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Abstract

A method known as closed environments can be used to represent
variable bindings for OR-parallel logic programs without relying on a
shared memory or common address space. The representation allows
structures to be shared when environments are in the same memory,
and avoids the problem of common unbound ancestor variables, Two
systems based on closed environments are briefly described.
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1 Introduction

Implementation techniques for Prolog have advanced tremendously since
the first systems. It is natural to explore the possibility of using the same
basic techniques in parallel systems, in order to take advantage of years
of experience. There is one major problem that must be solved, however,
when Prolog style binding environments are used in OR-parallel systems. In
OR-parallel execution, a process spawns parallel descendant processes when
it reaches a point where there is more than one clause that can be used
to solve a goal. At the implementation level, it is desirable to have new
sibling processes share the binding environments created by their common
parent process. The problem, well documented by now, is that this can
lead to conflicting bindings if sibling processes are allowed to bind variables
created by their parent. Each sibling needs a virtual copy of the parent’s
environment; it is not necessary to make an actual copy, but at a minimum
every process needs its own copy of the unbound ancestor variables.

A simple example that shows the source of conflicting bindings is in Fig-
ure 1, which has a tree of stack frames. An empty slot in a frame represents
an unbound variable. When two unbound variables are unified, one is bound
to a reference to the other; the notation @X in the figure means the slot has
been bound to a reference to the variable X. There are two parallel processes
in this example, one for each leaf of the tree; the binding environment for a
process consists of the set of stack frames from the root of the tree to the
leaf. The frames with no variables are the frames for the assertions, which
in this program have no variables. The labels next to these frames show
which variables are bound by the corresponding unifications. In each case,
an ancestor variable is bound, and in two cases the binding is made to a
shared ancestor variable.

Ciepielewski and Haridi were the first to address the shared variable
problem, devising a scheme that allows parallel processes to share stack
frames as long as there are no unbound variables in the frames [2]. A re-
cent paper by Ciepielewski and Hausman describes different techniques for
implementing this method and gives some performance results [3]. Com-
peting representations have been proposed by Borgwardt [1], Lindstrom [9],
D. S. Warren [16], Yasuhara and Nitadori [18), and others. Crammond
implemented a simple OR-parallel virtual machine to measure the relative
performance of three of these techriques on a set of benchmarks {6). What
all of these schemes have in common is that at any point in the computation,
the binding environment seen by any process is basically the same as that
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Figure 1: Environment Stack in OR-Parallel System

seen by a Prolog program: variable bindings are kept in an array of local
stack frames, unification of a goal and the head of a called clause often re-
quires access to frames arbitrarily far back in the stack, and the unification
of two unbound variables is represented by binding one variable to a refer-
ence to the other. The differences between the methods are that in order to
find the value of an ancestor variable, different types of auxiliary structures
(e.g. binding arrays or hash windows) are used to give each process its own
copy of the variable.

The overhead in accessing the auxiliary structures is one of the draw-
backs of adapting the three-stack model for OR-parallel systems. Another
drawback is the requirement for a single memory address space. Since the
binding environment is one large data structure, and a process must be able
to access any variable in its portion of the structure, the underlying system
must have either a single shared memory, or maintain a single address space
in physically disjoint memory modules.

Accesses to shared ancestor variables will lead to problems for two com-
mon processor-memory configurations. In a system where each processor
has a local memory module, such as Cm* [15] or the Hypercube [13], ref-
erences to nonlocal addresses are slower. When a variable is bound to a
reference to a cell farther back on the stack, or one of the frames used in
a unification is located far back in the stack, the address of the ancestor
variable will often be a nonlocal reference. An alternative configuration for
processors and memories is to connect every processor to every memory
through a large switch, as in the NYU Ultracomputer [8]. There are po-



tential problems here, also, since when parallel processes check the binding
of their common ancestor, the address of the ancestor may become a “hot
spot” of the type investigated by Pfister and Norton [11]. When one memory
address is accessed very often, the entire system can be adversely affected.!

Both types of time penalties for references to ancestor variables — the
implementation level penalty from accessing auxiliary structures, and the
machine level penalty from nonlocal or hot-spot references — derive from the
fact that a process must be able to access slots anywhere in its stack. There
are two situations where unification must have access to the value of an
ancestor variable, both illustrated in Figure 1. The first is in the solution of
s(D); since D is bound to a reference to X, the unification algorithm examines
X, and when it finds it is unbound, it binds it to the constant 5. The second
situation is in the solution of u(B). In this case, one of the frames used in
unification is an ancestor frame; in order to find the current value of B, we
have to look further back in the stack.

Empirical evidence for a pattern of memory accesses that shows a non-
trivial number of references to ancestor variables can be seen in plots pro-
duced by Ross and Ramamohanarao [12]. They plotted addresses of memory
references vs. time in a Prolog interpreter, in order to measure locality of
reference. They found a cluster of locality at the base of the stack, where
the shared ancestor variables would be located in an OR-parallel system.
The frequency of read accesses to parent variables will be higher in OR-
parallel systems than in the sequential Prolog interpreter measured by Ross
and Ramamohanarao, since most of the techniques mentioned previously re-
quire references to many levels of intervening frames to ascertain the binding
status of a variable.

The closed environment representation introduced in this paper is not
an adaptation of the three-stack model. The binding environment seen by
a process at any instant in time is restricted to one or two frames. Bindings
are organized so that all the information needed for unification is present in
the two input frames. The problems associated with ancestor variables are
finessed, since it is not necessary to refer to a frame other than one of the
input frames to find the value of a variable, and a variable in another frame
cannot be bound during unification. The two situations where ancestor
variables are accessed in three-stack models are handled by using a different
representation for variable-variable unifications, and a protocol for updating
the frames in an active process after a subgoal is solved.

!Most of the references will be reads, however, so a switch that combines read accesses
may handle this problem.



One source of overhead in the closed environment model is that frames
are copied extensively; at the start of the solution of each sibling subgoal, the
parent’s frame is copied. However, frames can be readily garbage collected,
and the number of active frames per solution path will be smaller than for
a three-stack implementation. Early simulation results from one of the im-
plementations indicate the amount of memory used in the increased number
of frames is comparable to the amount of space used for stack frames plus
auxiliary structures of the generalized three-stack models. The advantages
of the closed environment approach are that accesses to variable bindings
during unification are uniformly fast, since there is no need to search for
a binding in intermediate frames between a local frame and an ancestor
frame. Also, the environments may be allocated in independent memory
spaces, allowing implementation on a non-shared memory multiprocessor.

Closed environments were developed for OPAL ( Oregon PArallel Logic),
an implementation of the AND/OR Process Model [10]. More recently, they
have been incorporated into a parallel virtual machine, named OM [5], that
executes compiled logic programs according to the AND/OR Process Model.
A variant called loosely closed environments has been used for a pure OR-
parallel system [14]. The use of closed environments in OPAL and OM is
discussed below, after the description of term representation and unification
using closed environments.

2 Definitions

In the closed environment representation, terms are represented as tagged
cells. Atoms, variables, and pointers to other terms can be stored in single
cells. n-ary complex terms are stored in prefix form in consecutive cells,
where the first cell is the functor of the term, and the remainder are the n
arguments.

A stack frame consists of an array of cells, containing a descriptor cell for
the frame ID and size, plus one cell for every variable of the frame. When
the system invokes a clause, a new frame is allocated for the variables of
the clause. When a variable is bound to an atom, the atom is storéd in the
variable’s slot in the frame. When a variable is bound to a complex term,
an instance of the term is built in a global heap, and a pointer to the term
is stored in the variable’s slot.

The first difference between the three-stack model and closed environ-
ments is that when two unbound variables are unified, we use a relative
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Figure 2: Dereferencing a Link

pointer known as a link to represent the binding. A link has two fields: a
frame ID and an offset. The definition of a frame ID depends on the ap-
plication using closed environments. IDs are not necessarily unique, which
means a link may be dereferenced to many different variables. Dereferenc-
ing a link uses three pieces of information: the ID field from the link, the
address of the frame with this ID (maintained by a process that owns the
frame and does the dereferencing), and an offset from the start of the frame
(Figure 2).

Another difference between the closed environment scheme and the three-
stack model is that no variables are ever placed in the heap. Instead of
putting a variable on the heap, we put a link that dereferences to the vari-
able, and leave the variable in the stack. This is similar to the linking
together of unbound variables in a structure copying representation, except
the chain of references starts in the heap and not the stack. Note that this
means an instance term is sharable. In the example in Figure 2, processes
P1 and P2 share the same structure for the instance term, dereferencing the



variables of the term according to their own environments.

Pointers to instance terms can be represented by the address of the term
on the heap. This is done with the understanding that the frame and the
heap are in the same address space. When the unification algorithm builds
an instance term in a non-shared memory system, it will put it on the heap
of the processor that currently owns the frame. Later, if and when a frame
is relocated, its instance terms will have to be copied along with it if the
new home for the frame is in a different address space.

We define a closed environment to be a set of frames E such that no
pointers or links originating in E dereference to slots in frames that are
not members of E. This implies that all slots in the frames of E are either
unbound variables, atomic terms, links that dereference to other slots in E,
or pointers to instance terms in which links, if any, dereference to slots in
E. A closed environment containing just one frame is called a closed frame.

3 Environment Closing

The following is an algorithm that transforms a closed environment of two
interrelated frames until one frame is, by itself, a closed environment.

PROCEDURE Close(RE,CE):

CE is the frame to transform into closed form; RE is the reference frame.

1. Reverse the direction of all links pointing from CE to RE:

For each slot X of CE that contains a link to RE, dereference the link
to a term T. If T is a nonvariable term, bind slot X to T} if T is an
unbound variable of CE, bind slot X to alink to T if T is an unbound
variable of RE, set slot X to an unbound variable and bind T to a link
to X.

2. Extend CE with a new unbound variable for every unbound variable
of RE in an instance term of CE:

For each instance term on the heap pointed to from a slot in CE, if an
argument A of the term is a link to RE, dereference the link to a term
T.If T is a nonvariable term, replace A with T and repeat this step
on the arguments of T; if T is an unbound variable of CE, replace A
with a link to T if T is an unbound variable X of RE, create a new
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Figure 3: Example of Unification and Closing

variable Z in CE, bind slot X of RE to alink to Z, and replace A with
a link to Z.

On input, the two arguments CE and RE are single frames, and together
form a closed environment. After the algorithm is applied, all links between
the frames will originate in RE, and CE will be a closed frame. We say
this action closes CE with respect to the reference frame RE. Figure 3
shows an example of unification when both input frames initially contain
only unbound variables, and are therefore both closed frames. After the
unification, the two frames form a closed environment, but there is a link
from E1 to EO0, so E1 is not closed. The result of closing EI with respect to
E0 is shown on the right.

The significance of using closed environments is that if the pair of frames
used in each unification make up a closed environment, the unification can-
not bind slots in frames outside the environment. If, after each unification,
the frame that will be used in the next unification is closed with respect to
the other frame, the pair of frames used in the next round of unifications can
also be a closed environment. As a result, computations on the frontier of
the tree of parallel processes are based on closed environments, and variables
in the interior (shared) frames are never modified. Furthermore, since all
the necessary information is contained in the two frames, nonlocal memory
references are avoided when the two frames are in the same memory. A new



process and its initial environment can be relocated to a different processor,
with its own local memory, and unifications in the new process will not have
to refer back to the environment of the parent process.

It is possible to guarantee two closed frames for each unification by ob-
serving the following rules:

o Each unification involves two frames: one from the environment of the
goal, called the top frame, and one for the clause being tried, called
the bottom frame. If the two frames are each closed before unification,
we can always transform them with the environment closing operation
after unification so that one will be closed. (The terms “top” and
“bottom” come from Ferguson diagrams, which will be explained in
Section 4.1 and Figure 4.)

o The bottom frame is always a newly allocated frame, containing only
unbound variables, so it is always closed. The environment of the
initial goal statement contains only unbound variables, and is thus in
closed form, so the first top frame is closed.

o After unifying a goal with the head of a unit clause, close the top frame
with respect to the bottom frame. The closed form of the top frame
can now be used to solve siblings of the goal.

o After each unification of a goal with the head of a clause that has one
or more subgoals in its body, close the bottom frame with respect to
the top frame. The bottom frame now becomes the closed top frame
for calls to the procedures in the body of the clause.

o After solving the last goal in the body of a clause, close the calling
goal’s frame (a top frame) with respect to the bottom frame made for
the clause. The closed form of the top frame can now be used to solve
siblings of the original call.

Closing a frame serves two purposes. Closing the bottom frame with
respect to the top after a unification ensures no subsequent unifications
using the bottom or its descendants will bind slots in the top or any of
its ancestors. Closing a top frame with respect to the bottom frame after
a goal is successfully solved imports bindings from the environment of the
solution back into the environment of the call, and also prepares the top
frame for solution of siblings of the original call. This step replaces the back



unification used in the AND/OR Process Model to update an environment
with values computed by an independent process [4].2

An explanation of what the environment closing operation does, and
why it is logically sound, is best made in terms of the procedural semantics
of logic programming. A procedure call in a logic program is an inference
based on the resolution rule [7]. The set of goals to be solved and the binding
environment of the call represent one of the input clauses, and the called
clause and its new stack frame represent the other input clause. The set of
bindings made to slots of the input environments make up the substitution
generated when unifying the goal with the head of the called clause. When
the input environments are both closed frames, the substitution is limited
to the two input frames; in other words, the variables on the left hand sides
of the assignments in the substitution can be found in one or the other of
the input frames.

The environment closing operation is a syntactic transformation on the
unifying substitution. Each step of the operation may bind a variable, re-
name a variable, or introduce a new variable, in such a way that the meaning
of the substitution is unchanged. Closing one of the frames does not alter
the structure of the resolvent, as determired by the goals in the body or
call; it simply transforms the binding stack, without altering the meaning
of the bindings, until one of the frames is closed.

As an example of how substitutions are manipulated until one frame is
closed, consider the following goal statement and clause:

— p(a,£f(X)) A q(X).
p{Y,Z) «— r(Y) A s8(2).

The resolvent is
— r(a) A s(£(X)) A q(X).

where the unifying substitution is {Y=a,Z=£(X)}. Note that Z, a variable
in the bottom frame, is bound to a term that contains a variable of the top
frame, so the bottom frame is not closed after unification. The bottom

*The term “back unification” comes from Epilog, which performs a similar opera-
tion [17].
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frame can be closed by modifying the substitution by adding a new
unbound variable V, and binding X to V, giving: {X=V,Y=a,Z=£(V)}. In
terms of the new substitution, the resolvent is:

«~ r(a) A s(£(V)) A q(W).

The new resolvent is identical to the original resolvent, except for the name
of the variable, and, if V is added to the bottom frame, it will now be closed
(this example was illustrated in Figure 3).

When implementing the environment closing algorithm, a decision must
be made as to whether the input frames are modified in place or new arrays
of cells are allocated to represent the modified frames. In the version imple-
mented in OPAL, the closed form of CE is written into a newly allocated
frame, so the original CE is not modified, but RE is modified in place. In
this system, we often need to make a copy of CE before closing it, and the
decision to write the closed form of CE into a new block of cells combines
the copying and closing operations. In the OM implementation, unification
and closing are done in environment registers, and a new frame is allocated
for the modified CE only when it is extended or a copy of CE is required.

The algorithm presented earlier makes two passes over CE. A one-pass
algorithm is possible, but in general the closed form of CE will have more
slots if the one pass algorithm is used, since each time a link is reversed in
pass one, we save an extension to CE in pass two. Another optimization is
to have the unification algorithm bind the bottom frame in such a way that
it is always closed, bypassing the need for a later close operation. We could
incorporate a step from Lindstrom’s algorithm, where the bottom frame is
extended to include slots for each unbound variable of the top frame at the
start of unification [9]. The unification instructions of the OM processor
extend the bottom frame on demand, in cases where a later close operation
would extend the frame. Even with this improvement, however, there are
situations where a separate two-pass closing operation would give a more
compact frame.

It is interesting to note that after closing the bottom frame with respect
to the top frame, variable to variable references are pointing in the oppo-
site direction than in most Prolog implementations based on the three-stack
representation. In the latter, the convention is to bind new variables to
pointers to old variables and to point stack variables at the heap. When
pointers go in the opposite direction there is a danger of dangling references
when the referent of the pointer is in a deallocated stack frame. However, in
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OR-parallel systems, alternatives are not generated through backtracking,
and the environment of a process grows monotonically, so the dangling ref-
erence problem will not arise. An advantage of being able to point from the
ancestor to the descendant, in such a way that the pointer is dereferenced to
different slots by different processes, is that a process does not have to locate
the ancestor frame in order to find the value of a variable; the value is held
locally, in the descendant frame. A disadvantage is that when there is more
than one candidate clause to solve a goal, the top frame must be copied,
to allow each unification to bind it in its own way. After this first level of
unifications, however, the top frame is shared by all further descendants in
that branch of the tree.

In summary, where the three-stack representation would show n refer-
ences from local frames back to a common ancestor, the tree of closed envi-
ronments would show a downward pointing link in the ancestor variable that
could be dereferenced to n different slots. What makes this representation
useful is that this form of dereferencing is never needed during unifications;
all the information required for a unification step is present in the two frames
involved in the unification. A downward pointing link does not have to be
dereferenced until later, when the frame containing it is closed with respect
to a descendant frame.

4 Applications

Three systems have been implemented using closed environments. One is
a pure OR-parallel interpreter, based on the virtual machine described by
Crammond [6]. The programs used by Crammond to compare hash windows,
directory trees, and variable importation were executed by this interpreter.
The closed environment model used less space than every other technique
except Borgwardt’s hash windows with small windows. Execution speed on
the benchmarks is encouraging, but meaningful comparisons are not possible
because of differences in the implementations and the host systems. This
interpreter will be described in more detail in a companion paper [14]. The
other two systems based on closed environments are outlined below.

4.1 OPAL

OPAL is an interpreter for the AND/OR Process Model, written in C and
running under Unix 4.3. It is essentially the same interpreter as the OR-
parallel, AND-sequential interpreter that was described in [4], but written

12



in a lower level language in order to test implementation techniques. The
interpreter is being ported to a small shared memory multiprocessor, with
the goal of comparing the overhead of passing frames and instance variables
in two implementations. In one case, we will use shared memory addressing
modes to allow direct access to heap structures built by other processors. In
the other case, we will force structures to be copied to the local memory of
the destination processor when a frame containing a pointer to the structure
is relocated.

In OPAL, AND processes are used to solve goal statements, either the
user’s initial goal or the right side of a called clause. The state of an AND
process consists of a frame to hold the bindings for the variables of the goal
statement, plus some control information. When an AND process needs
to solve a literal from its goal, it creates an OR process to manage the
alternative solutions for the literal. When an OR process unifies the goal
with the head of a nonunit clause, it starts an AND process for the body of
the clause.

The environments are managed so that operations in an OR process do
not modify its parent’s environment. The variables of the AND process
should be modified only when the AND process accepts a success message
from the OR process. When there are many possible solutions, only one
should be in effect at any time. When the OR process starts collecting
solutions, it will act as a switch between AND processes, so that only one
set of bindings from a descendant is used to determine the current state of
the parent AND process.

The state of the system of processes can be represented graphically by
a three-dimensional Ferguson diagram (Figure 4). An AND process cor-
responds to a lower half circle and the attached upper half circles, which
represent the head and goal literals of a clause, respectively. An OR process
tries to connect an upper half circle representing a procedure call with one
of the lower half circles representing candidate solutions for the call. When
an OR process has a result for its parent, the two half circles are joined.
The snapshot in the top plane of the figure shows the progress of one of the
candidates for solving p; this candidate has solutions for its first two goals
and is working on the solution for the third.

Downward pointing links in the parent are effectively dereferenced to
the current bottom frame presented by the descendant OR process. Other
solutions to the OR process’s goal are queued, awaiting a redo message from
the parent before they can be selected as the current frame.

Frames are passed between processes by start and success messages. The

13
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Figure 4: Processes in OPAL

argument of the start message from an AND process to an OR process is a
pointer to the current frame in the AND process. For each candidate clause,
the OR process makes a copy of its parent frame to use as the top frame in
the unification with the head of the candidate, and allocates a new frame
for the variables of the candidate to use as the bottom frame.

For each successful unification with the head of a unit clause, the top
frame is closed, and the becomes a result that will be passed back as an
argument in a success message from the OR process to its parent AND
process. For each successful unification with the head of a nonunit clause,
the bottom frame is closed, and is sent in a start message to a new AND
process for the body of the clause. After all unifications are done, the OR
process is left with a list of top frames, one for each active descendant.
When one of the descendants succeeds, the OR process needs to pass the
bindings from that success back to its own parent. The success message from
a descendant contains an updated copy of the bottom frame initially passed
to it. The OR process returns values to its parent by closing the stored top
frame with respect to this bottom {frame, and sending the newly closed top
frame back as the argument of the success message. When the parent is a
sequential AND process, this frame now becomes its current environment,
and is used to start the next OR process. Recall that in OPAL, closing the

14



top frame automatically makes a copy of it and does not change the old top
frame. The old top frame is saved and used with for the next result from
the same descendant. The bottom frame from the descendant is discarded.
Further details can be found in More’s M.S. thesis [10].

4.2 OM

OM (for Opal Machine) is a virtual machine in the style of the Warren
Abstract Machine, except control and unification instructions support the
AND/OR Process Model. Instead of instructions to call procedures, build
choice points, and maintain a trail, OM has instructions that start descen-
dant processes and send messages between processes.

Like the WAM, OM performs unifications through a series of get and
put instructions compiled specifically for each call and clause head. The
get instructions of OM build closed bottom frames, so the code compiled
for clause heads does not explicitly close the bottom frame after unification
succeeds. The bottom frame is extended when a structure is being written
to the heap, and part of the structure is a reference to an unbound top
variable V. Instead of adding the link to V to the instance term, OM extends
the bottom frame, binds V to a link to the new variable, and puts a link to
the new variable in the instance term. In addition, there are instructions
to close slots of a top frame as a means for incorporating results in success
messages back into parent environments.

5 Other Methods for OR-Parallel Binding Envi-
ronments

5.1 Directory Trees

Ciepielewski and Haridi were the first to tackle the problem of efficient
runtime representations for parallel logic programs. Associated with each
process is a directory containing pointers to stack frames that make up the
binding environment for the process. When a new process is started, it
initializes its directory by copying its parent’s directory and adding a new
frame for the called clause [2). The directory entries in the new process
point at the same frames its parent uses as long as those frames contain no
unbound variables. If a frame has unbound slots, the new process makes
its own copy of that frame and places a pointer to the copy in its directory.
The scheme is made more efficient by copying on demand; that is, when

15



a directory is initialized, the frame pointers are set to null, and a frame is
not copied until a process needs to bind a slot in it. Finding the value of
a variable is a matter of finding the frame for the variable in the directory.
If the directory entry is a null pointer, the ancestor directories are searched
until a directory is found where the frame pointer is not null. In the copy-
on-read strategy, the directories in the search path are updated by giving
them copies of the ancestor frame.

5.2 Hash Windows

In Borgwardt’s hash window technique, an ancestor environment is not
copied, but left as is. In situations where a unification would bind a vari-
able in an ancestor frame, a new cell for the variable is allocated in a small
local hash table associated with the current frame, and the local copy is
bound [1]. Thus instances of shared variables are located in the local hash
tables of the processes. Determining the value of an ancestor variable is a
matter of checking the hash tables associated with the current frame and
every frame in the tree on the path back to the variable’s frame, since an
intermediate ancestor may have bound the variable. This technique per-
formed the best in Crammond’s survey when small (four entry) hash tables
were used.

5.3 Binding Arrays

A technique described by D. S. Warren is derived from the use of the trail
stack to store backtracking information in sequential systems. Instead of
pushing the address of an ancestor variable on the trail stack when the
variable is bound, Warren’s method will add a pointer to the variable and
its binding to a forward list in the current frame [16]. The binding in the
forward list corresponds to the process’s copy of the ancestor variable, and
is similar to extending the frame in the closed environment model. Finding
the value of an ancestor variable is a matter of checking the forward list of
every frame from the current frame back to the ancestor frame. To speed up
this search, Warren proposed the use of binding arrays indexed by variable
names to store pointers to the values of the variables in the forward lists.
Each process would maintain its own binding array, which can be viewed as
its own copy of the nonsharable information in the local stack.
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5.4 Imported Variables

The notion of extending the current frame to contain slots for unbound
variables of the parent was first proposed by Lindstrom. In this method,
the called frame is extended to contain slots for the new variables, and an
import vector is used to associate unbound variables of the parent with slots
in the called frame [9]. Similarly, after the last goal of the body is solved,
an export vector is used to map the still unbound variables to slots in a
new copy of the parent frame. Finding the value of an ancestor variable
involves following a pointer chain through the import and export vectors of
intervening frames in the environment to see if the variable has been bound
in one of these frames.

5.5 Kabu-Wake

The kabu-wake® method uses a different approach than the others discussed
so far (Yasuhara and Nitadori [18]). Instead of arranging for a process to
have its own instance of a shared variable and preventing the binding of the
shared variable itself, this technique allows a process to bind an ancestor
variable, just as a Prolog process would, saving the address of the variable
in a traijl stack. When a new process is started, the system picks an existing
stack, copies it for the new process, and uses a backtrack point as the starting
point for the new process. The first thing the new process does is to simulate
backtracking and unbind its copies of the shared variables. An advantage
of this method is that it allows one to use any specially designed Prolog
processors as nodes in a multiprocessor architecture. There is no need to
access auxiliary structures to find the value of an ancestor variable; the
overhead of sharing these variables is postponed until the stack is copied
and initialized for a new process.

5.6 Comparing Closed Environments with Other Methods

Both closed environments and Lindstrom’s import vector method are based
on extending a frame to contain slots for some unbound ancestor variables.
In Lindstrom’s method, the import vector is a copy of the parent’s frame,
where the unbound slots are used to associate variables with their copies
in the new frame. In a closed environment system, the interpreter makes a

3A Japanese term for starling a new tree by splitting off a portion from a living tree
that includes part of the root.
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copy of the parent frame and lets the unification algorithm bind the copy di-
rectly. Another difference is that Lindstrom’s algorithm extends the bottom
frame before unification, allocating slots for each unbound variable of the
parent. The environment closing algorithm extends the bottom frame after
unification, usually resulting in fewer extensions to the frame, since some
parent variables are bound in the unification. Also, a frame is extended in
the closed environment method only when there is an instance term that
contains a reference to an unbound ancestor variable. When two unbound
variables are unified, the parent is bound to alink to the descendant variable,
and the descendant frame is not extended.

The biggest difference between closed environments and imported vari-
ables is that the import and export vectors implement sharing in the basic
three-stack model. With closed environments, there is no need for import
and export vectors, since all references can be resolved within the two frames
used in unification and there are no references to ancestor frames.

Ciepielewski and Hausman implemented the directory tree method us-
ing four different techniques for managing directories and copying ancestor
frames [3]. In one of these implementations, to which they also give the name
“hash windows,” space is saved in a process’ directory by copying only the
ancestor variables that are referenced by a process, and not the entire frame
that contains the variable. Variables are identifed by a tuple <c,n> where ¢
is the frame index and n is the variable’s index within the frame. Directories
are managed as hash tables. To find the value of a variable, a process will
hash on the ID of the variable, and search for it in its local table.

Ciepielewski and Hausman describe two variations in the implementation
of their form of hash windows that increase the proportion of local references
for this model. The first variation is called “local contexts.” When a new
process is created, and given a directory that is a copy of its parent’s direc-
tory, the most recently allocated context is copied, on the assumption that
the new process will most likely refer to this context during the next unifi-
cation. Variables in the local context are accessed directly, not through the
hash table that represents the remainder of the environment. The second
variation is to insert an ancestor variable into the hash table when it is first
referred to (copy on read), not when the directory is created.

If the ID field of a link in a closed environment system is the depth of
the frame in the tree of frames of a pure OR-parallel system, the closed envi-
ronment technique is similar to Ciepielewski and Hausman’s hash windows
with local contexts and copy on read. The biggest difference is that the first
access to an ancestor variable with hash windows requires a search through
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intervening frames, to see if the variable has been bound since it was cre-
ated; with closed environments, no search is required. With hash windows,
a copy of the ancestor variable is inserted into the current directory (and
the intervening directories) once it is located. After the variable is brought
into the current directory, all accesses to it are local, so from this point on
the pattern of memory references could be quite similar to the pattern in
a closed environment system (if we ignore the differences between search-
ing a small local hash table and accessing a local array). Ciepielewski and
Hausman report that roughly 50% of the memory references in this imple-
mentation will be to local addresses when the model is implementated on a
multiprocessor with local memories.

In the closed environment implementations of the AND/OR Process
Model, the environment ID field of a link is a one-bit binary number, since
all references are confined to either the top or bottom frame being modified
by an OR process. The main advantage of this is that a process does not
need to maintain a table of frames, such as the directory of the directory
tree methods, with entries for frames of ancestor clauses. Each AND process
keeps just one frame, and each OR process keeps a pair of frames for each
clause with a head that unifies with the goal solved by the process. The
ID of a parent process takes the place of a pointer to an ancestor frame
or parent directory, and operations that bind ancestor variables turn into
operations that update the ancestor frame when the process that owns the
frame receives a success message.

6 Summary

Work to date on runtime representations for parallel logic programs has been
oriented toward extending the basic three-stack model of Prolog for paral-
lel execution. This model has evolved into a very efficient representation
for variable bindings in sequential systems, and it is desirable to reap the
benefits of this work when implementing parallel logic languages.

In a three-stack model, the binding environment of a process is a list of
stack frames. In a parallel system based on the three-stack model, there is
a tree of stack frames, where the environment of any one process is deter-
mined by a path from the root to a leaf, and frames near the root are shared
by processes. Two aspects of this technique demand the use of a common
memory space for every process. Unification might involve a frame arbitrar-
ily far back in the stack, and the unification of two unbound variables is
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represented in a way that may cause later unification steps to follow a chain
of references further back in the stack.

References to shared ancestor frames pose problems for both “dance
hall” and “boudoir” configurations of global memory in multiprocessors.
One of the goals for closed environments was to design a method that is
more modular and does not require a global, shared memory to represent
binding environments. This goal is partially met in implementations of pure
OR-parallel systems. The binding environment of a process is still a mono-
tonically growing list of frames, and it is most likely that processes will share
some frames, which means the environment is still part of a global struc-
ture. However, the frames are organized so that unification does not have
to access ancestor frames, and references to ancestor frames are postponed
until the environment closing operation is applied after the body of a clause
is solved, so the percentage of nonlocal accesses should decrease overall.

For systems based on the AND/OR Process Model, there are no nonlocal
memory references during the execution of a process. Steps in both the
unification and environment closing algorithms are done with accesses to
local frames only. Information will be passed between memories only when
a success or start message is sent from a process in one memory to a process
in another memory, in which case the frame that is the argument of the
message must be copied to the destination memory. Once the frame is
located in the memory of the receiver, no accesses to the memory space of
the sender of the message are required.
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