b;, ¢,;,,; ; then U satisfies the (r,s)-sum property.
Finally to construct C, (assuming all entries of w nonzero and d a power of 2; simple
modifications take care of other cases), we construct the (wy;wy,;,;)-sum of A,;and A,;,,,
0<i<d/2 in parallel, then the pairwise (1,1)-sums of the results, then the pairwise (1,1)-
sums of those, and so on, untii only one cycle remains. (Actually, we can construct all of
these cycles at the same time). This one cycleis C,.

Remarks 1. The construction involves directed graphs. Standard procedures can be
used to convert the isomorphism question to one for undirected graphs.

2. The augmentation with C, can be done so that additional color classes have size 1, p,
or g°. In these, it is not necessary to include zny internal (to the class) edges at all.
However, to arrive at an easily recognizable subclass of N, we can add (superfluous but
non-interfering) edges so that all non-trivial color classes have groups that are trivial or
cyclic of order p or the direct product of two cyclic groups of order p.

4. Comments, questions, and regrets.

We delineate some of the {rontiers between problems we have now established to be
in RNC and others about which little is knowns.

The tractability of the problems of finding order (ORDER), pointwise set stabilizer
(POINTSET), and set stabilizer (SET) are of particular interest. We have solved the
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first for solvable groups and the second for nilpotent groups. (We are embarrassed to
confess that we had claimed a solution to POINTSET for solvable groups that seemed to
generalize Theorem 1.5 in the spirit of the nilpotent-to-solvable generalization in
Theorem 1.1 ; there now seems evidence that no generalization along such lines can
exist). The third problem, SET, has been solved in RNC for the still more restrictive
class of abelian groups ([Mc84], [McCo85]). The battle lines are then clear, how about
ORDER for general groups? or, for a next step beyond solvable, groups with bounded
non-abelian composition factors [Lu82]! POINTSET for solvable groups? SET for nilpo-
tent groups! We hesitate to recommend SET for general groups, since that problem is
not known to be in P, indeed, if it were then graph isomorphism would be in P [Lu82].
On the other hand SET is in P even for solvable groups [Lu82]. By way of further
motivation, we mention that the first author has shown that trivalent graph isomor-
phism NC-reduces to SET for 2-groups (the original reduction in [Lu82] is not an NC
reduction). Even POINTSET for solvable groups would broaden the graph isomorphism
applications noted herein; for example, since S; is solvable, testing isomorphism of
vertex-colored graphs with <4 vertices in each color class would be in RNC (though,
remarkably, the 5-vertex case would remain open).

Incidentally, in light of the narrowing instances of solutions to ORDER,
POINTSET, SET, it is worth remarking that ORDER NCreduces to POINTSET and
POINTSET to SET. In any class of groups, ORDER is NC-reducible to POINTSET as
follows: POINTSET enables one, in parallel, to produce the subgroups, G, =1, ... ,n,
which fix the first ¢ points of the set (in any predetermined order); but it is always pos-
sible to compute the index [G;,G;;,], for that is the size of the orbit of the (#+1)st point
under G; the product of these indices is the order of G. In any class of groups,
POINTSET is NC-reducible to SET: to stabilize, pointwise, the subset {g,, . . . ,a,} of
A, look at the naturally induced action of G on AXA and find the set stabilizer of
{(ﬂl,dg), (a21a3)1 ORORGND) (am—l!am)}'

Beyond ORDER for general groups, one should ask whether the group's building
blocks, the composition factors (cf. corollary 1.4 ), are obtainable in NC or RNC; it is
known they are attainable in polynomial-time [Lu85]. Kantor [Ka85] has shown that
Sylow p-subgroups can be found in polynomial time; can this be done in RNC? can it be
done even for solvable groups in RNC? For general groups, can orce even find an ele
ment of order p, given that p divides |G|. A possible casier question than ORDER for
general groups might be that of testing, for a prime p, whether p does divide |G| (see
remark 3.4 ).

We remark, finally, on the very fundamental question of permutation group
membership, GM. (It is well known, by the way, that GM reduces to ORDER: compare
order of group with that obtained when given element is added to generators.) Is GM
complete for P (as conjectured in [McCo83]) and so unlikely to belong to NC or RNC?
On the one hand, our work suggests that a reduction showing completeness of GM
would invelve nonsolvable groups, and on the other hand, the following problem emerges
as the first obstruction to further progress on GM. Let K be a fixed permutation group
on a set A, and consider testing membership in a subgroup, given by generators, of
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KXKX - -+ XK, the direct product of n K’s, which is acting naturally on a disjoint
union of n A's. By our results, this critical problem is in RNC if |K] < 59 {whence solv-
able). But if /Cis a simple group of order 60, we have no idea how to proceed.
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