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Summary

This work is concerned with the automation of the software specification process.
Specification automation research to date has concentrated on non-interactive transia-
tion of complete, correct, but informal problem descriptions into formal specifications.
The work proposed here is unique in that it addresses the construction of complete,
correct informal problem descriptions from mcomplete, often incorrect user descriptions.
The proposed system will rely on interactive problem solving and large amounts of
domain specific knowledge to carry out this process.

Our work centers on a system that interacts with a user to elicit the details of a prob-
lem in a specific domain. It attempts to incorporate certain skills found in expert,
human, domain analysts. These include 1) the ability to refine a sketchy, incomplete
problem description into a complete form, 2) the ability to recognize known examples
during problem acquisition, and 3) the ability to critique a user’s description in terms
of missing detail and lack of coverage. To realize these skills, we propose using the
problem solving system Glitter to represent refinement knowledge, a combination of
frames and state-transition diagrams to mode! the domain itself, and the ORBS rule-
based system to implement knowledge-based symbolic evaluation.

Finally, the system will automatically translate (i.e., compile) the informal problem
description into a formal specification. Our current target is the Gist specification
language, although other languages are under consideration.
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1. Introduction

We are now in the second year of a two year research grant (MCS-8312578) funded by
the National Science Foundation. In this paper, we will review our original research
goals, discuss our progress on achieving them, and finally present a research plan for
continued support.

2. The Specification Problem

We are concerned with automating the construction of software specifications. Qur
model is one of a human client requesting help in specifying a prcblem for computer
solution. We are attempting to build a computer-based system that will interact with
the client to acquire the details of the problem, and finally produce a formal specification
in an existing specification language!. We expect such a specification will be translatable
to compilable code by technology on the horizon [4, 40]. However, the translation process
itaelf lies outside of the concerns of this proposal.

In our original proposal, we madc detailed arguments for why it was important to
mechanize software specification. Since that time, others have made similar arguments
(cf. [2, 4, 7, 9, 26]) s0 we feel we can omit further motivational material here; we do
review the major points of our original proposal in the next section. It is important to
state explicitly, as we did in the original proposal, that our current research and pro-
posed continuing research rests on much solid groundwork, some of it ours and some of
it others. We now have been studying formal specifications for 6 years. Further, for the

1 Lehman characterizes this as the ebstraclion process, which transforms an application concept into formal
apecification [32]. It also sometimes falls under the beading of Requirements Analysis (see the discussion of KBSA 18 sec-
tioa 90.1).
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past two years we have been informally studying the software specifications coming out
of the two quarter, Senior project course at the University of Oregon (approximately 20
projects total, each of 1.5 man/years effort). Out of this work, and related research pro-
jects discussed in section 9 and appendix D, has come a realization that automation
should not start with the formal specification process, but instead with the problem
acquisition process. In particular, we need the machine to help us figure out what we
want it to do. A formal specification is the result of pondering, circling, going too far,
covering too little, refining, and finally zeroing in on the problem to be solved. It is
these processes that we focus on in this proposal. We will argue that to build a system
that assists problem acquisition will require a thorough understanding of the problem
domain.

The remainder of the proposal will further define the problem, and present a plan for
studying portions of it.

3. Our Original Proposal (and what we still believe)

We can summarize our original proposal in terms of four themes:

(1) Reuse is important. Complex domains lead to a myriad of details in a formal
specification. We must have a way to avoid regenerating them from scratch on each
new effort.

(2) Building a specification can be viewed as a problem solving process. Hence, an
automated system must deal with construction goals and methods for achieving
them.

(3) To tackle interesting specifications, an interactive system is needed. Here we rely
on the user to supply insightful reasoning, and the system to take care of the many
mundane details. -

(4) We should rationalize all of the products of the software development lifecycle.
This includes the specification. With new automation techniques, the specification
becomes the keystone of maintenance. We must know how the specification got to
be in the state that it is in, and hence what ramifications we can expect by chang-
ing it.

In our original proposal, we proposed using a combination of Gist schemas and the
Glitter problem solving framework to implement these ideas® [18, 21). After working on

2Gist is a formal, operational specification language based oa a relational database with spontancous computation,
constrained non-determinism, and historical reference (33]. Glitter is a problem solviag system that allows the defaitios of
goals, methods for achieving those goals, and sclection rules for choosing among competing methods (20].
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the project for one and a half years, we still believe each of the four arguments above.
However, we also believe that we underestimated the type and amount of domain
knowledge necessary to address these issues. We believe now that we need knowledge
much more akin to that of an expert domain analyst or system analyst. When taking
this view, several differences became apparent:

e  We should be working above the level of a formal specification language. The ior-
mal specification should be the output of our system, and the language a pluggable
backend. We are interested in problem acquisition first, and only then statement in
formal terms. In particular, we expect the system’s choice of specification language
to formally state the problem will vary with the problem itself. Thus, it may choose
Gist for embedded systems, Draco [35] for business applications, or even a rule
based language for Al problems (see section 4.1 for some of our preliminary work in
this direction; see also [14]).

e  While we still view the specification process as a problem solving task, we now
believe that the control is much more complex than the simple goal/subgoal
approach of Glitter. This is particularly acute due to our reliance on interactive
problem solving.

o If our system is to model a domain analyst, then it must have deep knowledge of
the domain. Our earlier work relied upon a syntactic knowledge of Gist schemas.
We found that this was not enough knowledge to reason about completeness, con-
sistency, or ambiguity bugs. We are now in the midst of defining and constructing
a domain knowledge representation that will allow us to support example genera-
tion, specification criticism, and problem simulation.

We also note that this extends our *assistant’ approach. We now expect our result-
ing system to not only take care of mundane problem details, but also to be expert
in constructing specifications for particular domains.

e  What we are reusing is domain analysis as opposed to formal-specification writing.
We have not lost the notion of a catalog of previous efforts. We have just made
them concrete instances in our model. Once integrated into the domain model, they
are 1) rationalized by links to more general domain concepts, and 2) available for
various expository tasks, e.g., showing as examples.

e  An expert analyst knows more than the domain. He or she knows what is hard and
easy in implementing programs in various languages and on various hardware. In
other words, the analyst has a foot in the software development world as well.

We are advocating a move to a true knowledge-based approach. That is, our proposed
system will have large amounts of knowledge on specific domains.

In one sense then, this proposal is in the spirit of continued work on specification
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automation: we are still concerned with the construction of formal specifications. In
another sense, it shifts attention away from formal specification writing and towards
problem acquisition. In particular, the problem becomes less one of translation from
informal to formal, and more one of acquisition of the problem in the first place. Given
this shift, a new set of attendant problems appear, many concerned with the inability of
human users to know exactly what they want and exactly how to describe it when they
first sit down in front of the machine.

Our new work will build on 1) results of our past work, including lessons learned, and 2)
the expertise of the project personnel - four faculty members and three graduate stu-
dents - listed in appendix A. Taken together, we argue that this forms the critical mass
necessary to do research in this area. The next section discusses our work over the last
18 months. Subsequent sections describe our proposed new work.

4. Summary of Results

We are now in the second year of a two year research grant, MCS-8312578,

Our original proposal was titled “The Mechanization and
Documentation of Software Specification’. In this section, we will discuss what we have
accomplished on the project from the start of the granting period, April '84, until
November '85, approximately a year and a half.

We believe there are three principal points to make in this section. First, we have done a
substantial amount of work in building tools that allow us to represent and use
specification knowledge. These tools were useful in our initial work, and remain useful in
our continued work. Having them in hand allows us to build and experiment with proto-
types much more readily. Second, we have learned a great deal from our past efforts.
These lessons may be the most critical part of our results. We will refer to them fre-
quently throughout the proposal. Third and finally, we have begun to work on parts of
our new system, which we call KATE®. This is work that is not referenced in our original
proposal; it comes from our switch in focus to a knowledge-based approach. It is
interesting in the sense that it gives us a small jump on the work proposed in subsequent
sections, and allows us to ground portions of this proposal using partial results, e.g., we
have built a simple boundary-condition generator, we have begun to represent portions
of the conference domain, we have been able to map small portions of a problem descrip-
tion to code.

Below, we will discuss these three aspects of our resuits.

3K aowledge-Based Acquisition of Specifications.
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4.1. Tool building

Our original goal was to use the Hearsay HI system [16] to implement and test our ideas.
Fickas' thesis program, Glitter [20], is implemented in Hearsay II. We planned to use
Glitter as the repository of problem solving aspects of the software specification process.
After several unsuccessful attempts, it became clear that Hearsay III would not easily
transfer to the Symbolics 3600. Hence, we began a major effort to reimplement Hearsay
[Il on our Symbolics. In the tradition of the Hearsay lineage (versions I, II, III), we
decided to use the good ideas and throw out the bad ideas in building the new system.
We also paid attention to the user interface to our new system. Out of this work came

the Oregon Rule Based System [19, 22, 23], or ORBS for short*.

ORBS has proven useful in several ways. First, and least relevant to this proposal, it has
proven to be a good language for writing Al programs. It provides a flexible model of
control ala Hearsay-III with tools to support the construction of control strategies (e.g., a
catalog of control cliches for composing a control strategy, a control strategy animator
for debugging). ORBS is objectized: mulitiple instantiations of the system can be extant
st any time, each with its own rules, database, and control (see [19] for a further discus-
sion of the features of the system). ORBS is currently being used by research projects
within our department to implement an ICA] system, a learning system, a VLSI CAD
system, and a distributed problem solving system. We have also honored requests for
copies of the system from several research projects outside of the university.

Second, we have begun to use ORBS to implement portions of our new system. This
includes a re-implementation of Glitter in ORBS that supports abstract refinement (see
section 7.1), a “‘compiler” written in ORBS that produces ORBS code from problem
descriptions in the system (see next paragraph), and a boundary-condition generator for
testing portions of a problem description (see section §).

Finally, we have begun to use ORBS as an implementation target for our work in
specification. So far, mapping from specification to ORBS code has been a manual task,
although a graduate student, Bill Robinson, is working on a transformation-based com-
piler (written in ORBS) that translates process diagrams in KATE (see section 4.3) to
ORBS code®. We agree with Swartout&Balzer [46] and Barstow [8] that it is important
for the specification process to be tied into an implementation process; certain types of
specification bags can only be found by actually trying to implement a system. In this
sense, ORBS performs the same function as TAXIS does for Greenspan's RML [27], and
in some sense what WILL does for Gist [4].

e decided to stop the line at HI, and resist the temptation to name the system Hearsay [V.

SThis is not to imply that this is 3 scived problem. Robinson's work tackles only a small part of the implemeatation
problem. See Balser's perspective (4] on the geperal astomatic compilation problem for 3 good view of how broad and
deep the problem is.
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Our other major tool building effort has been in the area of graphical interfaces to our
knowledge bases on the 3600. We now have a collection of graphics packages that can
be (and have been) combined to form KATE tools. Two of these packages form the inter-
face to the tools discussed in section 4.3.

4.2. A knowledge-based approach to specification

Our early efforts were focused on carrying out our original goals: build a catalog of Gist
schemas; retool Glitter to handle specification refinement problems. For the latter, we
constructed a set of goals, methods and selection rules for automating Goldman's narra-
tive development of a baseball specification [25]. This Glitter system at least partially
validated Goldman's original speculation:

“Although we have not yet done so, it seems plausible that the development steps
stated in English in this paper could be formalized directly in terms of functions
mapping processes to processes rather than as mappings from specifications to
specifications. In that case, the initial specification and sequence of structured
modifications would present a complete definition of the final process and would
arguably be both easier to produce and easier (for a person) to comprehend.”

In our system, the user could post refinement goals (e.g., Lhandle special cases, add attri-
butes, break out actions), and the system would attempt to find methods for achieving
the refinement. The construction of this system lead us to an impasse. To build the
types of sophisticated methods needed to automate the process®, we found that we
needed to represent and reason about domain knowledge. We also found problems with
Glitter's rather rigid control strategy cf following goal/subgoal chains uatil completion.
As Goldman notes,

“It appears that the best way to achieve a change along one dimension [of
refinement] may involve making a change along one of the other dimensions.”

That is, a user will often want to suspend the current task to work on something else,
e.g., suspend working on structural detail to work on coverage cf special cases.

During this. same time, we were attempting to construct a catalog of carefully crafted
schemas for several domains that we had been studying, i.e., transportation, resource
management within a Computer Science department. These schemas were actually Gist
skeletons with holes to be filled in by the user. A problem with this approach was the
lack of composability. What specification writers wanted was the ability to build-by-

®f the system in usable to find a method, it asks the user to step in. This is a very manual process with the system
scting mostly as recorder of the user'’s steps.
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pieces. A further problem was the representation and management of these skelctons.
We began to see the need for an entire other representation sitting ontop of these sche-
mas that would organize and rationalize the catalog.

The cuimination of problems associated with both of the above efforts caused us to
reevaluate the type and amount of knowledge needed to build specifications in a particu-
lar domain. We concluded that we would need more domain knowledge, and a better
representation of it {24]. While we still believed that examples from the domain are
important starting points, we abandoned the use of Gist schemas to represent them. We
also saw the need for more flexible control in Glitter. As discussed in the next section,
we have begun to work on portions of these problems.

4.3. Current work: representing domain concepts

We are building representations for objects, actions, and constraints for the domain of
conference organization. We briefly discuss our work on each below.

Our original proposal called for representing domain objects using Gist's typing mechan-
ism. Attributes would be represented in relational form. We have now moved to a
frame-based representation. We have comstructed an object editor MOSS [24] that
allows a Strobe-like [39] representation of class-attribute hierarchies to be defined and
modified graphically. Multiple graphs may be in the editing buffer at any one time. The
editor allows graph-to-graph linking, sub-graph manipulation, and primitive node and
are modification commands. As with Strobe, each frame slot is further represented by a
Jacet. Facets can be used to place datatype restrictions, and attach access and assign-
ment procedures. We have integrated ORBS into MOSS by allowing an ORBS object’ to
be attached to a slot. Figure 1 shows MOSS with the facet for the slot intereasts
expanded.

Using MOSS, we have built up object hierarchies for resource management within our
department (see figure 1), and for a general transportation domain. We are in the pro-
cess of building up objects in the conference organization domain, which, as discussed in
Appendix B, nicely shares our previous efforts.

We note finally that our mixture of frame-based and rule-based representation has much
in common with the PHI-NIX project at Schlumberger-Doll Research Lab [8}], discussed
in more detail in appendix D. We find this comforting since PHI-NIX also attempts to
represent large amounts of domain knowledge, in their case applied to Automatic Pro-
gramming.

TThe aser can instantiate ORBS multiple times.
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In our original proposal, we planned to use Gist demons and actions to represent states
and events. We have switched to a a more explicit, graphical, state-transition representa-
tion. We have built a process-diagram editor called OZ. With OZ, a user can define and
edit a state-transition diagram (which shares attributes of a petri-net; c.f. [10, 43]).
Actions are currently represented in rule-based form, a prototyping measure that we
believe is not powerful enough to handle the type of conference events we wish to model.
We expect that a form closer to Conceptual Dependeicy representation [37] will better
model goals, intentions, and other social aspects of conferences. We are also attracted to
the use of the Script-like structures that TAXIS uses to represent transitions in similar
process diagrams [28). Figure 3 shows an example from OZ taken from the conference
organization domain. As shown on this figure, a transition can be further refined into a
more detailed state-transition diagram (TAXIS [28] allows a similar abstraction hierar-
chy). This is one of the functions required to implement temporal refinement discussed in
section 7.1.

We have moved from a Gist-based representation of constraints to a rule-based represen-
tation modeled on that of APS5 [11]. This leads to a two part constraint: a pattern that
states the constraint; a method for reinstating the constraint when it becomes violated.
There are both plusses and minuses to such a representation. On the plus side, it models
well the types of if-then descriptions that users often employ, e.g., if the list of city-
tour attendees is below k, cancel the event”, or “if the banquet list becomes full, place
people on a waiting list”’. On the minus side, these are actually implemen’ations of pure
constraints., The effect of this is that users must always state their constraints in this
if-then form. The bottom line is that we do not expect to do further work on constraint
representation (i.e., we plan to use what we have) until the research problems presented
in section 7, the heart of this proposal, are solved.

4.4. Protocol analysis

One thing lacking in our original proposal was the running of protocol experiments on
expert, human, specification writers. We have been informally studying students in this
role over the last two years as part of our two-quarter, Senior projects course; in particu-
lar, the course has attempted to delineate good analysis techniques and pass them onto
students. As part of this teaching process, we have also brought in local experts involved
in specifying software for industrial applications. We now feel ready to formally study
the problem acquisition process. We are currently designing a set of protocol experiments
using subjects from academia and industry. Professor Douglas is assisting with experi-
ment design, and will also collaborate on running the experiments and analyzing the
results. Appendices A and C discuss the fucilities and personne! involved in these experi-
ments. As we discuss in section 6, we cxpect the results of this work, among other
things, will lead to a better view of interactive control in KATE.
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4.5. Published papers

From the start of the grant (April '84) until present (November '85), members of our
group have attended 4 Conferences and a Knowledge-based Design workshop at Rutgers.

During the same period, we have published the following papers related to the project:?

Fickas, S.

Mechanizing softwarc specification,

In Workshop on Models and Languages for
Software Specification, Orlando, 1984

Fickas, S., Laursen, D., Laursen, J.,
Knowledge-based software specification,
In Workahop on Knowledge Based Dessgn, Rutgers Univ., 1984

Fickas, S., Novick, D., Reesor, R.
An environment for building rule based systems,
In 9rd Annual Conference on Intelligent Systems and Machines, 1985

Fickas, S., Novick, D.
Coantrol in rule based systems: relaxing restrictive assumptions,
In 5th International Conference on Ezpert Systems and Their Applications, 1985

Fickas, S.

Design issues in a rule based system,

In ACM Symposium on Programming Languages
and Programming Environments, Seattle, 1985

Fickas, S., Downing, K., Novick, D., Robinson, W,
The specification, design, and implementation of large knowledge-based systems,
Invited paper, IEEE Annual Northwest Conference on Computer Science, Portland, 1985

Fickas, S. .
A problem solving approach to software development,
In IEEE Transactions on Software Engineering, Vol. 11, No. 11 Nov. 1985

Simoudis, E., Fickas, S.

The Application of Knowledge-Based Design Techniques to Circuit Design,
In IEEE International Conference on Computer-Aided Deaign, 1985

We have also produced the following technical reports:

®As requested, we've included all papers that have acknowledged the sapport givea by NSF.
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Fickas, S.
The Oregon Rule Based System (ORBS)
Tech report CS84-5, CS Dept, U of Oregon, 1984

Fickas, S., Novick, D., Reesor, R.
Cataloging Control Strategies,
Tech report CS85-2, CS Dept, U of Oregon, 1985

4.8. Theses related to the project

There have been four Masters theses completed on our project. Two PhD students are
working on KATE as part of their dissertation work. Details are given in appendix A.

4.7. Projected results

By the end of the current granting period (April '86), we expect to have completed our
protocol experiments. We also expect to have a reasonable portion of the conference
domain model completed.

5. A System for Acquiring and Constructing Specifications

Before presenting our new proposal, we will summarize the results that lead to it. Our
original goal was to use the GIST language from ISI [4] as a basis for our work in
specification construction. We spent part of the first year attempting to build abstract
Gist schemas for resource management and transportation domains. During this effort it
became clear that Gist was not the right representation for storing knowledge about the
specification process. What we needed was a representation that captured the objects
and operations concerned with building a specification. In particular, our original notion
of reusing specification knowledge by storing away abstract Gist specifications in a
schema catalog proved infeasible. For one, the Gist schemas did not capture enough
information, e.g., why a construct was present, what would happen if it was removed or
changed. While we could answer these questions at a syntactic level, we were not able to
generate answers in terms of the domain itself. In essence, our reasoning was limited to a
rather superficial level. In summary, the catalog of Gist schemas was at once too weak
(it did not easily represent development concerns) and too powerfu! {we could not reason
about it effectively).

At the same time that we were becoming dissatisfied with our original Gist schema pro-
posal, we were coming to realize that there was more to the specification process than
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simply giving a user a set of refinement-based editing commands, even if they were part
of a problem solving system such as Glitter. Specifically, it appeared that expert human
domain analysts combined skills of listening, setting up analogies, selling (i.e., guiding
the user to a particular view), summarizing, paraphrasing, and testing. They brought
this all off by having a good understanding of the application domain, and extensive
experience in specifying problems in the domain. We found that such experts used
conversational techniques such as the following®:

. “What you have described sounds a lot like 8 foo. How is it different?’’. Here foo is
a well known concept in the domain.

e  ‘Let me make sure [ underatand thia: your problem is ..."".

o ‘I do not underatand what happens in this case: ...”". The analyst sets up a
hypothetical situation for the client.

o  “Case fum is usually a sticky problem in these type of programs. We should discuss
what to do about st.”’ .

e  “You have specified that you want to have action z available. This type of action is
often costly to implement in thia domasn. Do you atill want 9"

o  ‘Let’s talk in more detail about y''.

These observations, along with the problems discussed in sections 3 and 4, lead us to
reconsider what knowledge was required in building specifications. We now see the fol-
lowing type of knowledge as necessary:

e  Knowledge of the application domasn. Terms and concepts: can map from client's
descriptions to known cases; can use known cases in presenting examples. Special
cases, error and boundary conditions (major causes of specification completeness
bugs). Beyond simply representing the objects, actions, and constraints of a
domain, difficult questions include what does it mean to be a prototypical example,
how can new domain concepts be added by the user, how can the system modify
existing domain concepts to fit the new problem.

o Knowledge of the specification process. Our model is one of an initial, incomplete,
buggy problem description being transformed into a complete, correct, formal
specification. Difficult problems abound, e.g., what abstraction techniques are use-
ful, how can the myriad details of a problem be eclicited from the user, how does
the domain analyst fill in missing detail, how is a specification verified with the

®We reiterate, our empirical evidence to date is by informal observation. We are in the process now of verifying our
resalts by fermal protocol experiments, 2 discussed in section 4.4.
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user.

o  Knowledge of the program development process. In general, what is hard and easy
to do. For example, in many applications, an undo capability adds at least an order
of magnitude of effort to design and implementation. Also, novel systems lead to
higher design and development costs (c.f., {1]).

e  Knowledge of the production environment. This includes the implementation
language, host machine, user skill levels, and real-time constraints. Each of these
may bave a strong influence on what is feasible to implement and use. For
instance, if an on-site PC is to be used at the conference (as opposed to a terminal
to a remote mainframe), then certain interactive operations may be infeasible.

o How does the ezpert learn from ezperiencef Each new specification construction
effort should lead to some new insight into the specification. How can this be
assimilated so to be of use to the next client! Simply integrating a2 new example
into the database is not too hard. Learning why it was a good or bad session - the
user went directly to the problem, the user spent a lot of effort in backtracking - is
much more difficuit.

Our ultimate goal is to build a system that uses each of the above types of knowledge to
acquire a problem and produce a formal specification. It should be interactive, and
based on a control mechanism that carries on a natural dialog with the user. As we
shall emphasize several more times in this proposal, we are not proposing to bring all of
this off in a three year time span (the length of our proposed fundiag period). However,
it is important to note the long range goals of the project. The next section shows how a
user will interact with KATE. Section 7 discusses the underlying mechanisms we propose.

8. Systern Behavior

In the last section, we itemized the types of knowledge our system will need. We have
yet to describe how it will use that knowledge to build specifications. To incorporate the
skills of an expert domain analyst, we would expect a system to carry on a mixed-
initiative dialog with the user in natural language. We might expect the user to drive the
dialog when he or she was describing new portions of the problem or refining existing
portions. We might expect the system to drive the dialog when pointing out similarities
with other problems it has seen, when trying to fill in missing detail, or when pointing
out bugs in the current description. While these are our long term goals, this proposal
tackles only a subset of them. In particular, we expect that the dialog will be user-driven
as opposed to mixed-initiative. The system will present the user with three basic tools
with which to work:
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(1) An object/class editor called MOSS. A snapshot of MOSS is shown in figures 1 and
2

(2) A state-transition diagram editor called OZ. A snapshot of OZ is shown in figure 3.

(3) A specification-refinement editor implemented in Glitter {20}

None of these tools use a natural language interface; a user’s actions are mouse-and-
pointer operations with MOSS and OZ, and command-driven interaction with Gilitter.
The system will take control when it is filling in pieces or reporting interesting cases
and/or bugs to the user. Other than this, it will be up to the user to direct the system to
the next specification task.

We have chosen this approach for a practical reason: we do not believe we can solve the
research problems we have set out (see section §) and the interface problem and the con-
trol problem in the same three year time frame. We do expect to investigate certain
aspects of control (see Professor Dehn's research description in Appendix A). Using our
experience (see Professor Douglas’s research description in appendix A) and the results of
our protocol experiments, we also expect to make improvements in the interface. How-
ever, we do not expect to attain system-driven control nor a natural language interface
within the given time frame.

In summary, we propose a system with the following capabilities, each of which is dis-
cussed more fully in subsequent sections of the proposal: 1) Acquisition of new objects,
processes and constraints, 2) Recognition of existing objects, processes and constraints,
3) Refinement of sketchy, incomplete descriptions, and 4) Critiguing of the current
specification. Both 2 and 4 are system processes that are constantly monitoring the
user-driven processes of 1 and 3.

8.1. User/System interaction

We will give several short examples here of how the user interacts with the system. It is
important to note that our use of natural language is as a meta-description of what's
really going on, i.e., the user selecting various options through menus, adding objects
using MOSS, editing diagrams using OZ.

Interaction with the system will take on, alternatively, one of two styles during problem
scquisition. In the first, the user gives commands to the various editors to carry out
descriptive or refinement actions. Hence, he or she might add objects/classes to the
given conference class hierarchy, add or delete conference actions, or state general
development goals.
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As these actions are carried out, KATE checks several things, each of which may cause the
system to take over the dialog. First, it attempts to match the current problem descrip-
tion against known problem instantiations in the domain. Thus, if the user describes a
conference that has a small number of attendees, long question answering periods, and a
minimum of conference staff, KATE will let him or her know that it has the concept of
workshop, which at least partially matches those specificaticns. The user can accept
workshop outright, accept it with modifications, or reject it entirely. Acceptance here
allows a host of details to be implicitly specified; they come with the workshop concept.

Second, if the user adds a new object, event or action, the expert attempts to represeat
it in known domain terms. For instance, if the user added a new event, survivor’s

perty'®, the system would attempt to understand it in terms of known conference events:

System: You have added a social event “survivor's party”. I'd like to try to
characterize this event. Where is it held?

User: conference chairman's house.
System: who goes to such an event?

User: conference attendees.

In this way, the user is not hamstrung to just the concepts initially provided by the sys-
tem. On the other hand, if the user attempts to add a new concept that cannot be
viewed in terms of conference primitives, then while it will be recorded (under unknown-
events), it will not become part of later reasoning (see below).

Third and finally, the system attempts to follow the ramifications of the user's actions.
Here we are interested in two particular actions: modificatioa of existing concepts; acddi-
tion of new concepts.

Modification of an existing concept: Suppose that the user deletes an object, event
or action. This may have consequences in the rest of the specification. For instance,
assume that the user accepts KATES suggestion of viewing his or her conference as a
workshop. Along with this comes a particular process view:

System: Let me show you what the “‘workshop process" is in my view:

WaAs discussed previously, new objects and events are added wsing MOSS. We ameme that the wser classifim
survivar's party as a social event by placing it uader the appropnate class.
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[Here the aystem displaya the workahop process using OZ (see figure 8).]
User: [deletes on-site registration action|

System: let me make sure | understand what you want. You have deleted the
action of registering at the conference. This implies several things:

1. No person will be able to attend unless they have pre-registered.

2. There will be no need to handle money or registration forms at the conference.

[The deleted action, on-aite registration, was one of two routes to attending the
conference. The syatem lets the user know that only one remains (in reality by
highlighting portionas of the state-transition diagram). Further, the deleted node
had a more detailed description that broke on-site registration into amaller
actiona of handing out regisiration forms and collecting money. The system
confirma that these actions should go away with their deleted parent (again by
appropriate highlighting).

In general, we find that ezpert analysts do frequent misunderatanding checks. In
this case, we want to make sure that the user 1a aware of the implications of hia
or her actiona. We believe that this type of post-analysis of specification changeas
will be one of the most powerful functions we can provide regarding specification
correctness.|

System: Is this correct?
User: Almost. There is a special case: local VIP can attend ‘without registering.

[The user is reminded of a apecial case. Note that reminding goes both wayas: the
system is reminded of useful ezamples as st ss 'listening’’ to the user’s problem;
the user in turn is reminded of special cases by being informed of implicationa.|

Addition of a new concept: On addition of a new concept, the domain expert will
attempt to integrate it into the existing description. For a new event, like survivor's
party, KATE will attempt to simulate conference attendees getting to the event, entering
the event, attending the event, exiting the event, and getting back from the event. This
is part of the expert’s built in knowledge of what happens at conference events. In
attempting this simulation, further questions will arise regarding properties of the event,
e.g., maximum and minimum limits on attendees, its duration. If a “‘bug” is found in
the current problem description, e.g., there is no transportation to the event, then the
user is made aware of it.
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If instead of an event, a new object is added, the expert will attempt to move that
object through the conference process. For instance, we have seen the addition of the
concept of local VIP. KATE will first classify (through user interaction) lccal VIPs as
conference attendees, and then verify that they can perform the same functions as nor-
mal attendees, e.g., get past the guard at the door, attend sessions, attend social events.
Again, if a bug is found here, e.g., there is no w=> for the guard to identily them, the
user is made aware of it.

In the next section, we will discuss the mechanisms that will support the type of interac-
tion presented above.

7. The Underlying Methods

There are three skills of an expert domain analyst that we believe are key in bringing
about the system behavior proposed: 1) taking a problem description from an abstract,
sketchy, and often buggy version to a refined, detailed, complete specification'!, 2) using
past experience with problems in the domain for both acquisition and explanation of new
problems, and 3) using simulation or symbolic execution to disambiguate, criticize, and
understand problem descriptions. Note that these skills are based on system/user
interaction. In particular, we are not interested in, nor do we think it is reasonable to
expect, batch processing of problem descriptions, English or otherwise.

We propose building a computer system that embodies these three skills. After interact-
ing with a user to obtain a problem description, the system will produce a formal

specification in a language such as Gist!?,

We are now building a domain model of conference organization (Appendix B discusses
our choice of this particular domain). This will act as the testbed for studying the KATE
system. The next three sections discuss the three general methods we will need.

7.1. Problem refinement

Goldman [25], Feather [17], and Adelson&Soloway [1], among others, have proposed a
model of gradual refinement when designing complex artifacts. Taking the view that a
formal specification is such an artifact, Goldman lays out three headings under which
refinement can be viewed:

LWords like complete, correct, buggy are relative when discassing specifications. For instance, a specification bug
could involve inconsisteacy, in some sease a real bug, or fack of coverage of some special case, more of a conceptaal bag.

1Bwe do sot want to commit to asy pasticular specification fanguage at this poiat. We would hope to be able to
build pleggable language-based generators for vanous languages.
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e  Coverage: the cases covered by the specification.
e  Structural: the amount of detail in a state.

e  Temporal: the amount of change between states revealed by the specification.

For Goldman's example, that of Baseball, we were able to “Glitterize" the development.
That is, we came up with a set of specification development goals, a set of refinement
methods for achieving the goals, and a small set of selection rules for selecting among
competing refinement strategies. As discussed in section 4.2, we learned three lessons
from this effort:

(1) Glitter must use domain knowledge to carry out refinement. This will require a
better integration of Glitter with the existing knowledge representation tools of the
system, e.g., MOSS, OZ.

(2) We cannot assume that the user has a complete grasp of the many nuances of a
problem, and is just looking for a way to get it all into the machine. Instead, we
expect 1) the system to have knowledge about the special cases and error conditions
in a domain, and 2) the system to drive the refinement, when appropriate, using
this knowledge. This is not a change to the Glitter model per se, but a change in
the way it used, now by both user and system.

(3) Perhaps the most difficult, we see the need for a more flexible model of control dur-
ing refinement. Some of Wile's work on PADDLE [48] seems to fit here, and we
hope to benefit by it. However, this problem of control is one we plan to put off
until substantial progress is made on other aspects of our system. Section 8
discusses this in more detail.

In summary, we still plan to use Glitter as the basis for our problem solving view of
refinement (discussed and motivated extensively in our original proposal). However, we
will need to better integrate it into our proposed work on problem acquisition.

7.2. Domain cliches

We have argued that it is ludicrous to start from scratch when building a problem
specification. Our original proposal called for a catalog of carefully crafted schemas or
templates to be available to a user when starting a new specification. The user would
choose one as a starting point, and then tailor it to his or her needs. In section 4.2, we
discussed our problems with using such am approach. In its place, we propose
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representing a predefined, known-to-be-useful (as gathered from domain experts) sct of
conference concepts. We will refer to these as domain cliches. Some examples seen in tiis
section include workshop, hasl-and-farewell, unasgned check, first-come-first-acrve.

As 3 user is describing his or her problem, the system is doing a continual pattern-match
against the domain cliches. On a match, the system will ask to use the cliche as a piece
of the specification. The user is free to accept the cliche (with modifications if necessary)
or reject it. The final specification may be any mixture of domain cliches and user gen-
erated descriptions. As an example, the user and system were beginning to characterize
“survivor's party'’ in the previous section. After entering informaticn about the locztion
and time, we might expect the system to respond

System: this is beginning to sound like what I call “hail and farewell”. Would you
agree!

(System ahowa its hail-and-farewell event using OZ and MOSS.|
User: yes.

The user may accept this event (as is done above), and hence implicitly accept a myriad
of details about the event that would normally have to be specified bit by bit. The user
may instead use MOSS to modify the event to fit some special case for his or her
survivor's party, accepting the remaining portions as is. Or the user may simply reject
the event, and continue filling in details about her or her survivor's party.

There are two research issues lurking here. First, how will we represent cliches? In our
original proposal, we proposed representing this type of information as a catalog of skele-
ton Gist specifications. In KATE, we retain the catalog notion, but stock it with groupings
of MOSS and OZ objects. In essence, our goals are quite similar to that of the
Programmer's Apprentice project, which uses programming cliches to build up a pro-
gram [47]. Using a plan mechanism, the Programmer's Apprentice allows cliches to be
composed. We also must allow composable objects. Thus a workshop is just a collection
of existing sub-pieces (possibly including other cliches) from the conference domain. In
essence, some grouping of conference objects are known to be useful and common; these
become the cliches of our system. Other groupings can be constructed by the user.
Together, they allow familiar problems to be described with minimal effort, and novel
problems to be described, but with correspondingly more effort.

The second research issue centers not on the represeniation, but the use of domain
cliches. There are at least three questions relating to this:
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(1) Are exact matches necessary? Or, should some elements give a higher “matching
weight” than others? It seems clear that the user's description of the survivor's
party should match the hail-and-farewell cliche because of their relative occurrence,
i.e., last event of conference. However, it may be that the hail-and-farewell cliche
does not include chairman’s house in the set of places the party can take place.
Should this cause the mateh to fail? Hayes-Roth, among others, discusses the prob-
lem of partial matches in frame-like systems [29)].

(3) Related to the above, when should cliches be presented? If we have a loose match-
ing policy, the system will bombard the nser with potentiz! matches.

(3) We find that users often will accept a “‘right sounding” cliche without checking all
of the details. Thus, an expert analyst may say ‘‘what you have described so far
sounds like a foo", and the user may accept the foo cliche without further
misunderstanding checks, e.g., ‘everyone knows what a foo is”.

Both the first and second problems are knotty. We view them together as one of our
major research efforts. We note that one of the senior investigators on the grant, Natalie
Dehn, has studied (and continues to study) aspects of the reminding problem from a cog-
nitive science viewpoint [13]. We expect that our protocols will shed further light here.

For the third problem, we propose a primitive safeguard initially: we plan to mark all
problem details accepted implicitly through acceptance of system proposed cliches. As we
will discuss in the next section, these markings will be used to generate what-if scenarios
to insure user and system concurrence.

7.3. A knowledge-based approach to symbolic evaluation

It is commonly recognized that some form of ‘‘operationalization’™ is necessary to find
apecification bugs (see [46] for strong support of this). The rapid prototyping approach
provides this by building a source code program {rom the specification, and running it
against intent. We choose to use a different approach to the problem by using KATE
itself to “‘execute’ portions of a problem specification. This is commonly known as sym-
bolic evaluation (see {5], [42], [49] for some representative approaches). Cohen [12] and
Swartout [45] have built a symbolic evaluator and behavior explainer for Gist that serves
as a good reference point for our approach. In their system, the user designates a partic-
ular Gist action to test. The system then runs the action on symbolic data, and outputs
an execution trace. Finally, the system sifts through the trace to summarize the
highlights. While this is a useful approach to the problem of handling the often massive
amounts of data produced by a run, Swartout notes the following [45]:

“The current [Gist] symbolic evaluator is not goal driven. Rather than having a
model of what might be interesting to look for in a specification, the evaluator

"
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basically does forward-chaining reasoning until it reaches some heuristic cutoffs.”

Swartout goes on to argue that if the Gist symbolic evaluator [12] bad some notion of
what was interesting, it could avoid lengthy and unproductive paths.

We agree wholeheartedly with Swartout's conjecture, but feel it must be elaborated
along two axes. First, interestingness for a domain-independent language such as Gist
must center on features of the language rather than features of the domain. What we
propose is to explicitly represent what is interesting about the domain, again part of the
knowledge we see an expert domain analyst having. Second, the goal of the Gist sym-
bolic evaluator is to allow the user to test the specification; all the machinery is set up to
explain the results of the test. We foresee a need for an active critic of the specification.
Such a critic would generate its own test cases to try to poke holes in the current prob-
lem description. This distinction between the “attitude’ of the two approaches is impor-
tant. The work on symbolic evaluation to date is based on a view that the user knows
what he or she wants; the problem is making sure the machine has represented it prop-
erly. In our view, a user has a sketchy idea of what her or she wants, and has rarely
thought out all of the consequences. One of the roles of an expert domain analyst is to
recognize and show to the user the ramifications of his or her actions, e.g., adding a new
session to a conference, extending it another day, allowing non-registrants to attend,
each of which is likely to have difficult to foresee interactions with the existing descrip-
tion. We believe all of this must happen in an interactive environment tied to the
development process. Thus, symbolic evaluation is not something you invoke after the
fact as you would a compiler, but instead shouid be part of the construction process
itself, e.g., integrated with the editor. Given this, we propose the fcllowing roles for sym-
bolic evaluation in the KATE system:

(1) The role of validator, as used by Swartout {45] and Cohen [12]. Here, the user
selects test data and an action or actions to be confirmed; the system executes the
action, and presents the results.

(2) The role of validator, as used in section 6.1. Here, the ayatein selects test data and
an action or actions to be confirmed. Selection is based on details -~ slot values,
prerequisites -- implicitly accepted by the user.

(3) The role of refinement driver that checks for missing details, e.g., “Let's suppose
that x has occurred; how do you want to handle it?". This type of testing is ini-
tiated by the system to fill in holes in the current problem description (the
DESIGNER system plays a similar role in algorithm design [42]).

(4) The role of critic that punches holes in the user’s description, e.g., *‘You have
specified a maximum limit of 100 on any one session. | can generate a scenario
where 110 show up as follows ... What happens then?”” This is an ever watchful sys-
tem process that uses knowledge of the domain to generate boundary and error
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The distinction between the latter two is one of degrees. In both cases, the system
expects the user to modify the problem description to more tightly specify details, spe-
cial cases, or error handlers. Note that the above three uses of symbolic evaluation
address both the product and process of problem description. That is, the user can do
misunderstanding checks on the description itself. Further, the system can check the
development steps taken to build the description, e.g., check the ramifications of adding
an event or modifying an object. Finally, the system can drive the development by use
of cleverly constructed examples that point to missing detail. Below are some hypotheti-
cal examples illustrating these points in the conference domain.

[Assume the user has added the concept of ‘local VIP" to the system, and st has
been classified as a type of non-registered attendee.]

System: Assume the following:

a. One of the local VIPs shows ap at the conference.

System: How will he or she be identified?

[When a new object ss added, the aystem attempta to follow the interaction of the
new concept with ezisting events and sctions. Here the system is attempting to
ssmulate how local VIPs move through the conference process. One action in
the conference process is identify (by the conference atoff). Normal attendees
can be identified by being on a registrant list. So far, local VIPs have no way of
being identified.]

User: Add a list of non-registered attendees, and place local VIPs on it.
System: Some conferences have a list of special-case people who are allowed to
attend without registering. Such a list contains the person’'s name, affiliation, and

sponsor. Would this work as the list of non-registered attendees!?

[Instead of esking for details about the new “list of non-registered attendees",
the system attempta to use a case it knows about.]

User: Yes, but forget the sponsor field.

System: Alright. Assume the following:
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a. There exists a list of unregistered attendees with local VIPs oa it.

b. A confercnce staffer wants to verify a particular local VIP on the list.

System: How can verification take place?

[Again, the system teats the implications of the user’s modification. Part of the
system’s domain knowledge is that attendee lists must often be verified by
conference staffers, and that the sponsor field is one of the inputs to the
verification action. If the sponsor field is removed, the verification action i
incomplete.]

User: Delete the verification action, | don't need it.

[This in turn will lead the aystem to look for ramifications of & misaing
verification action.]

In the above scenario, the system was attempting to add the details necessary to incor-
porate local VIPs into the description. In the next scenario, the system turns to the role
of critic.

System: Assume the following:

a. the workshop is limited to 100 registrants (as you specified)
b. the session room will hold 110 people (as you specified)
e. 11 local 'VIPs are on the list of unregistered attendees

d. 111 registrants and local VIPs attempt to go to the same session

System: What happens?

[The system generates this scenario by using knowledge about a) the limited
resources of & conference (e.g., room capacity), and b) that special case lists
often neglect/bypass the mezimum and minimum constrainis on resources. In
essence, the system is looking for overflow conditiona caused by new objects
(e.g., local VIPs) being added to the problem.|

User: first-come-first-serve (A domain cliche.]
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[This is the easy way out for now. A more thoughtful approach would likely lzad
to modifications to the mazimum registered attendees, tiic mazimum number of
unregistered attendecs, or both. In any case, the system will dutifully show the
user the smplications of hia or her modifications.]

Finally, the user may check that there is no misunderstanding on what to do in certzin
situations. Assume the user has specified that incomplete registration forms will be
accepted and marked as such. He or she now wants to make sure that this will lead to
the right behavior.

User: Assume the foilowing:

a. the size of the registrant list is 99
b. you receive the following from potential attendee P100

1. completed registration form
2. completed questionnaire
3. unsigned check {4 domain cliche.]

User: how is P100 handled by the registration action?
System: P100 is placed on the registrant list. Entry is marked as incomplete.

[At some point the uaer or aystem will get around to dealing with the changing of
an incomplete to a complete. In particular, the system knows that many things
agccepled in incomplete form muast have scme action associated with them lo
make them complete.]

The system generation of examples such as those above is a major component of our
research plan. We see the need for the following components to carry it off:

e A rule-based evaluator that will interpret OZ state-transition diagrams. This fol-
lows the same approach as that taken by the DESIGNER {42] system (see appendix
D). As with their system, we expect to be able to execute incomplete designs (nee
problem descriptions).

e A structured domain model that explicitly ties abjects to and classes to super-
classes (as does MOSS), and objects/classes to OZ processes and actions. Thus, a
change to an object or class can be transmitted to all relevant actions. A change to
an action can be transmitted to all relevant objects or classes. Balzer categorizes
what type of ripple effects one can expect between objects and classes [3] (see also
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section 14.2). We expect to extend this into processes and actions.

® A rule-base that can generate 1) interesting domain conditions to verify, and 2) test
data for producing scenarios from those conditions. We have built such a rule-base
for a toy world; our work will be to extend the ideas into the conference domain.

In summary, we see the work intersecting with research in the areas of operational
specifications, knowledge-based editing [47], and automated theory testing. We believe
the latter work in particular holds great promise for our work. We discuss its relation to
KATE in section 9.2. See also Professor Dietterich’s description of research in appendix A.

8. What We Propose

We are embracing an interactive, knowledge-based approach to specification construc-
tion. Below we layout the dimensions of the knowledge we will need, and discuss which
we will investigate initially. Notation: start+k refers to start-of-grant plus k months,
where k ranges from 0 to 36. Section 4.7 discusses expected functionality at start+0.

Knowledge representation of the conference domaln.

Includes primitive terms and concepts, special cases, error conditions, concrete exam-
ples. Must have the ability to reason about each in terms of the acquisition and
explanation processes.

What we propose: Of course such a model can easily be an unbounded sink of effort.
For instance, we might expect a good model to include goals and intentions, author-
ity, rights, and attitudes (cooperative, competitive, indifferent), along with a myriad
of other social issues. We expect we must represent aspects of all of these, at some
level. Our experience from working with the resource management and transporta-
tion domains, both of which eventually forced us to deal with similar social interac-
tions, tells us that prototype systems can be built by shallowly modeling some com-
ponents while concentrating more deeply on others.

Research plan: in pursuit of bringing up a prototype system quickly, we plan to con-
centrate first on breadth and then on depth. We expect to be able to put on limited
demonstrations by start+12. More elaborate demonstrations are planned for
start-+24 and start+36.

Automation of the specification process.

Models of refinement, task agendas, task suspension and resumption, cliche
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presentation, misunderstanding checks, critiques.

What we propose: This will be one of the major efforts of our research. There are
four issues to contend with: 1) the representation of the refinement model in an
interactive system, 2) the use of domain cliches to both acquire and explain prob-
lems, 3) the use of symbolic evaluation to understand intended behavior, and 4)
controlling interactions among the preceding three. Each of the these are major
research efforts, e.g., we expect a PhD thesis to come out of the third during the
granting period (see appendix A). We plan to address the first three in detail, and
finesse the fourth, as discussed in section 8.

Research plan: Our work on Glitter will focus first on representation of refinement
knowledge in our domain (demo by start+18), and second on elaboration of control
(demo at start+368). Our main concern with domain cliches is one of functionality:
how should they be represented, matched, presented. We plan to build a representa-
tive set by start+12 to investigate these issues. We expect to conduct matching and
presentation experiments throughout the grant. Symbolic evaluation will be under-
taken in three stages: generation of boundary and error conditions (full demo by
start+24, partial demos earlier); generation of refinement examples (functional by
start+30); generation of validation examples (demo at start+38).

Knowledge representation of the software development process.
Includes known hard implementation problems, machine and language limitations.

What we propose: This will not be a major focus of our initial work. We expect this
initially to be of the form of rules-of-thumb, similar to Kant's resource rules [31].

Research plan: 3 month task that can be undertaken any time after the first year
(demo at start+36).

Interface issues.
Natural language, graphics, menus.
What we propose: We are in essence freezing this problem (see section 6). We expect
our system to have a state-of-the-art interface based on the tools we have con-
structed to date (discussed in section 4.1 of this proposal). The use of natural

language is currently of secondary interest to us.

Research plan: We expect to elaborate the interface as experience is gained, e.g.,
analysis of our protocol experiments is finished (start+86).
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Learning from doing: incorporating new domain knowledze automatically.

QOur goal here is to automatically incorporate new experiences of the system into the
domain model, and then apply it when appropriate during subsequent specification
construction efforts.

What we propose: As we discuss in section 5, there are moderate to very hard parts
of this problem. We do expect the system to have an experience base from which to
work, and to be able to pick up new examples as new conferences are described. We
do not expect our final system to be able analyze why it did a good or bad job on
assisting a specific user, and learn what to do in the future to enforee or correct its
behavior.

Research plan: Initially, we plan to code examples by hand. These will be part of the
demonstration system at start+12. We expect to be able to automatically incor-
porate new problem descriptions as examples by start+24.

Geaeration of formal specifications from KATE specifications.

We expect the output of our system to be specifications written in languages such as
Gist [33], RML {27], Draco [35], and ORBS [19].

What we propose: We have argued that even with a system like KATE, building a
correct specification often requires feedback from the implementation process. Up
until now, we have been manually translating KATE problem descriptions into com-
pilable code to get this feedback. While this is painful and sometimes inaccurate,
we feel it is less important to automate this backend function than the specification
acquisition functions discussed above. Our plan is to wait until the third year before
addressing this problem in detail. As a benchmark, we will likely choose Gist as the
target language. However, we see a collaborative effort of building a conference
organization domain model for Draco as an approach worth pursuing as well. If suc-
cessful, this could lead to a very small gap to bridge for our specification generator.

Research plan: We will begin to build a Gist backend at start+24. We expect to be
able to generate Gist code by start+38.

We believe demonstration systems, even if they do not fully implement all the goals of a
project, are useful (c.f. KBEmacs [47]). Hence, our goal is to have a working demonstra-
tion system early (start+12) with more elaborate demonstration systems at one year
intervals.
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9. Related Work

In previous sections, we have attempted to tie in related research projects within the
context of particular aspects of our proposal. We will not discuss those projects further
here, but instead point the interested reader to appendix D. In this section we will dis-
cuss two topics that we believe need further emphasis. The first places our work in per-
spective and makes arguments for its significance to the problem of software develop-
ment in general. The second discusses work in the area of learning that we think has
great potential for our research.

9.1. A proposal for a KBSA

We find interesting the close similarity between the functionality Green, et. al. [26] see in
the Requsirements component of a Knowledge-Based Software Assistant (KBSA) and our
proposed system:

“Requirements will be acquired by KBSA via dialog with end-users. These end-users
will define and modify the requirements and behavior of their desired system by a
combination of high-level, domain-specific requirements languages, examples, traces,
state-transition diagrams, graphics, and so on, in whatever mix they find comfort-
able. The process will be a mixed initiative dialog, where the sequence of statements
need not correspond to the organization of the final program. KBSA's role is to have
enough knowledge about requirement analysis and specific domain applications to be
able to accept and process these descriptions. The KBSA will organize the stated
requirements and incorporate them into existing descriptions. It will notice incon-
sistencies and missing parts of the requirements, and suggest remedies, fil in pieces,
and point out tradeoffs whenever it can. The KBSA will also, on request, describe
the current state of the requirements specification in natural language, graphically,
or by simulating behavior of the system as much as possible. The KBSA will help
integrate new requirements into an existing requirements specification and will use
knowledge-based program refinement techniques to help transfcrm these require-
ments into executable specification lanzuages.

Knowledge-based tools for requirements analysis will have a high payoff... with

most of the human effort in software development eventually going into this pro-
cm"

9.2. Theory formation

Tom Dietterich (see appendix A) is working on a system that learns UNIX commands by
building theories, testing them, revising them, repeating the cycle. He proposes three
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types of experiments that seem close to our notion of building up a problem description
and then testing it:

(1) Ezploration ezperiments involve trying a new situation that the theory makes no
predictions about. This is similar to our use of example generation to fill in holes in
the current description.

(2) Confirmation ezperiments test a situation that the theory makes predictions about,
but predictions are built on plausible inference. This is similar to our notion of ver-
ifying that cliches, presented on partial matches and accepted by the user, actually
fit the problem.

(8) Discrimination ezperimenta attempt to lead credence to one out of a set of compet-
ing theories. Although we showed no examples of this type of problem, it is clear
that more than one cliche may be a candidate given partial matches. We expect
results of Dietterich's work here to be of major value to this selection problem. It
would also seem to contribute to focus of attention type of control problems in the
system.

All in all, we expect this work, along with Downing's (see appendix A), will have a major
impact on our work of example generation discussed in section 7.3.

Also related to our work is DeJong et al.'s (1985) use of experimental design to refine
partial theories of real-world phenomena. But while their system designs experiments
after noticing discrepancies between the world model and the real world, ours will do so
to resolve potential, implicit difficulties in the current conference specification (the
system's partial theory). Predefined models of general conferences will aid recognition of
these user-unforeseen problems. Delong experiments to help the computer model con-
form to the natural world, while we will experiment to help the user refine his conference
specifications in accordance with the computer’s common sense and general conference
knowledge. They experiment to explain problems. We will experiment to point them
out.
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12. Appendix B - The Conference Organization Domain

There are three principal reasons why we have chosen the conference crganization
domain. First, it ties in with our work on analyzing problems of resource management
and transportation, two domains we have analyzed as part of our effort to catalog
specifications. In particular, we have built up representations of academic departments
that includes people, rooms, equipment, and constraints on assigning resources. We have
already begun to map this work onto the conference domain. Our work on abstracting
transportation systems ties in with our need to worry about the transportation of people
among sessions, special events, airport, etc.

The second reason for choosing this domain is that it is one of a woefully small set of
common problems studied in specification research. Up to now, it has been used to test
the representational power of proposed specification languages. We are proposing to use
it to test the ability of an automated system to help build a specification in these
languages. Because others have worried about specification issues in this domain (c.f.
{37]), we hope to gain from their experience. It also allows us to preview what type of
target we must shoot for as output of the KATE system.

The third reason is that the conference domain is of the right complexity. It moves up
from the primarily mathematical domains studied traditionally. It is somewhere between
programming-in-the-large and programming-in-the-small — right where we should be
given the state-of-the-art of knowledge-based specification tools.

As a final note, we have an expert conference organizer in our department in the form of
our chairperson, whose recent efforts include the Foundation of Computer Science
(FOCS) conference in Portland, and the summer workshop on Graph Theory held in
Eugene. He will be one of our protocol subjects.

12.1. Useful soffware

Below we list a sampling of software components that we might expect to be produced

for the conference domain!®,

e  Maintain attendee lists for masn conference events. Will include registration lists
and meal lists.

e  Maintain resource lists for special conference events. Will include special attendees
list, special event lists.

WWe reiterate that our research is coacerned with the production of the formal specification of thia soltware, 2ot ite
desiga aad implementation.
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Check-in registrants.

Check-in apecial-case attendeea.

Maintain scasion achedule.

Maintain meal achedule.

Answer questions about local restaurants and enter!1inment.

Provide message handling. May be simple (give room number, print message on
board), or more involved (she is giving a talk at 1100, and is attending the banquet
Tuesday night, and is in room 23). Store message for record.

Track submitted papers.

Referee management. List of referees, what they’re specialities are, what papers
they have been assigned and when, number of dun notices sent.

Conference committee management, List of committee members, what conference
events they are responsible for. :

Maintain checklist of organizational milestones. Conference announcement/call-for-
papers, submission deadline, acceptance deadline, accommodations, meals, etc.
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14. Appendix D - Extended Discussion cf Related Work

This appendix supplements section 9. It discusses in more detail the relatica of work
mentioned in brief in the main portions of this proposal.

14.1. The SAFE project

The SAFE project was an attempt to translate aatural language descriptions of a prob-
lem into a formal specification. A system was built that could take a parenthesized
English description of a message routing system, and convert it into a more formal pro-
ceas representation. As Balzer notes in [4], the work on SAFE spawned the work on Gist.
Balzer further notes that the Gist spawn was inevitable: the SAFE project needed a for-
mal specification language to target its output. Our work on KATE shares the goal of
SAFE in accepting an informal problem description and building a formal specification!.
However, our approaches are quite different. SAFE was a batch compiler of “complete”
specifications. In essence, its concern was less with the specification construction process
and more with the specification translation process. Further, SAFE was meant to be a
domain-independent tool. Its knowledge was in the general area of process control. It's
main power was automatically disambiguating its English input. It did this by using a
powerful form of symbolic evaluation. With KATE, our focus is on interactive problem
solving. This brings with it a central concern for the specification process (c.f., {25]). We
also expect to rely less on full blown symbolic rcasoning, and more on intelligent genera-
tion of verifiable examples, as discussed in detail in section 7,3. In summary, we would
hope to be able to use results from SAFE in automating portions of KATE'S inference
machinery. However, we believe that automatic (and behind the scenes) reasoning must
be understandable by and verifiable with the user.

14.2. Specification Refinement

More recent work out of ISI plays a much more central role in our research. In particu-
lar, Goldman's and Feather's work on specification refinement {25, 17}, forms a key com-
ponent of KATE. Goldman lays out three axes along which refinements take place: struc-
tural, temporal, and amount of coverage. These are the main drivers of our specification
aequisition process.

Balzer has defined an editor [3] for maintaining knowledge bases that provides com-
mands for adding, deleteing, and modifying frame-like objects. The system relies on an
explicit model of class and attribute structure to analyze what the ramifications of a

M 13 jome sense, car work compietes the SAFE crcle. After struggling for the last six years i building Gist
specifications, we pee the need for a specification assistaat.
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change will be. In essence, Balzer's work attempts to lay the underpinniags for modify-
ing a knowledge base. We expect that results coming from this work can te used directly
in our Glitter-based refinement tool, and as a =econdary aid to ous symbolic evaluztor.

14.3. Gist Paraphraser

Another IS project that is of interest to us is Swartout’s Gist paraphraser [44]. This sys-
tem has an understanding of Gist syntax and semantics, and is able to produce a reason-
able paraphrase of a Gist specification if the right mnemouic terms are used; the pzra-
phraser has no understandicg of the actual problem under specification. Our attempt
with KATE is to tie the paraphrasing capability into the domain model. This will allow us
to paraphrase a problem in domain terms, and use concrete examples pulled from the
domain.

14.4. The PHI-NIX project

The PHI-NIX project at Schlumberger-Doil is an attempt to apply domain dependent
knowledge to the software specification and implementation problem [8]. As with SAFE,
PHI-NIX takes a batch compilation approach. High level problem descriptions are taken
in, and the system first translates these into a formal specification, and then maps this
specification into compilable code. During the specification process, the system’s maj-r
concern is with mapping mathematical, and some sense idealized descriptions onto physi-
cal equipment and approximation techniques. The domain knowledge comes from a sct
of rules that describe various definitions, facts, and properties in the oil diilling world.
As with SAFE, the focus is more on translation than construction. Hence, there is no
notion of interacting with the user to further réfine his or her problem: it appears that
oil drilling problems can be succinctly and completely stated. The tie in to XATE is then
in the use of domain knowledge to fill in details. PHI-NIX relies on rule-based heuristics
to guide it to a reasonable formal representation (and later an implementation) of the
problem. In a somewhat similar vein, we have experimented with building ORBS rules
for generating interesting boundary conditions for things like registrant lists (e.g.,
overflow), and session placement (e.g., walking distance, driving distance). In summary,
while our specific goals are different, we find it encouraging that the Schlumberger group
has been able to successfully apply domain knowledge to their application.

14.5. The DRACO project

Neighbor's Draco system [35]'° shares our goal of capturing domain knowledge so it can

BPeter Freeman's groap at UC Irvine has contiated the Draco work [2).
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be used in specification, but again deals more with translation than with the coastrue-
tion process. To capture the work of a domain analyst, and hence reuse that work iater,
Draco defines tools for building domain dependent specification languages. Using this
model, the analyst identifies the objects and operations of the domain, and defines a
language for representing them. Draco supplies a BNF notation, parsers, pretty printers,
and a transformation facility for optimizing a program. The semantics of the newly
defined language are defined by mapping language constructs onto other existing domain
languages within Draco. We view KATE as the front end to a system like Draco. With
KATE, we are worrying about the process of building a formal specification. Draco is wor-
ried about defining new formal specification languages tailored to specific domains. In
many ways, this match looks a good one. If we can tailor a conference organization
language through Draco, the bridge from KATE to Draco could be a short ope.

14.68. Studies of the design process

Adelson and Soloway have studied the role of domain experience in software design f1).
They produced protocols of expert designers working with familiar problems in familiar
domains, unfamiliar problems in familiar domains, and unfamiliar problems in unfamiliar
domains. Although the Yale group's experiments differ from our protocol experiments in
significant wayn (e.g., they did not involve an interaction between designer and user), we
believe their results lend some secondary support to our approach. In particular, we
found the following of interest. Their designers’ papersketching of the problem as a
process hierarchy looks transiatable into our state-transition diagrams. Their designers’
behavior of gradual refinement is supported, at least partially, by our model of
refinement. Another behavior they saw as common was that of construction of “slippery
road" signs'® that warned of later trouble at certain points. In KATE, these would be
represented as part of the analyst's knowledge, i.c., they are part of the domain model.
Finally, their results showed that mental simulation occurs most often on unfamiliar
parts of the problem. We argue that this at least partially supports our notion of
system-driven symbolic evaluation of new or modified portions of a problem.

The DESIGNER project at CMU [42] is studying the use of symbolic evaluation in
designing geometric algorithms. Their work is similar to ours in that 1) both allow
evaluation of partial problem/algorithm descriptions, 2) both are based on a graphical
process language, theirs dataflow, ours state-transition, 3) execution centers on a rule
based interpreter, OPSS5 in theirs, ORBS in ours, and 4) both attempt to use “errors” to
further guide the process, design in theirs, acquisition in ours. The main differences are
in the levels and overall goals. The DESIGNER system attempts to automatically gen-
erate a compilable algorithm given a complete specification, i.e., it is another approach
to Automatic Programming. We are interested in the acquisition and construction of the

¥Our term, not theim.
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specification in the first place, e.g., is the specification handed to DESIGNER complete,
will it handle the known sticky cases in geometry problems!?

Mostow's recent overview paper on knowledge-based design [34] has provided many use-
ful insights into our work on specification construction (nee design).

14.7. The ROGET project

The ROGET system (8] perhaps comes closest to our goals in this proposal. ROGET, by
system-driven questioning, allows a user to build what is referred to as the conceptual
structure of an expert system for solving diagnostic problems. ROGET firsts asks the
user to classify his or her diagnostic problem, and then presents the user with a textual
description of the main tasks the application will need to invoke. After this, the user is
asked, task by task, if any modifications are necessary. Next, the system warns the user
of known hard implementation problems given the final task structure. Finally, ROGET
generates an EMYCIN skeleton that handles the tasking specified. Even though ROGET
addresses only a part of the problem of building a diagnostic expert-system, it presents
interesting ideas. ROGET’s knowledge of what is hard to implement in EMYCIN
corresponds to KATE'S implementation knowledge. It's built in knowledge of the primi-
tives of building tasking structures is the type of domain knowledge we are advocating.
The major functional differences —~ no symbolic evaluation, no notion of gradual
refinement, no critique of tasking from a domain viewpoint — point out differences in
goals: ROGET, as it stands now, remains a tool for translating portions of an expert's
diagnostic problem into machine terms, hence bringing it closer to an EMYCIN imple-
mentation; KATE attempts to acquire a problem by presenting cxamples, allowing prob-
lem abstraction and refinement, pointing out special cases and error conditions, actively
analyzing the user's construction of the description, in essence making sure that the
right problem is specified and solved.



