Zero divisors and invariant subspaces

{extended abstract)
by

Lajos Ronyai

Department of Computer and Information Science
University of Oregon

Computer and Automation Institute
Hungarian Academy of Sciences

1. Introduction

In this paper we continue the study of algorithmic problems related to associa-
tive algebras we initiated in Friedl - Ronyai [2]. The main result of this paper is
an algorithm to find zero divisors in associative algebras over finite fields. The
idea of this algorithm comes from an almost constructive proof of Weddernburn's
theorem on finite fields given in Herstein [3].

The above result is applied to the problem of finding common invariant sub-
spaces for a set of matrices over a finite field. Using this method one can give a
polynomial time algorithm to find certain minimal normal subgroups in permuta-
tion groups. The corresponding questions over fields of characteristic zero remain
open.

For the basic notions of the algebra used, the reader is referred to Friedl -
Rdnyai {2]. By an f-algorithm we mean an algorithm which uses an oracle to fac-
tor polynomials over finite fields. The complexity of an oracle call will be the
length of the representation of the field plus the length of the dense representa-
tion of the polynomial in question.

2. Zero divisors in full matrix algebras

In this section we develop our basic reduction methods for finding zero divisors
in full matrix algebras over finite fields. Let M, {Z) denote the algebra of n by n
matrices over the finite field Z=GF(g). Let a stand for an element of M,(2)
which is not in Z and for which F=Z(a) is a field of dimension ! over Z {i.e. the
minimal polynomial of a is irreducible of degree ! over Z).

Lemma 2.1. There exists a ¢€M,(Z) such that

i) clac=a*

ii) if Alg(a,c) denotes the Z subalgebra generated by a and ¢ then Alg(a,c) is 2
non commutative Z algebra

iii) Alg(a,c)=F4cF4+EF+...4c*F+... where + stands for {not necessarily direct)
sum of Z subspaces.

Proof. Fis a simple subalgebra of M,(Z) containing Z and the automorphism of
F sending a to af leaves Z fixed elementwise, so by Noether - Skolem’s theorem
(cf. Herstein [3]) this automorphism must be inner, showing the validity of i).
Now for the rest of the proof, let ¢ be an arbitrary element satisfying i). From
the fact, that a is not in Z, it follows that a7£a? hence Alg(a,¢) is not commuta-
tive. To prove iii) it is enough to observe that ac=ca?.

Lemma 2.2. Let g,¢,l,F be as above. If ¢! is not in Z then Alg(a,c)£M(2). If
¢/eZ then

(1) Alg(a,c)=F+cF+..4+cH'F

and if Alg(a,c)=M,(Z) then l=n, the above sum is a direct sum and if fis the
minimal polynomial of ¢ over Z, then deg(f)=n.

Proof. A straightforward calculation shows that ¢*ac'=af for each nonnegative
integer . This implies that cla=ac, i.e. ¢! is in the center of Alg{a,c). Now,
observing that the center of M,(2) is Z, the first statement follows. If ¢' is in Z
then any power of ¢ is a Z linear combination of the elements 1, ¢, c2,...,¢"! so (1)
follows from lemma 2.1 and from the fact that F is a Z subspace. On the other
hand, ! is the degree of the mimimal polynomial of a over Z, hence {<n. From (1)
it follows that dim;Alg(a,c)<# and equality is attained if and only if the sum of
subspaces is a direct sum. If Alga,c)=M,(Z), then these facts imply that n=,

1, ¢, ¢2,...,¢*! are linearly independent over Z and the statements follow.

Next we shall focus on the case Alg{a,c)]=M(Z). We have seen that ¢ is a root of
a polynomial of form z"-\ where A€Z. Using this element A we can explicitly
construct a pair of zero divisors in M,(Z). As we shall see, it requires to find ele-
ments in F' with a given norm. For an element d of ' norm(d) is defined as the
product norm{ d)=dd'd°2...d"'-I (i.e. it is really the norm relative to Z). The follow-
ing lemma is a very important part of the argument in a proof of Wedderburn’s
theorem about finite division algebras (see Herstein {3}, pp. 71-72).

Lemma 2.3. Let d be an element of F such that norm(d)=-§-. Then the element
1-cd€Alg(a,c) is a zero divisor in Alg(e,e)=M(2).

Proof. Let us define the element € Alg{a,c) as

z=1+cd+c2ddi+.. +cv1ddi...d7 .
A straightforward calculation shows that z{1-ed)=0. On the other hand, the fact
that (1) is a direct sum implies that neither z nor 1-¢d can be 0, proving the
claim.

It turns out that we need more information about the element ¢ to be able to
solve the above norm equation in F.

Lemma 2.4. Suppose that Alg{a,c)=M(Z) as before and suppose further that
z™-X\, the minimal polynomial of ¢ over Z is irreducible in Z[z}. Then the

polynomial g(z)=z"—-)lr is also irreducible in Z][z]. Moreover the polynomial ¢(2)
splits into linear factors in the field F and if n is odd and dEF such that ¢ dj=0
then norm(d):-;?.

Proof. The irreducibility of f(:l:) means that Z{¢) is a field of deglree n over Z.
On the other hand, Z(c)=2(-;-) , so the minimal polynomial of — over Z has
degree n, therefore it must be g{z). Observing that dimzF=n , we see that F is
isomorphic to Z(l) and the second statement follows. As for the last statement,
let d be an arbit:al'y root of g. The irreducibility of g implies that its constant
term can be written as (-1)"norm(dj=-norm(d)=—¥ and this gives the result

required.

We shall need a fact on certain subalgebras of M (Z). The proof is a routine
calculation and is therefore left to the reader as an exercise.

Lemma 2.6. If e is an idempotent element of M, (Z) of rank ! then the algebra
eM,(Z)e is isomorphic to M{Z).

3. An algorithm to solve certain norm equations

In this section we outline an effective f-algorithm to solve norm eqations arising
from lemma 2.3. More precisely, suppose that F is an n dimensianal extension
field of Z=GHg), ¢=p", p is 2 prime, flz)=2"-fEZ]|2] an irreducible polynomial
over Z. We want to find an element deF such that norm{d)=p. For our purposes,
it is enough to deal with the case where n is either odd or n=2.

In the first case, as we have shown in lemma 2.4. , it is enough to find a root of
fin F. This task can be solved by factoring f over F.

If n=2 then we shall distinguish two cases:

Case 1: —f is a (quadratic) nonresidue in Z. Then if d is a root of the polynomial
g(z)=2>+p in F then the other root from F must be df and calculating again the
constant term of g(z), we obtain that d%"'=norm{d)=5.

Case 2: - is a residue in Z. Let e be an element of Z for which e?=-3. Suppose
that we can efficiently find an element 6CF such that norm{d)=5b™1=-1. Then
letting d=>be we obtain that norm({d)=e>bf*'=p as we wanted. Now we describe
how to solve the norm equation norm{b)=-1. First we notice that in this case -1
is a nonresidue in Z because f is a nonresidue in Z, and it is the only nonresidue
in Z having (multiplicative) order a power of two. This means that it is enough to
find an element JEF such that the order of & is a power of two and
norm{b)=>57*! is a nonresidue in Z. To this end, we define a sequence of elements
of F: let z;=-1. Suppose that 2; is defined. Then let z;,; be an element of F such
that 2, =2z, provided that such element exists. Let z; be the last element of this
sequence. It is immediate that 2z, is a nonresidue in F and it generates a

(multiplicative) group of order 2% The latter fact implies that k<2log,q, s0 3 z,

can be found by solving at most 2log,g quadratic equations in F. To prove that

the choice a!t=z,i is good, we remark that if b7*! were a residue in Z then it would
(e D)

2 =1, but this is impossible because b is a nonresidue in F.

imply that &
What we obtained is the following

Lemma 3.1. The norm equation described at the beginning of this section can

be solved by an f-algorithm running in time polynomial in n, r and logp.

4. Finding zero divisors
4.1. A reduction procedure

First we describe an auxiliary procedure to locate zero divisors in full matrix
algebras over finite fields. The procedure CUT() has a single input parameter A
which is required to be a noncommutative full matrix algebra over a finite field.
The algebra A can be given by structure constants over its prime field GF(p). It
returns either a pair of zero divisors or a proper noncommutative subalgebra of A
(which is generated by two elements over the center of A). It will be an f-
algorithm running in time polynomial in log{p) and m, the dimension of A over

GRAp).
procedure CUT(A)

Step 1. Find Z the center of A.
(* Here we may suppose that A=M,(Z) where Z=GF(q), ¢=p", m=rn® and n>2

¥)

Step 2. Pick an arbitrary noncentral element & of A and compute and factor its
minimal polynomial f over Z. If this is reducible over Z and f=gh a proper factor-
ization then return g¢{b) and A(b) as a pair of zero divisors.

Step 3. (* Here we know that fis irreducible, so Z[}) is a field ¥)
Find an element ac Z{6)Z such that if F=27]a) then I=dim,F is either 2 or it is an
odd number.

Step 4. Find a nonzero element ¢ of A for which ac=ca’ (by solving a system of
linear equations). Compute and factor the minimal polynomial of ¢ over Z. If it is
reducible then return zero divisors as in Step 2.

Step 6. (* Here we know that ¢ is an invertible element of A and that e lac==af
*)

Form Alg(a,c) the Z algebra generated by a and e. If Alg(a,c)2A then return
Alg{a,c) as a proper noncommutative subalgebra of A.

Step 8. (* At this point n=l, Alg(a,c)=A=M,(Z) and n is either 2 or it is odd,
the minimal polynomial of ¢ over Z is flz)=z"-\ for some AEZ and [is

irreducible over Z *)
Find a solution d of the norm equation norm(a:)=% in F using the algorithm

described in section 3 and return the pair of zero divisors 1-ed and
1+ cd+ Eddt...+cv1dds...d7°

end procedure

Lemma 4.1. Procedure CUTY() is correct and it runs in time polynomial in m and
log(p) as an f-algorithm.

Proof. (Outline) If we terminate at Steps 2 or 4 then we have indeed found a
pair of zero divisors (see {2] prop. 6.5). Step 3 can be done by solving a system of
linear equations describing an appropriate subfield of F. If we terminate at Step
5 then by lemma 2.1 i) we have a proper noncommutative subalgebra of A. If ter-
mination occurs at Step 6 then lemmas 2.3, 2.4 and 3.1 guarantee the desired
result. The timing follows from lemma 3.1.

4.2 The main algorithm

We are in a position to describe the key method of this paper. We have an
associative algebra A over the finite field Z=GF\(q),g=p",p prime and dimzA=m.
Our objective is to find a pair of zero divisors, i.e. nonzero elements z,y=A such
that zy=0 if there are any.

We outline the major steps of our procedure ZERODIV(). Its input is an alge-
bra over a finite prime field.

procedure ZERODIV(A)

Step 1. Compute Rad(A) using the algorithm of [2]. If Red(A)7%(0) then pick an
arbitrary nonzero element zERad(A). As z is nilpotent, an appropriate power of it
will suffice as y and terminate.

Step 2. (* A is semisimple *)

Determine the Wedderburn Artin decomposition of A, by using the decomposi-
tion algorithm of {2) . If A is not simple, say A=I4+J where I,J are proper ideals
of A and the sum is a direct sum then z and y can be arbitrary nonzero elements
of I and J respectively; terminate.

Step 3. (* A is simple #)
Check whether A is commutative. In case of affirmative answer terminate con-
cluding that A is a field { i.e. it does not contain zero divisors).

Step 4. (* A is a complete matrix ring over some extension of Z, say A=M,(L)
where n>2 and L is a finite field containing Z *)

Call CUT(A). If it returns a pair of zero divisors from A then terminate. Other-
wise it returns a proper subalgebra of form Alg{a,c) of A. In this case let
A:=Alg(a,c) and go back to Step 1.

Now we prove the correctnes of ZERODIV(). Let d be the dimension of A over
its prime field (i.e. d=rm). First we observe that ZERODIV() is essentially a loop
and each iteration decreases the dimension of the actual A, so the number of
iterations is not more than d. If CUTY() returns a smaller algebra of form Alg(a,c)
then it is not commutative, so by Wedderburn’s theorem on finite division rings,
it must contain zero divisors, therefore in this case the algorithm can not ter-
minate at Step 3. The validity of the annotation (i.e. the comments made) fol-
lows from the Wedderburn Artin structure theorem, in particular, the precondi-
tion of CUTY() is fulfilled when it is called. Now the correctness follows from
lemma 4.1.

We turn to the question of timing. We shall show that ZERODIV() as an f-
algorithm runs in time polynomial in log(p) and d. To see this, it is enough to see
that each Step runs in time polynomial in log(p) and d as an f-algorithm. For
Steps 1 and 2 it follws fom theorems 5.7 and 7.8 of [2]. Step 3 can be done by
solving a system of linear equations of size polynomial in log(p) and d. The timing
of Step 4 is established in lemma 4.1.

We can summarize this as follows:

Theorem 4.1. Let A be a d dimensional associative algebra over a prime field
GF(p). Then there exists an f-algorithm running in time polynomial in d and
log(p) to find zero divisors in A (if there are any).

6. Applications

In this section we shall apply our algorithm ZERODIV() to derive algorithms
for some more interesting questions. First we give an algorithm to construct
explicit isomorphism between matrix algebras. Next we describe a method to find
common invariant subspaces for a set of matrices over a finite field.

5.1. Explicit isomorphisms of matrix algebras

From theorems 5.7 and 7.8 of [2] it follows that there exist an efficient f-
algorithm to decide whether a given finite algebra A is isomorphic to a full
matrix algebra and if the answer is yes, say A =M,(Z) then we can also find n
and Z. Our aim here is to establish the above isomorphism explicitly: we want to
construct a mapping from A to the algebra of n by n matrices over Z. To do this,
it is enough to construct an n dimensional vectorspace V over Z on which A acts
faithfully as an algebra of linear transformations. Indeed, then comparing dimen-
sions immediately gives that the image of A (which is isomorphic to A because A
is a simple algebra) must be the algebra of all linear transformations of V, so if
we pick an arbitrary basis of V, then we obtain a representation of A by n by n
matrices over Z. To construct such a vectorspace and action it is enough to find
an idempotent ecA which has rank 1 in M (Z) (in the light of lemmma 2.5, this
rank is independent from the actual isomorphism). Indeed, it is well-known that
in this case if V=M,(Z)e, then dim;V=n (this is essentially the set of matrices
with all entries zero except possibly the entries in the first column) and M, (Z2)
acts nontrivially therefore faithfully on V via multiplication from the left.

Now we outline our algorithm IDEMPOTENT() which has one input parame-
ter A and A is expected to be isomorphic to a finite full matrix algebra. It

returns an idempotent e of rank one (or, equivalently, an idempotent for which
eAeis a field).

Procedure IDEMPOTENT(A)

Step 1. Call ZERODIV(A). If A does not contain zero divisors then return the
identity element of A.

Step 2. (* Here we have a zero divisor 264 %)
Find the right identity element e of the left ideal Az by solving a system of linear
equations.

Step 8. (* At this point we have an idempotent e which must be singular, for it
is a zero divisor *) Return IDEMPOTENT(eAe).

end procedure

If initially A is isomorphic to M (Z) and we are at Step 3 then lemma 2.5
shows that ede =M{(Z) for some !<n therefore the precondition of IDEMPO-
TENTY) is satisfied and the number of calls can not be more than u—l. Suppose
that we execute Step 2 k>1 times, producmg idempotents ¢;,ey, * - - ,¢;; then
using the fact that e;e=e¢;e~e; il 1<j, we obtain that at the last call of IDEM-
POTENTY) the parameter passed is B=e,M,(Z)e,. The fact that this was the last
call, implies that B is a field, and by lemnma 2.5 ¢, must be rank one in M, (Z). On
the other hand, ¢, is the identity element of B, so the algorithm works correctly
in this case. If ¥=0 then n=1 and the correctness is obvious.

Now we deal with the running time. Let Z=GF{p"). It is clear that we always

work in an algebra of dimension not more than rn? over GF{p), therefore the calls

of ZERODIV() { as an f-algorithm) take poly(n,rlog(p)) units of time. The
remaining work is linear algebra which can also be done in time polynomial in
n, r, log(p). Now we can state the following

Theorem b5.1. Let A be an associative algebra over a finite prime field GFp)
isomorphic to M, (GF(p")) for some n and r. There exist an f-algorithm which
runs in time polynomizl in n, r, and log(p) (i.e. polynomial in the input size) to
construct an explicit isomorphism between A and M,(GF(p"))

Proof. After having the procedure IDEMPOTENT() at hand, the remaining
steps of constructing an isomorphism can clearly be done in polynomial time
(without calling a factoring oracle).

Once we have an explicit isomorphism, we can decompose A into a direct sum
of minimal left ideals. Il e;; denotes the matrix in M,(Z) which contains 1 in the
i-th position of the i-th row and all other entries are zero, then

M(Z)= ,,(Z)en+ o(Z)egat...+M, (Z)e,,l is a decomposntlon into minimal left
ideals. The images of the elements e; in A will give the decomposition desired.
We have the following

Corollary 5.1. Let p, n, r, A be as in theorem 5.1. Then there exists an f-
algorithm running in time polynomial in n, r and log(p) to compute a decomposi-
tion of A as a direct sum of minimal left ideals.

We can generalize this one step further. If A is a semisimple algebra over Z
then first we can decompose it into a direct sum of its minimal ideals (which are
full matrix algebras } using the algorithm given in {2}, next we decompose these
ideals into a direct sumn of minimal left ideals using the above algorithm. Putting

these together, we obtain a decomposition of A into a direct sum of minimal left
ideals.

Corollary 5.2. Let A be a semisimple algebra of dimension m over the finite
field Z=GHFp") . There exists an f-algorithm running in time polynomial in m, r
and log(p) to compute a decomposition of A into a direct sum of minimal left
ideals.

5.2. Common invariant subspaces

Consider the following problem. Given are matrices X;, X;,...,.X;€M,(Z) and we
consider their action on Z,, the space of column vectors of length n with entries
from Z. We want to decide whether they have a common invariant subspace, i.e.
a proper Z-subspace UC Z, such that X;UCU for every 1<s<k We shall give an
f-algorithm which has time complexity polynomial in &, n, r and log{p). Our algo-
rithm will also produce such an invariant subspace if it exists.

The procedure INVARIANTY() has one input parameter, which is a set of n by
n matrices over a finite field Z. It outputs either a proper invariant subspace of
Z, or a message saying that there exists no such a subspace.

procedure INVARIANT(®)
(+ &={ X), Xp, ... X4} %)

Step 1 Compute (a basis of } A, the matrix algebra generated by &.
(* ULV, is an invariant subspace for ¢ if and only if it is an invariant subspace
for A. *)

Step 2 Compute Rad(A). If Rad(A)74(0) then return U:=Rad(A)V,.

Step 3 (* At this point A is semisimple. #)

Compute a decomposition of A as a direct sum of minimal left ideals
A=pytppt..+p

Next select an arbitrary nonzero vector v from V, and form the (A invariant)

subspaces p,v, pov,...p,v and let U be any of these which is not (0). f U=V, then

there is no proper A-invariant subspace, otherwise return U.

end procedure

Now we prove the correctness of INVARIANTY). It is obvious that ¢ and A
have the same invariant subspaces. If p is a left ideal of A then any p invariant
subspace is an A invariant subspace as well, therefore U is an A invariant

subspace upon termination. If we terminate at Step 2 then U#(0) because A
acts faithfully on V,. On the other hand, Rad{A) is a nilpotent algebra of
matrices, so U=V is impossible.

If we enter Step 2 then A is certainly semisimple, so it can be decomposed as a
direct sum of minimal left ideals. It is known (see for example Herstein [3] pp.
97-08) that pyv is either (0) or it is a minimal A invariant subspace (or, with
module theoretic terminology, it is an irreducible left A module) and not all of
them can be (0). We conclude that U is a minimal A invariant subspace. In par-
ticular, if U=V, then V_ has no proper A invariant subspaces. The correctness is
proved.

Step 1 can clearly be done in time polynomial in &, n, r and log{p) and the
dimension of A over Z is not more than n®. Now using the algorithms of theorem
5.7 of [2] and corollary 5.2 we see that steps 2 and 3 can be done in time polyno-
mial in n, r and log{p) and we call a factoring oracle only at Step 3. We have the
following:

Theorem 5.2. Let = Xj,....X; be a set of » by n matrices over the finite
field Z=GHF(p"). There exists an f-algorithm with time complexity polynomial in
k, n, r and log(p) to find a proper ¥ invariant subspace in V, (if there is any).

We remark that if A is semisimple then its action on V, is completely reduci-
ble, i.e. V, can be decomposed as a direct sum of minimal A invariant subspaces
(cf Herstem (3] pp. 97-98). Using the last step of our algorithm INVARIANT(),
one can show that the standard textbook decomposition process can be done in
polynomial time as an f-algorithm. Indeed if we have a subspace U which is a
direct sum of minimal A invariant subspaces U},U,...U,, we have already I‘ound,
then we do Step 3 with a vector v which is not in U. A straightforward reasoning
shows that at least one of the nonzero minimal A invariant subspaces pv must
intersect U trivially, thus giving a bigger direct sum.

Corollary 5.3. If ® generates a semisimple subalgebra A of M,(Z) then V, can
be decomposed as a direct sum of minimal & invariant subspaces using an f-
algorithm running in time polynomial in &, n, r and log(p).

5.3. An application to permutation groups

Some computational problems in permutation groups can be reduced to the
problem of finding common invariant subspaces over very small fields. The
interested reader is referred to Babai, Kantor, Luks [1].

Here we shall consider the following situation. G is a permutation group on n
letters K< H normal subgroups of G and H/K is elementary abelian p group for
some prime p. We may suppose that the above permutation groups are given by
strong generating sets. Our aim is to find a minimal normal subgroup L of G such
that K<L<H.

First we remark, that V=H/K can be viewed as a vectorspace over GF{(p) of
dimension O(nlog(n)) and that G acts on this vectorspace (via conjugation) as a
group of linear transformations. Our problem is equivalent with finding a
minimal G invariant subspace in V. Obviously it is enough to find a minimal ¢
invariant subspace where ®={ ¢,,05,...,4; } is the strong generating set of G we

have. We can also compute a basis for V using the strong generating sets of H
and KX in time polynomial in n. The elements of ¢ can be represented as matrices
with respect to this basis and we can apply our algorithm INVARIANTY() to find
a minimal invariant subspace.

Corollary 5.4. Let G<S, and K<H, normal subgroups of G given by strong
generating sets and H/K elementary abelian. There exists an algorithm running
in time polynomial in n to find a minimal normal subgroup L of G such that
K<L<H hold.

Proof. It is enough to remark that k<n? and p<n, so we can use here the
deterministic "exponential” factoring algorithm and the rest follows from theorem
5.2.

REFERENCES
[1] L. Babai, W. M. Kantor, E. M. Luks, Compulational complezity and the
clasaification of finite simple groups, Proc. 24th IEEE FOCS, Tucson, Arizona,
1983, 162-171.

[2] K. Friedl, L. Ronyai, Polynomial time solutions of some problems in compu-
tational algebre, Proc 17th ACM STOC, Providence, Rhode Island, 1985, 153-162.

[3] I N. Herstein, Noncommutative rings, Math. Association of America, 1968.

