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1. Introduction

As with the notion of sequential computation, the study of parallel computation
naturally leads to the study of the inherent intractability of problems with respect to
their parallel solutions. QOur approach is to look at complexity classes defined in
terms of the classical measures on both sequential and parallel models of computa-
tion. By examining the structure of these classes, we can gain some insight regard-
ing the nature of these types of computation.

Our paralle] model is a uniform bounded fan-in Boolean circuit family, and in
requiring fast parallel time we restrict the circuits to have polynomial size and poly-
log depth. These restrictions yield the well known complexity class NC (see [Pi79]
and [Co83]). In section 2 we provide the reader with a more complete definition.
And there we will formally define relativized parallel computation, where the circuits
have access to an arbitrary oracle set. The notion of relativized depth introduced is an
interesting and matural complement to that of relativized size, found in [Wi85b].
Sections 3 and 4 discuss uniformity and what it means for a circuit family to be uni-
form in the presence of an oracle.

Section 5 shows to what extent known results will relativize. For example, the
NCA hierarchy is seen to be in P# for any oracle A. Also, nondeterministic log-
space relative to A, NL4, is contained in NC'§ for any A. And we show that NC, is
properly contained in log-space, L, if and only if there exists an oracle A such that
NC4{ is properly contained in L4,

The results of section 6 are mainly concerned with questions of depth. There is
an oracle A so that the NC4 hierarchy collapses - all levels are equal. On the other
hand, there is an A so that NC# is properly contained in NCf,; for all k. As a
corollary, one obtains that NC4 is properly in PA. Surprisingly, we can construct an
oracle A so that for any k, NC{ contains a set not in NSPACE#( O(n*)). A corol-
lary of this, clearly, is an A where NL4 is properly in NC£.
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Although the method of relativization has been applied quite successfully to
classes defined in terms of Turing machine time ([BGS75], [BS76], [Ya85]), an
appropriate definition of relativized Turing machine space has been difficult to
derive. I. Simon [Si77] examines many different definitions, but the two methods
that initially attracted the most attention were characterized by how the space bound
was applied to the query tape. One could either subject it to the space bound or
exclude it. The former may initially appear the most natural, though for certain A,
A@L#, certainly not a natural situation. On the other hand, if the query tape is
excluded from the space bound, then for some A, NL4 @PA, and Savitch’s theorem
[Sa70] will fail to hold [LL76]. Our goal is to find a measure of relativized space
which retains as many known containments as possible.

Our inability to relativize statements such as NC,CL while retaining NL CNC,
is somewhat unappealing. One way to avoid this is to provide a more sophisticated
definition of relativized space. Section 7 provides the defirition of oracle stacks,
upon which a space bounded TM can push partially constructed queries. sl and
aNL become the oracle stack versions of relativized L and NL. Section 8 provides
convincing evidence that this is, with respect to depth, a more reasonable measure of
relativized space. We see that for any oracle set A, NC{! CsL# and sNL4 CNC%.
Proving that NLAC NC# remains open.

In summary, the main results to be covered are as follows:

(i) NC, C L iff there is an A such that NC{f C L4
(ii) A, NC{ =NC§ = --- =NCA =PA

(iii) A, Ncf cNcg C --- CcNCACPA

(iv) JA Yk, NC{ - NSPACEA(O(n*)) #£ 0

(v) VA, NC{ C sLA

(vi) YA, sNLA CNC$

2. Cirenits and Oracles

Our model of parallel computation will be the Boolean (or logical) circuit. We
can think of a Boolean circuit as being an acyclic directed graph with labelled nodes
representing gates of the type and, or, and not, computing the appropriate unary or
binary function of the inputs. These gates have fan-in at most two. As the circuits
will be used to accept sets, rather than to compute functions, they may have some n
inputs, but only one output. The output will indicate whether the circuit accepts the
given input string of n characters over {0,1}.
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The size of a circuit is the number of gates it contains. Alternatively, one may
wish to count the number of edges, as we do later. This would at most double the
size measure. The depth of a circuit is the length of the longest directed path {rom
an input edge to the output. In general, we view the size as a measure of the
hardware required and the depth as a measure of the parallel time. One will agree
that a circuit having depth which is a fixed power of the logarithm of the length of
the input string is indeed very fast.

A set L is defined to be in SIZE(8(n)) if and only if there exists a circuit fam-
ily {a,} such that for all n, a, accepts only those strings in L of length n and the
size of a, is bounded above by s(n). Similarly, L is in DEPTH(d(n)) if and only if
there is a circuit family as above, but the size restriction becomes a depth restriction,
limiting each &, to have depth bounded above by d(n).

The way we compare complexity classes is through the use of oracles. Let A be
some subset of {0,1}*. A computation is relative to the oracle A if we allow it to be
determined in a single step whether an arbitrary string z is a member of the set A.
This is referred to as querying the oracle. (Think of having a black box which can
answer any oracle question.) In a sense, these oracles provide a sort of generalized
computational setting. If one can show that a particular relationship between two
complexity classes holds relative to some oracle, then one gains intuition as to the
structure of those classes. Furthermore, a proof that the negation of that relation-
ship is in fact the case without oracles must satisfy certain special properties. In par-
ticular, that proof must not relativize, that is, hold in the presence of an arbitrary
oracle.

Thus, we will want to allow the circuits access to an oracle set. To accomplish
this, we use the notion of an oracle gale or node. An oracle gate is a k-input, one-
output gate which, on an input z of length k, will produce the value one on its out-
put edge if and only if z is in the specified oracle set. The contribution of this node

to the depth of the path on which it lies is [loggk]. (A similar notion can be found,

see [Co83], in an NC| reduction.) The size of the relativized circuit is the number of
edges in the circuit. Some relativized comparisons of circuit size to sequential (Tur-
ing machine) time have been covered in [Wi85b]. Another type of relativized paral-
lel computation will be found in [Or84]. More recently, Buss [Bu86] has devised a
notion of relativized alternation. As alternating Turing machines can be used to
simulate parallel processes [Ru81], this also yields an intriguing approach to relativ-
ized parallelism.

Given the discussion above, it now makes sense to define the relativized classes
SIZEA(s(n)) and DEPTHA(d(n)). SIZE- DEPTH#(s(n),d(n)) is also clear, as in
[Pi79]. The sequential classes TIME“(t(n)) and NTIMEA(t(n)) have been used
many places, and are well established (see especially [BGS75]). For these, a Turing
machine has a separate write-only query tape upon which it writes the string to be
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queried to the oracle. After the query, the tape contents are erased. Measuring
space is somewhat trickier. One can require the query tape to be subject to the space
bound or allow it to be excluded. In both cases, undesirable things occur: in the
former we can have a set not be accepted in log-space relative to itself (see also
[Ang80]); in the latter we might have nondeterministic log-space not contained in P
([LL76]). Therefore we adopt the convention introduced in [RST84]. The oracle
tape is not subject to the space bound, but a nondeterministic Turing machine must
act deterministically while there is anything on the query tape. This eliminates the
mentioned anomalies. We refer to this restriction as the RST restriction.

So we define SPACEA(s(n)) and NSPACEA(s(n)) as relativized space under
the RST restriction. The following can be shown, where L is SPACE(logn) and NL
is NSPACE(logn).

Fact 2.1 L =NL if and only if, for all oracles A, L4 =NL4.

This result, from [Wi85a], is a slight generalization of a result appearing in [Si77]
and later in [RS81].

In some proofs to follow, we let <z,y> denote an encoding of the strings z
and y so that z and y are easily recoverable. Also, |<z,y> | should be polynomial
in |z| and |y| In fact, it is easy to see that it can be linear in |z | and |y| The
encoding can be generalized to handle more than two strings - for example,
<z,y,2> =<<L2,¥y>,2>.

3. Uniformity

As defined so far, there are no constraints on the complexity of building the cir-
cuit families. If the n'* circuit in a family takes exponential time to construct, one
really has not gained much. Furthermore, the fact that the n** circuit may be
independent of the {n—1)* circuit would allow a linear size log-depth family accept a
nonrecursive set. It was this non-uniformity that was exploited in [Wi85b] to allow
such a family to accept any set in A4 relative to A.

In order to avoid the uniformity issues from being decisive, we choose to make
the classes we compare essentially equally uniform. One approach would be to make
the Turing machine classes non-uniform ([Sc76],[Pi79]). The approach we use is to
make the circuit classes uniform ([Bo77],[Pi79],[Ru81]). The standard method to
force this is to require that the transformation 1°—&, be easy to compute on a Tur-
ing machine, where @, is an encoding over {0,1} of the circuit a,,.

Definition 3.1 A circuit family {a,} is 8(n)- uniform if the transformation 1* —a
(where &, is a string describing the circuit) can be performed in space
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O(s(n)) on a deterministic Turing machine.

A U(s(n)) preceding the name of a class indicates that the circuit families
involved in defining that class must be s( »)-uniform.

A widely studied hierarchy of classes of uniform circuits, NC ([Pi79]), involves
simultaneous resource bounds, measuring the size and depth at the same time. This
hierarchy is especially interesting not only because it contains a wide class of natural
and interesting problems ([Co83]) but because it characterizes that which can be
computed on fast, feasibly sized, constructible parallel models. It is most simply
defined in terms of circuits for our applications here, but can just as well be defined
on several other formal versions of parallel computation, such as alternating Turing
machines ([Ru81]).

Definition 3.2
NC, = U(logn)- SIZE- DEPTH( O(n'),0((log n)*))
>0
ES1
(Note: There is a slight unorthodoxy in our notation here. We will write NC;

rather than the more commonly used NC* to leave room for an oracle super-
script.)

Often, these classes are defined as classes of functions rather than of sets as is
done here. As classes of sets, the following containments are known (see [Co83]).

NC,CL CNLCNC,CNCCP

None of these containments is known to be strict. A goal of this paper is to use
the method of relativization to see what relationships are possible. Also, we will
investigate what one could prove with a relativizable proof technique. The fact men-
tioned earlier, for example, showed that a proof of L =NL would relativize. We will
see here that L#NL and several other relationships cannot be exhibited with rela-
tivizable proof techniques.

4. Uniformity with Oracles

If we wish to examine what can happen to NC under relativization, we must
decide on what uniformity means in the presence of an oracle. This superficially
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seems 2 bit unusual as the introduction of relativization generally makes complexity
measures non-uniform, since the oracle can be possibly non-recursive. But the issue
is how the computational devices attain access to the oracle. Relativized Turing
machines access the oracle in a uniform manner. Relativized circuits are still a non-
uniform measure with respect to the oracle.

In computing the transformation 1" —&, there are two obvious choices. We
can allow the use of the oracle in the computation or forbid such use. From one
point of view, we might want to exclude the use of the oracle. Uniformity is a
notion independent of any oracle set. It is a property of the description of the cir-
cuits, not having anything to do with the set to which they are relative. On the other
hand, though, we like to think of an oracle as providing a generalized computational
setting. In this sense, any computation should have access to the oracle.

We will define uniformity both ways, preferring the exclusion of oracle calls in
the computation of the transformation. Allowing such use we will refer to as being
weakly uniform. It turns out that here the distinction does not really seem to
matter. We generally choose the type of uniformity that will phrase the results in
the strongest form.

Definition 4.1 A relativized circuit family { a, } is s(n)- uniform, U(s(n)), if the
transformation 1" — @, can be done in O(s(n))-space by a deterministic
Turing machine without the use of the oracle.

The family {a, } is weakly c{n)-uniform, wU(e(n)), if the transformation
1" — @, can be done by a deterministic Turing machine relative to the oracle
with at most O(¢(n)) calls to the oracle.

Notice that this weak version of uniformity is indeed not very uniform. There
are no restrictions on the time or space required. This assumption of the computa-
bility (relative to some oracle} of the transformation would allow some of the oracles
constructed below to be recursive. Let us now define a relativized version of NC.

Definition 4.2 Let A be an oracle set.
wNCE =| | wU(n')- SIZE- DEPTHA( O(n*),0((logn)*))
i>20
NC{ =| ) U(logn)- SIZE- DEPTH*( 0(n%), O({logn)*))
120

wNC4 = ) wNC{ NCA =\ J NCg
E>1 E>1
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Notice that wNC# stands for the weakly uniform version of NCA.

5. Space versus Depth

Now we are able to generalize a result by Borodin [Bo77]. This is a straight-
forward adaptation of the earlier result.

Lemma 6.1 Let s(n), s: NoN, be a constructible monotonic function satisfying
s(n)>logn. Then for any oracle A,

SPACE“(s(n)) C NSPACEA(s(n))
C U(s(n))- SIZE- DEPTHA(2°0(n)) O(s(n)?)).

Proof

The first inclusion follows directly from the definitions. The second follows
from an adaptation of the proof by Borodin [Bo77].

Think of the id's of a nondeterministic computation as the nodes of a directed
graph and the state transition function as inducing edges. Unrelativized, there would
be N =29((*)} id’s. The transitive closure could then be computed in uniform
depth log?N in polynomial in N size.

Under the RST restriction, the segment from any beg-write-id to the unique
query-id following it is deterministic, and thus can be viewed as a &{n)-space com-
putable function. Since the s(n)-space deterministic functions are already known to
be in U{s(n))- SIZE- DEPTH(2°(*(*)} O(s%*(n)) ), we can precompute this seg-
ment. That is, for each beg-write-id, we can compute with an appropriately sized cir-
cuit the next query-id and the query, make the query, giving us the appropriate
answer-id. Now the situation is as in the unrelativized case. The possible computa-
tion can be viewed as a directed graph. And we have precomputed the single edge
from each possible beg-write-id to the appropriate answer-id.

QED

Hence, we have a generalization of a result mentioned in [Co83].
Corollary 5.2 For any oracle A, NL4 C NC%.

With this model, it is not necessarily true that U(s(n))- DEPTHA(s(n)) is
contained in SPACE#(s(n)) as is known to be true in the unrelativized case. This is
because a circuit can use the outcomes of up to 2°(*) queries to formulate a next
query, whereas an s(n)-space bounded Turing machine does not have the space to
remember any more than s(n) such outcomes. For this model, the best we can do
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is bound a circuit family’s size by Turing machine time, independent of the family’s
depth.

Lemma 6.3 Let ¢(n), s(n), £,8: N—N, be constructible monotonic functions satis-
fying ¢(n)>s(n)>log t(n) >logn. Then for all oracles A,

U(log ¢(n))- SIZE- DEPTHA(t(n),s(n)) C TIMEA(¢(n)°M).

The proof of this is straightforward, depending on the fact that the circuit value
problem is in P, and remains so in the presence of an oracle. The result looks weak
given what we know of the unrelativized case, but it cannot be stated any more
favorably. We cannot improve the space bound below ¢(n)?{1), as a generalization
of theorem 6.4 would show, since one query may depend on t{n)“(}) other queries
in the circuit. These outcomes must be written down on a worktape before finally
being transferred to the query tape, thus forcing the bound.

This does at least show that the NC hierarchy cannot be too powerful.
Corollary 5.4 For all ¥>1 and oracles 4, NC{A C U(logn)- SIZEA(n*) C PA.

The next step would be to exhibit separation of various classes. For some, this
is not always possible as an oracle separating two classes might prove that they are
indeed not equal. We can get a similar result for NC; and L. Unfortunately, the
fact that NC,CL does not relativize, as we shall see in theorem 6.4. But we can
show the following.

Theorem 5.6 NC, =L if and only if, for all oracles A, LA C NCi.

Proof

One direction is trivial if we let A be the empty oracle. So assume that
NC, =L and let A be an arbitrary oracle. We let S be a set in L4 and will show
that § € NC{.

Since S € L4, it is accepted by some deterministic Turing machine M which
operates in space O(logn). If we were to run M on an input z of length n, because
M operates in log-space, there could be at most O{n*) answer-id’s, where an
answer-id is an id of the machine after a query has been made and a response
received. An answer-id o spawns a next query @. So the language

{ <z,a,i,d> : the i bit of the query caused by a on input z is d }
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is in L, and, by assumption, in NC,;. So we could hook up |@]| circuits to get an
NC, circuit 8 computing the mapping (z,a) — @. Remember that |@ | can be at
most polynomial in n.

Now consider the O(n") answer-id's ay,ay, * * * @ For each of these ¢;, we

cnk.
can construct an NC, circuit which, with z, will output the next query ¢; that will be

made after the answer-id ;. This we do by fixing the appropriate input o; to 8.

Let us define a non-relativized version of §, § = { z#y | M accepts z using y
as an oracle string - if answer-id o leads to a query @, then @ € A is interpreted as
the o™ bit of y - |y|=c|z|¥ }. Since S is in L, it is also, by assumption, in NC,.
So there is an NC, circuit v accepting it. If the string y is appropriately fixed, then ~
can be used to accept 5.

To construct an NC{ circuit for S, we describe three levels. The first level is
en® copies of §, each with one of the answer-id’s a,, * - * ,a_,+ fixed as input and all
having r as an argument. This level has depth O(logn) as § is an NC, circuit.

The second level simply consists of queries to the oracle of each of the outputs
of A from the first level. As each of those has length at most polynomial in n, the
depth of this level is O(logr).

The third and bottom level is the circuit 4 with input z and y restricted to the
outputs of the queries made at the second level. That is, the a** bit of y is res-
tricted to be the answer to the a'* query at the second level, which in turn is the
answer to the next query M would make when in answer-id « on input z. And as
we know that  is an NC, circuit, we have that this level has depth O(logn).

The total depth of this circuit accepting S is O(logn), and it also has polynomial
size. Uniformity is seen in the fact that to construct it, all one must do is generate g
and 4 - both can be done uniformly - generate all possible answer-id’s a,, * - - ,a .,
and describe some fairly trivial connections. See figure 1 for a diagram of the circuit

layout.
QED

As a notational convention, we allow C to denote proper set containment.

Corollary 5.5.1 NC, C L if and only if there exists an oracle A such that
LA-NC{ #4.

Corollary 6.6.2 NC, C L if and only if there exists an oracle A such that
NC{ C LA
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The second corollary is in a more pleasing form. The first points out an
interesting approach to separating NC; from L. If we could construct a single oracle
A for which L# contains one set not in NCf, then we have a proof that NC|CL.
This situation is similar to that mentioned earlier regarding L. and NL. There we
saw that if one had an oracle A such that LACNLA4, then one had a proof that
L CNL. In both these cases, NC, versus L and L versus NL, a proof of equality
can relativize, because in that case no oracle witnessing inequality can exist. Notice
that these results are similar to the approach of positive relativization taken in
[BLS84] and [BLS85].

A natural oracle one would want to build is an A such that NC{ C NL4. This,
however, would be a proof that NC; C L or L C NL, due to theorem 5.5 and the
similar relationship of L and NL.

6. Depth

The NC hierarchy is not known either to collapse or to have full structure. In
this section, we will examine what relationships are possible and see what we could
hope to prove with standard techniques.

First, we will show a certain structural analogy to the polynomial hierarchy
([St77]). 1f the polynomial hierarchy is equal at level k, that is, if Z,=I1[, then the
hierarchy collapses to level ¥. NC has a similar structural property.

Lemma 6.1 For k>1, if NC, =NC,,,, then NC =NC;.

Proof

Assume that NC, =NC;,,. It suffices to show that NC, ., =NC,,,, for the
desired result will then follow by induction. Let L € NCy,,. L" is accepted by a,
an NCy,. circuit. Break «, into [logn] levels, each of depth O(logf*'n). We will
want each of these levels to be a uniform circuit. To show uniformity, we note that
transitive closure is in NC,. So we could build a uniform circuit which, on input ¢
and a,, would output a description of an O(logf*'n) depth circuit for the i* level,
which could then be simulated by another circuit. So each level can be viewed as an
NCy 4 circuit computing 2 function f;, ¢+, ..., flogn]. The final value is the com-
position of these functions -- fp,.,] can be viewed as 0-1 valued for set acceptance.
So the language [ = { <d,{,0",y> |the d* bit of f;(y), f; induced by a,,is1}is
in NCp,,. By assumption, then, L is in NC;. So we can uniformly construct an
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NC, circuit for each f;. By attaching the outputs of the circuit for f; to the inputs
of the circuit for f;,,, clearly a uniform operation, we obtain an NC, ;. circuit for L.

QED

It is generally believed that the hierarchy exists with full structure, or at least
that NC;5£NCy7%P. We can show a relativized collapse of this hierarchy, implying
that any proof of separation must be unrelativizable.

Theorem 6.2 There is an oracle A such that NC{f =L4 =NPA,

Proof

The proof of this is straightforward. Let M ,M,,... be an enumeration of the
nondeterministic Turing machines with polynomial time bounds. We define a com-
plete set for NP:

K(A) ={<i,z,0"> : M7 accepts = in at most n steps }.

As in [BGS75], A can be constructed so that
y € K(A) <> yolvle A

For this A, then, § € NP4 implies that both § € L4 and S € NC{.
QED

For other classes, showing separation is not quite as onerous. We can exhibit
full structure in the NC hierarchy, as has recently been shown for the polynomial
hierarchy [Ya85].

Theorem 8.3 There exists an oracle A such that

Vk>1, NCA, - wNCA D

Proof

First we describe a language L;,,(A) which for all A is in NC{,,. What fol-
lows is an algorithm to accept it, after which we can convince ourselves that a circuit
family of the appropriate size and depth will accept it as well.

Input z, ff=n
K « liog"*‘ln-‘
doi+—1to K-1
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if :rO”“'lb,-_l te bl € A then b.’ —1
else b; — 0
end
if z0* Kby ,---b, €A
then accept
else reject

If we build the obvious {but wrong) circuit sequentially, we would find that each
of the Iiog"“n.l queries would incur log2n depth, resulting in an O(log**2n) depth

circuit. But a circuit could determine [logn] bits b; at a time by testing all, polyno-
mial in number, possibilities in O(logn)} depth. Only O(log* n) such levels would be
required. The construction of the circuit is both uniform and independent of the
oracle.

As usual, the oracle will be constructed in stages. A stage will be indicated by a
pair <k,i>. At stage <k,i> we will ensure that the ¢ wNCf circuit family can-
not accept Ly ,(A). The i wNC{ circuit family will be the one described by the
deterministic Turing machine M4, ;5 . Let us consider the circuit a constructed by
M‘ik',} on an arbitrary 1" - recall that it makes at most n° oracle calls, for some
integer c.

We need to partition « into levels. For some string z, fixed later, let us con-
sider only those queries made by a of the form zz, where |z| =n. The circuit a is
partitioned into independent query levels as follows: queries at the first level are all
queries that depend on no other queries, queries at the second level each depend on
some query at the first level, and so on. In general, then, any query at level m will
depend on some query at level m-1 (and possibly lower numbered levels as well),
but it will not depend on any query at levels numbered m or higher.

Notice that each query node in level m can be affected by a node in level m-1,
for otherwise it would be in level m—1 by definition. So there is a path to each m
level node from some m- 1 level node. Hence, a can have at most O(log*~1n) lev-
els. Otherwise there would be a path containing w(log*~'n) query nodes, each of
which incurs depth [lognl. The depth of & would then be w(log*n), contradicting
the fact that it is a @ NC£ circuit. So, for some d, o can have at most d log*~!n lev-
els.

Now we can describe the construction. Make n large enough so that it is larger
than the length of any string queried at any earlier stage and glog’n/d jg larger than
the sum of the size of @ and »°, the maximum number of strings queried in the
construction of a. Also ensure that 2" is larger than n°. Finally, let us assume that
n is of the form 24! for some {.

Choose an z of length n such that for no z of length n was zz queried in dur-
ing the construction of a. This is possible since 2* >n¢. In the construction, no
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string relevant to the membership of z in Lg (A) was queried. So establishing
whether z is to be in Ly ,,(A) by adding strings of the form zz to A will not affect
the behavior of the machine constructing a. Therefore, a will be unchanged by any
such placement of z.

At this point we proceed in steps. Set the input to & to be z. At each of the
d log*~!n steps, one step for each level, we will fix

log* *1n 2

e i 1§g*-ln =log?n/d

bits of the final string put in A. Step m proceeds as follows:
Let { =(m-1) log®n/d.
[Note: In the construction we will have ensured that no string of the form
zzb; - - - by, |z] =n-1, is queried at any level 1 through m-1/]
There are 2'°6*/4 strings z0" Whkiyp, - -- b, where |y|=log?n/d. For
some choice of y, the string is not queried at this or any previous level.
Furthermore, it can have the property that no string of the form zzyb; - - - b,
|z] =n- |y|-1i, is queried at this or any previous level. So for j=1 to
log*n/d, where y =Yiog2ad * ' Y1» PUt mO“‘-"”'.lyJ-_l cecgyby oo byinto A
if and only if y; =1.

Consider the strings placed into A at level m. By the note, which is an induc-
tive invariant, none of these strings will have been queried at any earlier level. We
already know that the machine which constructed a will not have queried any of
them. Possibly some of these strings will be queried at this level, but placing these
strings into A here will affect only later levels, not other queries made at this level.
The steps of the construction proceed as described up through the last bit, at which
point z0* K1b,_, -+« by, K =log**'n, is put into A if and only if & with the ora-
cle A rejects z.

It remains to show that placing this last string into A will have no effect on the
construction of A so far. This we do by showing that it could not have been queried
earlier. Suppose it was queried at level j. Where i;_, = (j~1)log®n/d and i =
jlog®n/d, let y =b; +-b;_ 4 and 2 =0"Kibp_ ,--- b; +1- Then a string of the
form :rzyb,-’_l +++ b, is queried at level j. This contradicts the way in which y was
chosen at step j. No string of this form is queried at this level, for any z.

So at stage <k,i> we have ensured that the i wNC{ family will not accept
Ly (A)ENCH,,. Hence, the diagonalization is complete.

QED

Notice the strong use of uniformity here. There is a set in each uniform level
not in the next lower weakly uniform level. Hence, both the uniform and weakly
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uniform hierarchies can have full structure. This allows us to change the definition
of uniformity and know that there can still be full structure.

We could almost change theorem 6.3 to separate NC{,, from non-uniform
NC{:. Notice that the uniformity of the lower level was hardly used. The problem is
one of countability - there is an uncountable number of non-uniform polynomial
sized poly-log depth circuit families. So in a countable number of steps we would
not be able to ensure that each family does not accept a particular language. The
weak uniformity was used here only to guarantee that there would be a countable
number of circuit families of concern.

Lemma 6.3.1 Let A be the oracle constructed in the proof of theorem 6.3. Then
P4 - wNCA #£9.

Proof

Suppose that P4 C wNCA for the A from the previous proof. In that proof,
recall the series of sets L,(A) having the property that for all k, L, ,,(A) ¢ wNCZ.
Each L,(A) was seen to be in NC{, so there exists a series of circuit families {o*},
the k* one being an NC{ family accepting L;(A). Let us define the language

S={<k,z>: af‘,l accepts z relative to A }.

S is easily seen to be in P: there is an algorithm for it given in the proof of theorem
6.3. By our initial supposition, SEwNC#, so there exists a k such that SEwNC{.
But by using a wNC circuit family for §, one can easily construct a wNC{ circuit
family for L, ,,(A), which we know to be impossible. Hence, S cannot be in wNC{
for any k.

QED

Corollary 6.3.2 There is an oracle A such that
NC{ C NC$ C --- C NCA C PA.

This follows from theorem 6.3 and lemma 6.3.1 taken with corollary 5.4.

Corollary 6.3.3 There is an oracle A such that
wNG"l“ C wNC'zA C --- C wNCA.
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As mentioned earlier, the fact that NC'|CL is not always true in the presence of
an oracle.

Theorem 6.4 There is an oracle A such that for all £2>1,
NC{ - NSPACEA(O(n*)) £ 0.

Proof

First we describe a series of languages Sp(A) which for all A are in NC{. To
determine if z € S,(A), |z |=n, and we will assume that n =2¢, look at all strings
of the form 0™y of length n where |[y|=(k+1)logn =(k+1)i. Query all
g(k+1)i k+1 such strings and let 2 , |z| =n**1, be the bit string of answers. At
the second level of the circuit, query z. If this string is in A, output 1 (accept), oth-
erwise output 0 (reject). The size of the circuit is n*¥*24nf+14]1 and its depth is
(k+2)logn. That the uniformity condition is satisfied is clear.

=n

See figure 2 for an outline of a circuit accepting S,.(A).

We will construct an A so that S, {A) is not contained in NSPACE4( O(n*)) for
each k. This is done in stages. Let {M;} be an enumeration of the nondeterministic
Turing machines which operate under the RST restriction. Now at stage <+,c,k>
of the construction, we ensure that M7 does not accept S, (A) within en* space. Let
us assume that M ;. is the machine M; restricted to en® space. In fact, we
could choose that as the definition of the encoding <1,¢,k>.

Let us examine a machine M; operating in space cn*. Now there can be only

20(%') id's. So in particular, there are at most 2“"}, for some d depending on ¢ and
¢, beg-write-id’s, id’s where the machine begins to write on the query tape and thus
act deterministically. This is true for all oracles. Each beg-write-id uniquely deter-
mines a query. So we can say, and this is a key point, that for a fixed z of length n
there is some d such that

card(| ) {v |M<A;-',_.’k> queries y on z }) < gdn*
A

Thus, there are only g dn' possible queries over all oracles.

Construction of A
Stage 0: A «— 0

Stage <f,¢,k>: Let d be the constant such that on an input of length n there are
at most 24" possible queries by M ;. ;. Choose n of the form 27 large
enough so that it is larger than the length of any string earlier queried and
2n'*" 5 24" So there must exist a string z, |z|=n**!, which is not queried

by M; on 0" for any oracle. Choose such a z. Put 0™y of length n,
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|y | ={(k+1)logn, into A if and only if the y* bit of z is 1. Now run M7 on
0" within space cn®. Put z into A if and only if it rejects.
end construction.

Since M; could not have queried z for any A, placing it into A cannot change
the behavior of M'A on 0". Thus we have shown, for all 1, ¢, and &, that there is an
n such that 0*€5,(A) if and only if MA rejects 0® within space en*. Notice that not
only have we shown that NC{i- NSPACEA(O(n*)) can be nonempty, but that it can
contain a tally set, which is a set of words over a single character.

QED

This implies that our model is not quite as natural as we had hoped. Below we
propose a natural relativized model for which NC,CL holds. Theorem 6.4 together
with corollary 5.2 does give us the following.

Corollary 6.4.1 There is an oracle A such that NL4 C NC%.

7. Oracle Stacks

Theorem 6.4 shows that the contazinments NC,CL and, in general,
U(s{n))- DEPTH(s(n)) CSPACE(s*(n)) do not relativize. The fact that NC,CL
did not relativize was due to the fact that an NC, circuit has a kind of built in
memory of the outcomes of all the queries: the ocutput lines from each of the query
nodes provide this. So in such a circuit, one query can depend on the outcomes of
w(logn) previous queries. No log-space machine has the memory to accommodate
this information.

The remedy, then, is to allow the space bounded machines to have more than
one query tape, on which partially constructed queries can be stored. We would
have to settle on a structure for the collection of tapes and a method, if desired, to
measure the space usage. A model along these lines is found in {Or84], where ran-
dom access is allowed to the tapes through an index tape. Only the index tape was
included in the space bound. This approach is adopted in [Bu86] when discussing a
variant (called the m variant) of relativized space, with the modification that the
space will be the sum of the logarithms of the lengths of the queries. This is essen-
tially the measure we adopt, but the query structure will be different. Here, we will
put the partially constructed queries on a stack, as suggested by Cook [Co84] and
introduced in [Wi85a]. This structure takes advantage of the essentially tree-like
nature of the circuits.
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Definition 7.1 An oracle stack is a push down stack replacing the query tape, each
entry can be thought of as an independent query tape. The machine is allowed to
write onto the top entry, possibly adding to what is already there, but is not allowed
to read it. When the machine is finished writing, it can either push, at which point
the tape is pushed down and the top tape becomes empty, or it can query, which
causes the contents of the top tape to be queried and erased, and the stack to be
popped. If the contents of the stack are the partial queries ¢;,¢5, + * * ,q;, the space
used by the stack is

k
Y- maz(loglg;|1).
yux]

Notice that a machine whose stack space is bounded by s(n) can query strings of
length at most 2°(n).

Defining the use of the stack is not a problem for deterministic machines, but
for nondeterministic ones there may be several possibilities, especially for the res-
tricted versions. The unrestricted version is straightforward: where s(n) is the space
bound, for the nondeterministic Turing machine to accept an input of length =,
there must be an accepting computation which uses at most s(n) work space and
stack space. Under the RST restriction, we must decide at which points the machine
must act deterministically. If it is to be between starting to write on the stack until a
push or a query, then this turns out to be no restriction at all. The machine could
write 8(n) nondeterministically chosen bits onto a work tape, copy them onto the
stack, push, query a dummy string (causing a pop), copy more nondeterministically
chosen bits onto the stack, and so on. So we will force the machine to act determin-
istically from the point at which it writes onto an empty stack (entering a beg-write-
id) to a point at which the stack is again empty.

Definition 7.2 L is in SPACE?*(s(n)) if and only if it is accepted by a Turing
machine relative to A with an oracle stack which uses space at most O(s{n)}. L is
in NSPACEA(s(n)) if and only if it is accepted by a nondeterministic Turing
machine using an oracle stack whose space usage is at most O{a(n)) under the res-
triction that the machine may make nondeterministic moves only when the stack is

empty.

Definition 7.3

sL4 =| ) SPACE#(c logn) NL# =|j NSPACEZ(c logn)
ezl ezl
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8. Faithful Containments

The major appealing feature of this model is that when simulating a circuit fam-
ily by a Turing machine, the latter's space does not blow up relative to the former's
depth.

Theorem 8.1 For any oracle A and space bound s(n),

U(s(n))- DEPTHA(0O(s(n))) C SPACE(O(s(n))).

Proof

The proof of this is fairly simple. The Turing machine can derive the relevant
parts of the circuit in O(8(n)) space due to the uniformity condition. And as in the
unrelativized case in [Bo77], it will perform a depth first search of the circuit starting
at the circuit's output edge. As bits of a query are computed, they are written on a
query tape. If determining further bits of the query involves evaluating a subsection
of the circuit, then the partial query is pushed and stored while the evaluation con-
tinues. Since the sum of the logarithms of the size of the queries on any directed
path from an input edge to the output edge is bounded by O(s{n)), so bounded will
the space used by the stack be.

QED

Corollary 8.2 For any oracle 4, NC{ CsL4.

So by strengthening the space bounded Turing machines, we have ensured that
NC{ CsL#. What is not clear is whether sNL# will be contained in NC%, or even
NC#. In the proof of theorem 6.3 there were constructed some sets L,(A) which,
for some A, are not in NC{* , (but are always in NCf). These L;(A) fortunately
do not seem to be in sL# or sNL4, but they would be if the machines could make
multiple copies in the stack. This they could do if random access were allowed, if
the query tape were not erased, or if the top query tape was copied into the stack
rather than pushed. The similar notion of relativized space used in [Or84] would
allow that any L;(A) be computed in log-space relative to A.

Under certain circumstances, it is easy to see that sNLACNC4. Suppose that
all queries were of length at most O(logn). Then there would be at most polynomi-
ally many of them, and they could all be queried simultaneously at the top level of
the circuit. An NC, circuit below this could complete the computation. On the
other hand, suppose that the length of the smallest query on the stack is of length n.
Since the space used is O(logn), there will be at most 2 constant number of strings



-19 -

on the stack. So there would only need to be a constant number of query levels,
with an NC, circuit between each level. A problem, however, arises when the items
on the stack are of intermediate length. In that case, we can at least show that sNL
will be in NC, and in particular it will be contained in NC;.

Theorem 8.3 For any oracle A, sNL4 C NC%.

Proof

For an arbitrary A, let SEsNL#. Then S is accepted by a nondeterministic
Turing machine M with an oracle stack which uses work space and stack space
bounded by O(logn). We will show that there is an NC4 circuit which, on an arbi-
trary input = of length n, simulates M on z. This circuit, incidentally, is indepen-
dent of A. By the definition of sNL, the machine M will act deterministically when
there are itemns on the stack. Furthermore, the stack height is at most clogn for
some constant ¢ and the queries are at most polynomial in length. (In fact, we could
restrict things a bit more - certainly not all clogn queries are of polynomial length.
Taking advantage of this fact should allow us to show that the language is in NC,.)

The main idea of the proof is to compute the reachability graph on the id’s first
for stack height O (trivial), then for stack height 1, then stack height 2, and so on.
Computing this graph for stack height k41 from the one for stack height ¥ will be
seen to be an NC, circuit. Thus, the total depth will be clogn O(log®n) = O(log®n)
to compute the connectivity of the id’s when something is on the stack. The non-
deterministic closure can then be computed by an NC, circuit.

We define the following function:
on inputs a, B, and k, where a and B are id's, |a}, [#|<O(logn), and k is an
integer 0<k <clogn,

u(a,B,k)=1iff 8 is reachable from «a in such a way that
the stack is empty at id & and $ and
for all intermediate id’s, the stack height is at least one but never more
than k.

That is, o begins a write on a tape and § is the direct result of the first pop (query)
which empties the stack, which in between never holds more than & partially con-
structed queries at a time. Also note that #(«,8,0)=1 if and only if a yields 8 in
one step, without recourse to the oracle.

Define U, to be a bit string whose <a,8>* bit is u(a,8,k), where <.,.> is a
suitable bijection of N® to N. Since the id's have length bounded by clogn, there
are polynomially many of them, and so U, also has polynomial length. It is easy to
see that Uy can be computed by an NC circuit.
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Claim There is an NC4 circuit computing Uy, from Uj.

Since the length of each U, is at most polynomial, the claim will follow from
the following subclaim.

Subelasm For each id pair a, 8, there is an NC{ circuit computing the <a,3>% bit
of Upyy from Ug.

This we show by

{i) Determining #(a,8,k+1) from U, assuming the answer to the query yield-

ing f to be both yes and no: that is, compute both u(a,B,k+1)/yes and

u{a,8,k+1) /no

{ii) calculate the last query made

(iii) make that query, returning ans€ {yes,no}

(iv) u(a,B,k+1) will be [u(a,B8,k+1) fyes & ans =yes| or [u(a,B,k+1)/n0 &

ans ==no
We will see that both steps (i) and (ii) can be computed in logarithmic space, hence
both can be calculated by an NCj circuit. Step (iii) is clearly in NC| - a single poly-
nomial size, and hence log depth, query will suffice. Also, step (iv) is constant
depth.

We now show that given «, 8, U, and the original input z, in log-space we can
compute u(a,d,k+1) with the assumption assmp as the response to the last query.

Algorithm

0. If u(a,B,k)=1, then output 1 and halt.

Ensure that o begins to write to the query tape. If not, then output 0 and hait.

2. Simulate M starting from id o until an id o' is reached which causes either a
query (pop) or a push (new begin-write id). During this simulation, ignore any
writing to the query tape.

3. If id o' causes a push, then search for a 8’ such that bit <a',f'> of U, is 1 (that
is, u{a’,8',k)=1). Let a be this §/ and return to step 2.

4. [Here, o' causes a query.]

Test if o' yields 8 with assmp as the oracle response.

5. If so, then output 1. Otherwise, output 0.

[—

The algorithm is O(logn) space, so can be performed by an NC, circuit. By a
similar argument, we can see that step (ii) of our agenda can also be done in log-
space. In the algorithm above, in step 2 of the simulation, instead of ignoring any
writing to the query tape, direct them to an output tape. Note that for both steps (i)
and (ii), step 2 of the algorithm will be deterministic. This behavior of M is
guaranteed by the definition of our oracle stack model.
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Thus, the subclaim and therefore the claim hold. So given the input z, we can
compute Ug, where K =clog|z | is the maximum stack height, on an NC4 circuit.
To complete the proof, we show that given z and Uy, the answer to 2€S can now
be computed by a NC, circuit. To show this, we illustrate how to do so in nondeter-
ministic log-space, since it is known that NL C NC,.

Starting from the initial id, until a final id is encountered, simulate M on z.
When a beg-write id o is encountered, nondeterministically guess a 8 of length
O(logn). If the <a,f>' bit of Ug is 1, then let @ be # and continue the
simulation.

All id’s « and 8 are at most O(logn) in length, so this is an NL operation. To
recap, the string Uy can be computed from ¢ by a circuit of depth O(log®n). From
Uy and z, a circuit of depth O(log?n) can determine if z€S. Therefore, SENC4.

QED

The proof has actually shown something slightly stronger. If the sNSPACE
machine being simulated has stack height bounded by O{logn) and questions of at
most polynomial length - thus using O(log®n) space - then the language it accepts is
in NC4{. As mentioned earlier, if the sNL machine has constant stack height and
asks polynomial length questions or has O(logn) stack height and asks constant
length questions, then the language will be in NCZ. However, the circuit must be
set up to possibly accommodate many short questions on one input and few long
questions on another.

8. Related Results

As further positive evidence of the applicability of this model, we see that
Savitch’s theorem relativizes.

Theorem 9.1 Let f(n) be a space bound. Then for all oracles A,
NSPACEA(f (n)) C SPACEA f%(n)).

Proof

For an arbitrary L ENSPACEX(f(n)), let M be the nondeterministic Turing
machine with an oracle stack operating under the RST restriction accepting L. And
let £, |z |=n, be some input. Consider all id's of M on z for which the stack is
empty. As in the unrelativized case, there are only 2°(/(#)) such id’s. Suppose I
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and [, are two such id's. If I is a beg-write-id which deterministically leads to I,
the next id where the stack is empty, we will view this as a single nondeterministic
step. Note that it is only in such segments of the computation that the use of the
oracle stack takes place.

So for two id's I} and [, I, can lead to I, in one nondeterministic step in two
ways: either by a deterministic oracle query sequence as under the RST restriction
or by I, causing 2 nondeterministic choice, one choice of which leads to I, in a sin-
gle move (or, thirdly, I; could equal I,). In any case, the claim that I, leads to I, in
one nondeterministic step could be verified in f(n) space deterministically, possibly
using the oracle stack.

To check if I, leads to I, in at most 2’ nondeterministic steps, we would test,
for all empty stack id's I, whether I, leads to I, and I, leads to [,, each within
2-1 nondeterministic steps. This suggests the standard recursive algorithm ([Sa70],
see also [HU79]), the only modification being to the testing done at the base case
(1=0), where a slightly more complicated test may require some oracle calls, though
still this can be done in f(n) space. The depth of the recursion would be O(f (n)),
and the number of bits needed to be saved at each level would be f(n), the length
of the description of an id. Hence, the deterministic space requirement would be

O( f2(n) ).
QED

The oracle stack still does not allow one to easily separate sl from sNL relative
to some oracle. In this sense, they behave much like relativized I and NL. This
extends a result from [Si77].

Theorem 9.2 L =NL if and only if, for all oracles A, sL A =sNL4.

Proof

We can adapt the proof of fact 2.1 here. It suffices to prove that if L =NL,
then for arbitrary A, sNLACsL4A. Noticing that any machine M accepting a set
S€sNLA has at most en®, for some ¢ and k, empty stack id’s on inputs of length n,
we define M as follows. M takes as input z#ty#y.dt -« #9..4, |%: [=O(logn). M
simulates M on input z, but when M, in id a, starts to write to the oracle stack, the
computation resumes from id y,. The set S accepted by M isin NL =L. So there
is a deterministic Turing machine M, accepting this set. To accept the same set of
strings as M, simulate M,. When it needs a y,, simulate the deterministic portion
of M starting from id «. This will use O(logn) space on the oracle stack. When the
stack is empty, pass the resultant id back to M.



-93.

QED

10. Concluding Remarks

We have exhibited a number of new relativized relationships which involve cir-
cuit depth. These results imply specific properties about proofs which would purport
to show their negation. In particular, we now see that questions involving parallel
time may be difficult to answer in the same way those of the classic complexity
classes are difficult: both will require proofs which do not relativize.

A general open issue is a characterization of proof techniques and their ability to
relativize. For example, allowing a particular type of access to the oracle may allow
one to reclativize some relationships but not others. The access allowed may allow a
certain class of proof techniques to generalize to all oracles. Then we would know
that this class of proof techniques would be insufficient to show the negation of the
relativized relationships. A general theory would give some intuition into the tech-
niques that might be required to prove interesting things and would help us apply the
many relativized results in a formal manner. Fortunately, we do know that not all

our proof techniques relativize. Well known examples of this are found in [Pa77],
[BI82], and [PPST83].

A faithful relativization can be considered a method of oracle access under which
known results will generalize to all oracles. We know that using the RST restriction
is faithful when considering relativized space alone, but saw that we encounter prob-
lems when comparing space to depth. In particular, the depth restricted devices were
noticeably more powerful than their desired corresponding space restricted devices.
The oracle stack was introduced, and we were able to show that this model is faithful
to NC,CL and NLCNC. The problem of whether NLCNC, can relativize

remains open.

An open question is whether we can, for example, get a partial collapse of the
NC hierarchy. Does there exist an oracle A such that NC{#£NC#=NCA? By
lemma 6, it would suffice to show NC{f C NC# with NC§ =NC4. Other oracles
we would like to see are ones witnessing any of the following:

NC, C NC, =NC, for some k >1;

NC§ # NC, % NC # P 3£ PSPACE, for all k>1;

NC =P # NP;

NC £ P =NP.
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