CIS-TR 85-10
An Environment for Bullding Rule-Based Systems:
An Overview

Stephen Fickas, David Novick, and Rob Reesor

Department of Computer and Information Science
University of Oregon

AN ENVIRONMENT FOR BUILDING RULE-BASED SYSTEMS: AN OVERVIEW

by Stepben Fickas, David Novick, and Rob Reesor

Computer and Information Scieace Department
University of Oregon, Eu;enc,‘Orelon §7403

Summaery

This paper prescols ab overview of the Oregon Rule-Based System
(ORBS), an envirobment wkick supports the coostruction and
development of domain knowledge and control knowledge for rale-
based expert systems. We desctibe the operation of the system,
with particular attenticn to issues of contro} knowledge. The paper
then presepts an ibteractive model for developtent of application
eystems. Fioally, the paper discusses KATE, a knowledge-based,
problem-solving specification language and its wse iz coustructing
expert systema,

1. Intreduction

In this paper, we present an overview of an esviroamens that sp-
ports the copstruction and development of domain knowledge and
control knowledge for rule-based expert systems. The cavironment
grew from our expericnce in constructing both Al and nop-Al
software. The eovironment, calied ORBS (Oregon Rule-Based Sys-
temy}, is founded oo the following three propositions:

. Problem Solving systems are best suited to sn interactive,
incremental development approsch {See discussions in [3)).

. At least some of the metbods that bave grown up asround
more traditional software development models can also be
used eflectively in the construction of problem-solving sys-
tems. In particular, some of the research results from the
Software Engineering Bcld are applicable to development of
expert systems.

s Tbe reuse of past eflorts {for all kinds of software) is & power-
ful meags of achieving complete, correct, and wnambiguons
systems,

is support of these ideas, ORBS provides the following com-
poscots: 1} s specification language, KATE [10], for specifying
rule-based programs; 2} a structure editor for modilying rules,
[acts, and control strategics; 3) & break package which supports
incremental development and allows user-deflaed breaks to be built
out of more primitive eveals; and 4) catalogs of useful domain and
control pieces that can be combined to build new systems.

2. The ORBS System

The ORBS language builds oo ideas found in several existing sys-
tems, including Hearsay 1 |6}, LOOPS [4], RLL |14], and YAPS
[1]. A detailed design rationale for of the system can be found in
[9. An expert system written in ORBS contains s set of relationat
facts in » dats base, & st of forward-chaining rules that trigger on
those (acts, and a set of scheduling functions that determine which
triggered rule to execute, A sule coatains one or more lefi-band-
side (LHS) patterns, tero or more liters, ooe or more right-hand-
side (RHS) actions, scveral system-defined fickls, aad 3ero or more
user-defived rule-attribgte felda,

In execation, ORBS proceeds throagh » sequente of
mateh feboose fact eyeles. The cycle, depicled in lgure I, is as (o}
lows: The matching process produces aere or more activations. This
is calied thbe conBict set.! Each cycle produces s new conflict set.
An sctlivatiog represeats the match of & rule’s LHS agaicst facts in
the database. We may want to choose pone, one, some, or all
activatioos for invocation. [z ORBS, the chojce is made by a con-
trol strategy defined by the system developer; ORBS kas po built-
io control steategy.? The developer builds s covtrol strategy using
software tools provided by ORBS: the develaper 1) defines a set of
scheduling functions in Lisp or chooses from s catalog of pre-
existing functions, and 2 declares bow the functions are to be cowm-
bined to form » conlrol strategy. Ia particular, when building a
new system the user roay either a) select from » eatalog of com-
plete control strategies, b) build 3 mew strategy wsing » eatalog of

CONFLICT
STRATESY

wor | [s,
(=
i
\

~

-————

: Smeacd (NVOKE
S { AcTiON

Figure 1. The ORBS match/choosefact cycle,

pieces, or) build & sew strategy by wing s combination of exist-
Ing picces and pewly defied pieces. ORBS supplies » surategy-
building language based on McDermotl and Forgy's notatioa for
combining scheduling functioas [16]. Currently, the catalog con-
taios complete cootrol sirategies whick emulste OPSS, YAPS,

*Thu same, wsed lor biserical ressons, in 20 loager eatindly acenrate In par
ticnlar, thert nord asl cust sy conllict within the rot, 00 we will duryss laier in
Shis section, afl sctivations may be mecntable an the cumant cythe.

SThe Luck of & baili-in sirstegy does pol condems vuen Lo creatisg specal
suategion for sach program, wmn may choem s predeiosd slrateg Inm the
ORBS catsleg or catalogs developed by naers of the system. The peist of ORESY
policy abent sirategion, though, is that develapary shoald vot be reutneted Lo Limit-
od, static demain-indepeadent stratepren {i1).

Page 1

Fuaction == > (propounced “join'’) » a generalization of McDer-
mott and Forgy's > operator; that is, =w> selects the Grot (as
ordered by arc number) woo-oil input. Thus if split sent conflict
sels of siz¢ 13 un each of its out-arcs, and if RFKS GOAL sent a
conllict set of size O on its out-arc, then == would secd the
conflict-set of size I3 on its owp out-are, because the size 13
conflict sel would be the bigbest-order moa-mil conflict set it
received

Tbe graphical representation forme part of the rup-time develop-
ment system a8 well. The graphic strategy representation dyvami-
cally displays tbe control process. Figure 3 shows ORBS midway
through confict resolution using the YAPS-emulation strategy.
This grapbic representation bas proven useful for program analysis
and debuggiog For example, Figure 4 shows the conllict resclution
Process in one cycle of a rule-based test-case gencrator for software
debugging. note that tbe display reveals that the RSKF scheduling
function s oot copttibuting to the decision process op this cyele.
Note too that by ibeluding ADIY, a scheduling fynction from
YAPS that cbooses 3 single arbitrary activation from the conBiet
set, our control sirategy allows only ope sctivation per cycle to be
iovoked. ln masy applications, this bebavior is overly restrictive.

For example, the test—case generator could fire multiple activations

per cycle without conflicts. However, many rule-based syslema
bave such a decision oo the pumber of activations that can be
invoked oo any eycle ““basd-wired"” into the aystem itsell. Thus in
ORBS, the !reedom to deBoe strategies extends 4o the freedom to
determine the sumber of activations fired oo a given cycle—or even
to the freedom to omit specifying aay limit at all. That is, all rule
ordering could be bandled througk the other scbeduling functions.
If we can guarantee that invoking two rules of the same type dur-
ing the same cycle will not isterfere with each other, we simply
remove the ADIY functon to allow multiple activations.

2.1 Halting the System

Aovother decision, ipitially “hard-wited”' into ORBS, was that the
system would always halt when the coatrol strategy produced ap
empty wet of activations. We bave pow placed thia decision in the
user's hands. Specifically, ORBS halts oaly whes given a balt com-
maod. The halt-on-empty-ccoflict-set bebavior can be achieved by
using schedyling function HECS, which imues the balt command
whea the conflict set is uil.

We Bod no peed for HECS in @any programs, la particular, pn
empty conlict sel often sigoals that the program is stuek. In this
case, we may wast o ask the user Lo looses some of the problem
copstraints before deciding to give up {i.c., balt). To bring this
about, we replace HECS with a domaip-dependent scheduling
function that interacts with the user to add and remove facts from
the database when the conBict set is nil,

When, then, does the system halt? Strictly speaking, whenever the
function orbe-balt is called. This function can be called any place a
sormal Lisp fusction can be called, such as from the RHS of 3 rule,
from » break, ot from a scheduling functioe. It balts the system
after all activations chosen in the current cyele bave been invoked,
Iz ooe application system develaped in ORBS for VLS! silicon com-
pilation, for example, there are two types of system balis. The
Brat occurs whea a solution bas been found. A rule monitors for
this, asd, among otbet actions op its RHS, it calls orbe-balt. The
secand occun whes the system is hopelessly stuck. A developer-
written scheduling function checks to see if the user is willing to
loosen the current set of constrainta. If pot, orbe-halt is called and
the system gives up.

2.2 Higher-Order Contrsl

ORBS also provides facilities for what bas been termed “bigher-

*Fagures 2 thrangh § are screes dampe to a3 lmagen Luer priswer Irem &
Symbelics 3500 raning ORBS, shows in whele or ia part st apprepruats. We baw
wsbaaced pans of the bgures to as fsr poor repraduction quality.

order” control [5). That is, a systemn may bave knowledge of and
mabe decisions about its own detision-maling process. One way
higber-arder control may be used {0 ORBS o through dyoamic
(ie., run-time) changes to the strategy. Diflerent circumstances
may require 3 single system to make decisions in diflerept ways. ln
tke VLSI system, we have run into such a case: when a certain
time thresbold is reached, we wish to change from an agenda-based
strategy to s quick-and-dirty cootrol strategy. We implemented
this control knowledge in ORBS as » domaisn ryle:*

{defrule neasly-cut-of-time
(time-remaining -tr)

test (< -tr critical-lime)

-
(sel-strategy "fast-scarch)

status: active
task: change-strategy)

We want this sule to fire whed the time we bave remainieg Lo find
a solution falls below a givep threshold. Further, an activation of
this sule should be given top priority; strategy changing {second-
order cootrol} takes precedence over choosing amopg domain-
kpowledge rules (rat-order coatrol). Whea and if ryle nearly-out-
of-time is invoked, it causes $he standard scheduling strategy to be
chasged o a keyword-based beam-search. The beam-search op the
keyword represents kbowledge that » noz-optimal solution is
always possible. While it might not always be the best, we will gse
it whesn time rans out.

However, sccond-order control knowledge presents problems for
ruled-based systems even such as ORBS. In ORBS, we bave
extracled coptrol frotn domain knowledge, and so avoid the prob-
lems of redefiving rules. However, the implementstion of second-
order control a8 3 demain rule points out other problems. First, we
bave reiptroduced control knowledge into the domain portion of
our system, a8 3 tule oow rather than as s goal relation. Second,
we have mixed sccond-order control knowledge with Brst-otder con-
trol knowledge by placing our second-order change-strategy func-
tion amoog the Brst-order tasking and composent seleclion fypc-
tions. Thus we are back to simulating a more geoeral cootrol model
on top of the laoguage. Ooe of our curreot research efforts js
attempling to deal with this problem by analysing the semantics of
control of & rule-based system, including dynamic stralegy change
and multiple cootexts. We hope to develop a control vocabulary
that allows a ricber statement of policy. In it, we could explicitly
state control knowledge auch 2

Whenever the conflict s20 conteing oaly twe aliernatives, dakt,

i the time remeining i leas thas THRSH then ewitch to 4
yuick-end-dirty control atrsiegy.

Whencuer the conflict setl conteins mare thas N sclivalions wae
alteraste otrategy 5.

Among other things, it sppesrs that this will require a “control
database™ separate from the domain database, similar to Hearsay
1IT’s scheduling blackboard [7]. Thus the focus of our atieation on
this problem continuer to be the dilemma that system Bexibilivy
and extensibility are often achieved only at the cont of incressed
complexity and difficuity of vee,

In the remainder of the papet, we dook at 1) the interactive, incre-
wmeatal model used by ORBS; and 2) our sttempia to wse formal
specification techniques in building rule-based sysiems.

Yo this rule, 5s 1n sther ORBES rules, identifen begisning with & hyphes av
patters vanabies, tana -or will be bennd ts the anmber which i is the recend j
tion in the fact makched by the pattern. In Lhis ple, the fact (4 'y
“Ar) @ muntused by the rysiem and criticaktime ir & global vanable.

Page 3

oy

WAE OF CBUECT DIRECT ATTRIBUTEE THHERITED ATTRIBUTEE
Graduats ftudent dutias age
nane
n I N office 8
ttributa Descriprion h) salary
Ly =211:"}4 Ranet undargradustes school
olasel unspecified
1 CI% Eroleyves valuel unspecified
mnbert unepecified
cafsult—valuai unspecified
1f-sccessed) wnspecified
DEECEDANT S {f-nodiffedi unepecifies
accersorat unepacified
1 Resssrch Assistent nodifiers: wunepecifiad
t Teaching Assistant cormgnti unepeci?f tad
t Technical AResistant wndergraduste depres
L] hodion i

Figure 6. KATE browser displays information about the CIS-People componeat. The attribute “ug-
dergraduate school™ bas just been expanded; the cursor is pasitioped to expand “interests” pext.

(o]

o]

] =]

Craduate
L"g'}"'.‘.". _I oFfiee —l

Lraphi L1k Revources-7

deanonstrat fon

User: novick Historyt |

OBJECT

Rdd
Connact
Dalets
Dascribe
Disconnect
Park
Move
Renane
Unnark
Add Inatance
Hove Instance

WsToRy

Conment
Dascribe
Login
Start
Gtop
Task

RODES

Rule Creation)
EMIT

Figure 7. Porticns of the CIS-Resources compooent.

Pags §

another catalogued componen: from VLSI chip layout. Our long-
raage goal is Lo allow these multi-domaio components (o be loaded
and melded logetber with assistance from KATE. However, with
tbe existing primitive editiog functions, we Bod that the translation
process from VLSl wo office planning is mote painful thas aimply
manually adding tbe compoaents from scratch. As we have previ-
ously indicated, much of our current efiort is directed towards
adding the type of sophisticated re ibg necessary to make
KATE a better specification asictant. This ipcludes sutomating
poruions of the loading, melding, asd tailoring process, as well as
checking completcness and consistency as the speciBeation evolves,

Whep the user finishes the specifeation, KATE will automatically
map it W s ORBS program. From bere the upet may use Lbe
tools discussed in section 2 o test the program f[urther and to
debug it. This brings ap & very dificult problem: because the user
is free to modify the program itell, the KATE specification can
casily become out of date. As suggested by Wil {18}, one
spproach is to modify the specification, and theg replay the map-
piog process Lo generate a new program. We are nol sure this is a
viable approach when constructiag Al systems. Qur experieace sug-
geots Lhat the specification undergoes coostant change; remapping
after each mew increment seems probibitively ineficient.

Our currenpt model uses KATE to build a prototype ORBS pro-
gram, and then ORBS tools to further refine the program. While
this sectns to be adequate aa 3 proceas model, it has inadequacics in
terms of documentation. lo particular, we fod it nseful to be able
to trace » particular ORBS object, rule, or scheduling fuaction
back 10 the KATE specification, 1b this way we can ratiopalize an
ORBS progratn. Once the user modifies the ORBS program
directly, we lose these specification links.

5. Ststur

The ORBS system is implemented o8 the Symbolics 3000. A pon-
grapbics vemsion of the sysiem is implemented in Franzlisp uaing
the Maryland Fiavors package |2 under Vax Unix 4.7, The system
is alao being ported to & Tektronix 4404 A] Workstation (Pegasus).

§. Summary

In coostructing ORBS, we have atternpled to pay attention to the
bos-language aapects of the system. This includes both the model
of program development, and the tools that support it, We have
also tried L0 nse eome of the modern idems from the Beld of
Soltware Eegineering, » feld concerned with baildiag soltware sys-
tems in geperal. While we do not believe there is a precise analogy
between building non-Al soltware and Al software, we do believe
there are sotne similaritics. KATE is a st sttempt at exploiting
these.

Finally, we note that tbe ORBS language itsell is under coastant
evolulion as we discover new problems asd missiag fuectionality.
As an example, several gradusie students are enrrently working oa
exteoding the langsuge o include backward chaining and
bypotbetical reasoning. lo semmary, we believe we are far from a
steady-state system; indeed, the deveiopment of ORBS constitutes
s experimental method for exploriag issues in artifcial ictelligence
environments.

7. Aeknowledgments

Other past and current members of the ORBS project include
Allea Brookes, Kim Daooewitt, Kreith Dowping, Micbae! Hensessy,
and Bill Robinsoo from the University of Oregon, and Bill Bregar
from Oregor State Ugiversity, Evangelos Simoudia bas been 3 valg-
able Srst user of the system.

§. References

[t} Alles, E., YAPS. Yet Anotber Production System, TR 1148,
Computer Science Dept, University of Maryland, 12/63.

14 Allew, E., Trigg, R., Wood, B., Maryland Franslsp Enviroo-
ment, TR 1228, Computer Science Dept, University of Maryland,
11/83.

|3 Barstow, D., Shrabe, H., asd Sandewall, E., {eds.}, lotersctive
Programming Eaviroomenta, MeGraw-Hill, 1984,

|4} BobrowD., Stek, M., The LOOPS Maonal, Xerax PARC,
Palo Alto, 12/83,

[8] Davis, R., Applications of Meta Level Kaowledge to the Con-
struction, Maintenance, and Use of Large Knowiedge Bases, in
Knowlcdge-baved Systerar in Artificial Intelligence, Davis & Lecant
(Eds.), MeGraw-Hill, New York, 1982.

{6} Erman, L., Loodon, P., Fickas, 5., The desigu and example use
of Hearsay I}, in 7tk [nternational Jeint Conference on Al, Van-
couver, 1981,

{7} Fickas, 5., SpeciBcatios Avtomation, Interuational Worksbop
on Models and Laoguages for Software Specification and Desiga,
Orlando, 4/83. Avuilable from Departement d'loformatique,
Univensite Laval.

{8} Fickas, 5., Automating software development: a emall example,
in Symposium en Applicalion end Asscsement ¢f Automaled
Seftware Develepment Tools, San Frazchea, 1983,

[¢] Fickas, S., Design [ssves in & Rule-Based System, in ACM SIG-
FLAN &5 Sympesivm on Programming Lenguages end Program-.
ming Envirenmenis, Seattle, 1085.

|30} Fickas, 5., Laumen, D.. Laursen 1, A Knowledge-Based
Software Specification Ewnvironmest, presested at Ruigers
Workshop on Knoudedge-based Derign, 7/84.

{11] Fickaa, 5., Novick, D., Cootrel in Rule Based Systems: Relas-
ing Restrictive Assumptions, in St Internationa! Cenference on
Ezpert Systems and Their Applications, Avignon, 1985,

|12] Goldman, N., Tbree Dimensions of Design, Proceedings of Lhe
Third Anoval Naticoal Conference oo ArtiBeial Intelligence, AAAL
Wasbington, D.C., 1983,

[13] Greenspas, 5., Requirements Modeling: A Kuowledge
Representation Approsck to Software Requirements Definitioa,
PhD Thesis, Computer Science Dept, Taronto, 1084,

114} Gricser, R., Lenant, D., A representation langeage language,
in et Nalionel Cenference on Al Stanford, 1980,

{15] Loadoo, P., Featber, M., lmplementing Specification Free
doms, in Science of Compuier Programming, Number 2, 1082

[18] McDermott, J., Forgy, C., Prodectioa system conflict resole-
tion strategies, in Psttern-Direcied Inference Sysiems, Academic
Prese, 1878.

[17] Swartout, W., Balter, R., On the inevitable intertwicing of
specification and implementalion, CACM 35(7) {1982),

[18] Wile, D., Program Developmenu: Formal Explanations of
Lmplementaticas CACM 28{11}, 1983,

Page 7

