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Abstract

We develop parallel techniques for dealing with permu-
tation group problems. These are most effective on
the class of groups with bounded non-abelian compo-
sition factors. For this class, we place in NC problems
such as membership testing, finding the center and com-
position factors, and, of particular significance, finding
pointwise-set-stabilizers. The last has applications to in-
stances of graph-isomorphism and we show that NC con-
tains isomorphism-testing for vertex-colored graphs with
bounded color multiplicity, a problem not long known to
be in polynomial time.

1 Introduction

The last few years have seen substantial progress in
polynomial-time algorithms for instances of the graph
isomorphism question (e.g, [Bal], [FHL1|, [Lul], [Mi1],
[Mi2], [BGM], [GHLSW]|, [BL}, {FSS|, [BKL]). A concep-
tual breakthrough was Babai’s demonstration {Bal| of a
random polynomial-time algorithm for testing isomor-
phism in the class of vertex-colored graphs with color
multiplicity less than a prescribed bound b (we refer
to this class as CG;). Note that, even with b = 2,
the number of vertex-color-preserving maps between n-
vertex graphs, could be 2ln/2]  and no procedure was
previously demonstrated to be better than the brute
force consideration of these. Babai’s work formed the
major inspiration for the development of polynomial-
time tools for permutation groups by Furst, Hopcroft
and Luks [FHL1|, that, for instance, dispensed with the
randomness in the isomorphism test for CGy. Further
advances have been both characterized and facilitated
by extensions of these algebraic techniques.
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It seems that those algebraic methods have been inher-
ently sequential in nature. So the question arises as to
whether any of these problems, recently placed in poly-
nomial time, are susceptible to a parallel approach, We
now answer this affirmatively. In particular, we put in
NC the problem whose novel polynomial-time solution
stimulated the above activity, namely, testing isomor-
phism in CG,. Of course, one expects the machinery for
graph isomorphism to remain algebraic. Nevertheless,
the depth of requisite algebra is surprising. The isomor-
phism tests of [Bal], [FHL1] rested on elementary group
properties (for example, Lagrange’s Theorem). To bring
the problem into NC, however, we make essential use of
the internal structure of primitive permutation groups.

For abelian permutation groups, McKenzie and Cook
[Mc], [MC]| seem to have resolved the main parailel com-
plexity issues, placing in NC such central problems as:
membership testing, finding set stabilizers, and deter-
mining the cyclic factors. However, their techniques are
not extendible to wider group classes, for they rely both
on cyclic decomposability, which is unique to abelian
groups, and on the regularity of transitive abelian groups
(so that the size of the group is only that of the permu-
tation domain}.

Fast parallel methods that began to treat non-abelian
groups were announced by Luks and McKenzie in [LM].
Therein several basic problems were solved for the class
of solvable groups, including testing membership and
finding a composition series. The property of solvable
groups that was exploited in [LM] was the existence
of a polylog-length sequence of normal subgroups such
that the quotients are products of vector spaces. Using
this, divide-and-conquer algorithms were devised that
had their base cases rooted in linear algebra problems, all
of which were in turn reducible to the standard problem
of matrix rank. Since the vector-space-quotient prop-
erty characterizes solvable groups, it appeared that, as
in the earlier abelian deadlock, the methods were not
extendible. For the more restrictive class of nilpotent
groups, it was shown that NC contains the problems



of finding the center, and pointwise stabilizers of sub-
sets. The latter are a particularly useful tool in applica-
tions, including instances of graph isomorphism. Unfor-
tunately, the technique for capturing these, exploiting
their situation in a polylog-length normal series, does
not apply to non-nilpotent groups.

(Note that [Mc],[MC],|[LM] claim, for the most part,
random NC results but the randomnesa stems only from
the need for matrix ranks over small fields and these are
now available in NC [Mul).

QOur new isomorphism-testing results require a wide
extension of the class of groups that can be manipu-
lated and analyzed with fast parallel algorithms. This
includes the class, 'y, of groups whose non-abelian com-
position factors are subgroups of the symmetric group,
Sp. The class properly contains solvable groups (which
have no non-abelian composition factors) but is more
specifically motivated by ita natural occurrence in graph-
isomorphism settings ([Lul], [Mil], [Mi2]). We demon-
strate NC algorithms for determining the underlying
structure of these groupe, including order, composi-
tion factors, center. We also answer fundamental ques-
tions relating to their actions as permutation groups,
including membership-testing and finding any pointunse-
set-stabilizer (the subgroup that fixes all points in a
target subset). The latter is directly applicable to
isomorphism-testing in CGp and broader graph classes.

Critical to our handling of non-solvable groups is a
machinery that plays the linear algebra role. In this
“non-abelian linear algebra® we consider the groups that
arise as a natural generalization of the vector spaces in
the sclvable case., Thus, vector spaces over small finite
fields, which are, as groups, direct products of small abe-
lian simple groups, generalize to direct products of amall
not-necessarily-abelian simple groups (“small® connotes
polynomial size). The analogues of the vector space al-
gorithms are less obvious. While Gaussian elimination
generalizes easily, the tools for parallel computation (no-
tably, determinants) have no clear counterpart. Instead,
we use properties unique to non-abelian simple groups to
develop a suitable non-abelian linear glgebra in NC. Ba-
sic problems including membership-testing and finding
composition factors, for groups in ['; and wider classes,
are reducible to abelian and non-abelian linear algebra
questions. For the pointwise-set-stabilizer result, how-
ever, the divide-and-conquer of the generalized vector
spaces does not capture the structure of the problem.
We can reduce only to the case where the group acts
primitively on each orbit. At that point, we prove the ex-
istence and NC-constructibility of a generalized-vector-
space subgroup that acts independently and transitively
in a large number of orbits. This subgroup can be used

[

to stabilize, in parallel, the targeted points in those or-
bits,

Recall that T, is, essentially, the broadest class of
groups for which there is known to be a polynomial-
time solution to the set stabilizer problem (finding the
subgroup stabilizing a subset as a whale) [Lul]. This
problem instance achieved notoriety when valence-(b+1)
graph isomorphism was shown to be polynomial-time-
reducible to it. Those familiar with the reduction will
recall that it, too, appeared inherently sequential. Nev-
ertheless, we now show that it can be replaced by an
NC reduction. Though set-stabilizer is not yet available
in parallel, this reduction, together with pointwise-set-
stabilizers, yields an NC algorithm to test isomorphism
in a subclass of the class of bounded valence graphs; this
case requires methods of [Lul] to establish even sequen-
tial polynomial time.

2 Definitions and preliminaries

We assume familiarity with the complexity class NC
({Pi], [Co]), informally, the class of problems solvable in
polylog (= log®™™***"* n) time using a polynomial num-
ber of processors. We refer to any standard text, e.g.,
(Ha), for basic facts about groups,

We write H € G if H is a subgroup of G and Ha G
if H is a normal subgroup of G. For H < G the nor-
mal closure of H in G is the smallest normal subgroup
containing H, the centralizer of H in G is the set of
elements in G that commute with all elements in H., A
group is called ssmple if it has no normal subgroups. If
T is a collection of isomorphism types of simple groups,
a T-semisimple group iz a direct product of groups of
these types, we write T-semisimple if there is just one
group T in T and semisimple if the class does not re-
quire explication. The composition foectors of a group G
are obtained by taking the quotient groups G;/G;4+; in
any series

1=G,4---4G19Ge =G

where these quotients are simple. The socle of a group
G is the subgroup generated by all minimal normal sub-
groups and is denoted Soc(@).

The group of all permutations of an n-element set A is
denoted Sym(A), or Sy, if the specific set is not essential.
We say that a group G acts on A if there is 2 homomor-
phism G — Sym(A), then for a € 4, v € G, we let a7
denote the image of a under the permutation induced by
4 and the orbit of a is {a” : 4 € G}. The permutation
group induced on a single orbit is called a constituent of
G. We say that G is transitive on A if there is only one
orbit. If G is a transitive subgroup of Sym{A), we say




G is regular if, for any a € A, only the identity of G fixes
a. If G is transitive and D C 4, D is called a block (for
G)iffor ally € G, either D" = Dor DN D = 8, and G
is called primitive if there are no blocks that are proper
subsets of A. If D is a block then the set of images of
D is called a block system and an action of G is induced
on the block system; the block system is minimal if that
action is primitive. In algorithms, permutation groups
will always be input and output via a set of generators.

A standard tool for permutation group camputation is
a strong generating set [Si, Section 4]. As generalized in
[FHL1), an SGS for G presumes any tower of subgroups

1=G, £ <G1<£Gy=G.

An SGS is then the union of systems B; of left coset
representatives for G; mod G;4,. Hence, any o € G has
a unique representation a = 8,5, - - Pr- with 8; € B;,
Clearly, if we have an NC-construction of an SGS, we
would know |G|. Note, though, that we would not nec-
essarily have a membership test, for “sifting® (that is,
factoring; see [FHL1|) would appear to take r — 1 steps,
which could be linear in the size of the underlying set.
Thus, we shall insist that SGS's are effective, in the sense
that they come along with an NC-procedure for deter-
mining the unique factorization of elements of @. It is
useful to observe that an SGS for G/N, pulled back to
G, appended to an SGS for N, gives an SGS for G,

3 DBrief statement of results

We give NC-algorithms for testing isomorphism in a
significant class of graphs. This includes the class of
vertex-colored graphs with bounded color multiplicity.
Moreover, the color multiplicity bound can actually be
allowed to grow to O(logn) (n is the total number of
vertices) provided the color-valences are kept bounded.
(for colors C;, Cj, the i — ; color valence is the max-
imum number of C;j-neighbors of a C; vertex). It is
worth noting that the algorithm of [Ba, [FHL1| would
require sequential time O(n'°¢!9%7) for this extended
class (though it can be dispatched in polynomial time
by methods of [Lul}),

It is also shown that isomorphism-testing of valence-
(b + 1) graphs is NC-reducible to finding set stabiliz-
ers in groups in I',. The instance of bounded-color-
valence graph isomorphism mentioned in the last para-
graph makes use of a modification of this reduction.

Machinery for the above includes new parallel algo-
rithms for dealing with permutation groups that are pre-
sented only by generators, focussing on but not restricted

to, groups in the class 'y, We show that the following
problems are in NC for G in Ty, (Sections 5,6.)

(1) Find the order of @
(2)
(3)
(4)
(5)

Test whether a given permutation belongs to G
Find the normal closure of a given subgroup.
Find all the composition factors of G,

Find the centralizer in G of a given normal sub-
group. In particular, find the center of G,

(6)

Find the pointwise-set-stabilizer of a given subset
of the permutation domain.

Note that (1)-(4) have been solved previously only for
solvable groups, (5) and (6) only for nilpotent groups
[LM]. To break out of these restricted classes, it is nec-
esgary to develop analogues of the tools of inear algebra,
in which vector spaces are replaced by direct products
of not-necessarily-abelian simple groups (see Section 4).

We point out that the T, restriction ensures that the
primitive groups left by divide-and-conquer are manage-
able. There are other situations in which we can count
on this. For example, when the orbit sizes are poly-
log (whence we introduce, on each in parallel, methods
of [Lu2]), or when orders of the orbit constituents are
polynomial. Problems (1) through (5) are in NC in such
case. By way of contrast, we refer to the last remark in
ILM] where is pointed out that the techniques therein
would not always handle membership testing when the
orbits are of size 5 or when the constituent groups have
order 60.

Along with the new algorithmic tricks, the solution
to problem (6) involves some investigation of the alge-
bra, making in-depth use of group structure (Section 6).
By comparison, we recall that the polynomial-time al-
gorithm for pointwise set stabilizer [FEL1] is quite di-
rect. In fact, it is the starting posnt in the polynomial-
time machinery. It should be noted that pointwise-set-
stabilizer is a key to the graph isomorphism applications
(Section 7).

4 “Non-abelian linear algebra”

We consider a class of problems that require an extension
of our ability to do linear algebra over small fields,

Fori=1,...,m,let T; be a simple group acting non-
trivially (and so, faithfully) on a set 4;. Then L =
Ty x:--x T, acts in a natural way on the disjoint union
A= A1U-.-UA,, (the ith coordinate acts in the 1th set),
Given @ C L, we seek NC solutions to the following three
problems.



(I) Find the order of G, the group generated by .
(11} Test membership in G.
(I} Constructan effective SGS of G.

For simplicity (in the non-technical sense), we shall as-
sume here that the |T;| are small (polynomial in our
problem size}, so that a listing of the elements of T is
available. However, we only need a presentation of T; in
which we can perform essential operations on T; (verify
simplicity, ind an SGS, etc.) in polyleg time, e.g., by
results of [Lu2] it would suffice if T; were represented on
an polylog-size set.

Suppose that each T: is cyclic of order p. In that
case, L is naturally identified with an m—dimensional
vector space over Zp and the solution to these problems
is standard linear algebra. It iz not much more difficult
to deal with the case when the T; are abelian but not
all isomorphic for then L is a direct product of vector
spaces over various Z,. As shown by McKenzie {Mc},
these vector space factors are obtainable in NC by tak-
ing suitable powers of the generators, and the solutions
to our problems involve parallel computation in these
factors. But what happens to the “standard” methods
when we pass to non-abelian T;7 If we were considering
only polynomial-time computation, then there is a direct
analogue of Gaussian elimination (in fact, the methods of
[FHL1] are interpretable in this sense). However, one’s
ability to find fast parallel solutions to linear algebra
questions depends on alternate, and elegant, methods for
computing determinants (€. [Csl, [Be}, (BGH}, (Mul}.
There does not appear to be an analogue of determi-
nants for n-sets of “vectors” in T when T is simple
non-abelian.

Our new procedures rely, in part, on the following re-
markable characteristic of products of non-abelian sim-
ple groups (see [Sc, Appendix]).

Lemma 4.1 Let T =1,...,m, be non-abelian simple
group and suppose¢ G is a subgroup of []; Ti that projects
onto ecach factor. Then G 3 0 direct product of “disg-
onal subgroups.” To be precise, the T; may be arranged
in blocks of tsemorphic groups so that, after & suitable
renumbering of the factors,

G= Dia.g(T1 Ko 'XT;“) X -oxDiag(T;,,_‘.H b -XTk')

In other words, having identified the groups in each block,
G conaists precisely of the elements of the form

(al,....c:l),...,(a..,...,a,)

Note that, in Problems (I),(11),(IiI}, we did not hy-
pothesize projection onto each factor. The general an-
swer to those questions awaits methods of Section 5., For
now then, let us assume that G does project onto each
Tt

To answer Problem (I}, it suffices to know which co-
ordinates are linked in the diagonal blocks, for |G| =
15y [Tk} To determine whether any T; and Tj are
so linked in G, we test whether a small modification of
the action on A; affects the action on Aj. Thus, we de-
termine generators for the subgroup of G that fixes a
point in A; (“Schreier generators” are available see [Ha,
p.06]) and test whether that subgroup fails to project
onto Ty; if so the two simple groups are linked in a di-
agonal subgroup. In the linked case, we can observe the
identifying isomorphism directly by noting 3 “partner”
in Ty for each element in T:.

1L i8 an easy matter to use the above structure to solve
Problem (II). However, we also observe that a solution
to (I11) will yield a membership test.

Problem (III) would be quite direct now were it not
for the demand to construct the answer, for an SGS for
each diagonal block is observable from an SGS of an in-
volved T: and a disjoint union of these will suffice. How-
ever, our requirement is to construct the SGS from d,
apecifically, via a program that computes, at each stage,
products, inverses, and powers of previously computed
elements. The reason is that the problems under con-
sideration form but one component of the applications
in mind. While our group G is acting in this elementary
fashion on A, it also exists elsewhere on a larger domain.
How would we extend these blindly-listed SGS elements
on A to the larger domain? Bat, if they have been con-
structed, we already have the extensions, i.e., assuming
we have always computed products, inverses, and pow-
ers on the larger domain. (In Section 8 we indicate an
instance of a complexity gap between the problems).

Considering Problem (III) then, assume we have deter-
mined the r diagonal blocks, so that G =T, %X T,-
Focussing on this identification, we construct, for each
coordinate 1, a set B; of r-tuples of G of the form
(1,..., L, e 1, .., 1), where o; ranges over Tx;. Then
\J B; is an SGS and the factorization of ¥ € G through
[] B is immediate. (Note, it would have sufficed to let
B; be an SGS for Ty, ). It is easy to see that it suf
fices to have one such a; # 1 in hand, for conjugates
of o; will generate Tk,. We converge on such element:
in logr stages, doubling, in each stage, the number o
coordinates that are trivial. Suppose that : = 1 and w
have

a = (01,1,---,1|Qk+2g---,ﬂr), aL ")'l" 1




ﬁ = (ﬂl!"‘iﬁk+llll"'!1!52k+2l"':ﬁr)l ﬁl#l

so0 that @ and 8 each have at least k 1's, but in non-
overlapping places (we assume that o and f§ were con-
structed, simultaneously, in the previous round). We
may assume, by substituting a conjugate of a if nec-
essary, that a; and §, do not commute. Then v =
a~'f~1af has a 1 in coordinates 2 through 2k +1 and
is # 1 in the first coordinate.

We require a solution in NC to one other problem in-
volving the above G < L. This, too, is an analogue of
something obtained previously in a classical linear alge-
bra setting. We suppose now that another group, P, is
given that acts {as automorphisms) on L. We need an
algorithm for

(IV) Find the smallest subgroup H of L such that
G < H and H is closed under the action of P.

In the abelian case this is reducible to the problem of
finding the smallest subspace containing a given set of
vectors and closed under a given set of linear transforma-
tions, 2 problem shown to be in random NC in {LM], and
so now in NC by virtue of [Mu]. As with the above, the
algorithm for the non-abelian case must follow another
tack.

Consider first the case where P acts transitively on
{T:} (note, non-abelian simple factors are necessarily
permuted amongst themselves by any automorphism).
We can increase G (staying within target H) so that
linked collections of T;’s {(diagonal blocks) have the same
size. For, suppose this does not hold. Let C be a smallest
linked collection. We may assume T; € C and we take
any & # 1 in B,. For each Tj take =; € P for which
T{ = T; (naturally, all in parallel), and add all a™ to
G. Recomputing the linked collections, every T} lies in a
block of size at most |C|. If, at this point, a new block is
strictly smaller than C, then a similar process will lead
to a split of C. But the smallest section in that split has
at most half the size C. Repeating all of this at most
log r times, we obtain equal-size collections. If now the
image of any generator of (new) G is mapped into G by
each generator of P, we have the desired H. If not, we
have found an element that must be added to G. This
necessarily forces the split of some linked collection and,
once again, one part has at most half the size. Kepeating
all of this at most log r times, the new G is closed under
the action of P.

In the non-transitive case, we perform the above (in
parallel) on each P orbit in {T;}. The new G may not
yet be closed under P since the image of an element may
induce a legal element within each of these orbits but
not one which is consistent (with the diagonals) across

the two orbits. We can discover all such anomalies by fo-
cussing on pairs of orbits (all pairs in parailel, of course).
The images under P of the SGS will either be consistent
across the pair, whence there is a rightful link, or else
they include an element that breaks the link for a pair
of T;'s, whence images of that element are used to break
all links across the two orbits.

5 Basic group algorithms

We need a refinement of a tool that has been used for ef-
ficient permutation-group computation. The notion of a
structure forest was defined in [LM], though it has prede-
cessors in [FHL2|, [GHLSW], [BL], among other places.
A structure forest for a permutation group G is a forest
on which G acts as automorphisms (fixing the roots),
whose leaves form the given permutation domain, and
such that no non-trivial levels can be inserted that are
consistent with the G-action. Denoting by G(v) the per-
mutation group induced by the atabilizer of node v on
the children of v, the latter condition asserts that G(v)
is always primitive.

As noted in [LM), NC contains the problem of com-
puting a structure forest.

Structure forests are used, typically, to guide divide-
and-conquer procedures that are natural to permuta-
tion groups - first dividing the set into orbits, then
dividing an orbit into a minimal set of imprimitivity
blocks, then passing to problems on the subgroup that
fixes one or all blocks so that intransitivity is restored,
etc. Such algorithms work particularly well for sequen-
tial computation with groups in T} ([Lul]) since we
are assured ({BCP]) that the induced primitive actions,
i.e., of mode-stabilizers on children, invelve groups of
polynomially-bounded order (the exponent can be shown
to be blogh + constant). For the parallel algorithms,
however, we shall generally need even more divide-and-
conquer and have to dig into the structure of the primi-
tive groups to get it.

Thus, we define an augmented structure forest (ASF)
for G acting on A to be a structure forest F together
with an assignment to each node v € F of a tower of
normal subgroups of G

1= G(v)m(e) 4 - Glv)1 9 Glv)o = G(v} (1)
with semisimple quotients G(v); /G(v)i+1, and such that
the induced action of G on {G(v)}ugr induces, in
turn, isomorphisms between subgroups at correspond-
ing places in the towers. The following lemma provides
the tool for constructing ASF’s in our applications.



Lemma 5.1 NC contains the problem of conslructing
an augmented structure foreat from a gsven structure for-
est P for G if, for each node v € F, either

(i) the order of G(v) i3 polynomial, or
(ii) the degree of v 13 polylog.

In particular, an ASF for a group in [, 15 NC-
constructible.

Indication of proof: We restrict our attention to the case
when nodes satisfy (i) (the other case uses results in
[Lu2)). It suffices to construct, at amy given v, a nor-
mal series with semisimple quotients, for we need only
construct one such tower for a selected v in each G-
orbit, copying it (actually conjugating it), using any
available element of G to each other point in the orbit.
A tower can be constructed bottom-up by starting with
Soc(G) (NC-computable in case (i}) then considering,
recursively, the quotient group modulo 5 oc(G). O

Remark. For the remainder of this section, we state
results for groups in T, since this class guarantees prop-
erty (i) in Lemma 5.1 in any permutation representa-
tion. However, the results apply to particular permuta-
tion groups as long a structure forest is available satisfy-
ing (i) or (ii) at each node. Note, we do not yet know this
to be the case for the result of Section 6 (see comment
in Section 8).
Qur basic tool is

Theorem 5.2 NC contains the problem of computing
an SGS for @ given permutation group in L.

Indication of proof: With the help of an ASF F, the idea
i analogous to the constructions in [LM|. We define a
series of normal subgroups of G

1=CGmd--d46G;14Ga=0G, (2)
with m = O(log” n), and construct, inductively, an SGS
for each G/G:41 using an SGS for G/G; (the SGS for
the quotient is retained as a set of inverse images in G).
The series in {2) is a refinement of the series

1=Kh<l-'-4K14K0=G, [3)
in which K; is the subgroup of G that fixes all the nodes
at level 1 of F' (roots are at level 0). The quotient group
K:/Kis) then captures the action of K; on the nodes at

level i + 1. We refine series (3) to series (2) by inserting,
at each 1,

Kip1= Hin, Q- Hiy 4 Hio = K

where H;, is the set of elements whose restriction to each
v with £(v) = i lies in G(v); (see (1) above) and m, =
max{m(v) }e(v)=: (we are letting £(v} denote the level of
v in the F). Note that we do not have the G in hand to
start. We do know, however, that G;/G,4; is a subgroup
of the semisimple group Ljx = [L¢(o)=x G(v)i/G(¥)i+1,
for appropriate j, k. We accumulate elements of this
group by “sifting” through the 8GS Bo, ..., B, for G/G;
(as in [LM], we define the siftof y to be the unique o € G;
so that 1 = fo - - - B0 with fi € By). We sift the starting
generators of G and all products in B, B, for all 3 > t.
Viewing the images of the sifts in Ly, the subgroup
generated by these is then closed under the action of
C. This is done in the abelian factors in L;x by linear
algebra as in ([LM]) and then in the non-abelian part
by the algorithm indicated in Section 4 {warning: the
present G plays the role of P in Problem (TV}). There
results an SGS for G;/G;4) which is then appended to
that of G/G;. O
It is immediate that

Corollary 5.3 NC contains the problems of finding the
order of, and testing membership in, a permutation group
tn I's.

Also,

Corollary 5.4 NC contains the problem of finding a
composition series for a permutation group in I's.

Indication of proof: The G;/Gi41 in the proof of Theo-
rem 5.2 are seen to be semisimple and their simple fac-
tors emerge in the construction of the groups. O

The following is an important tool.

Theorem 5.5 NC contains the problem of finding the
normal closure of & subgroup of a permutation group in

| '

Indication of proof: We are given H < G, where G is
in Ts. The construction of an SGS for N, the normal
closure of H, is similar to the construction in the proof
of Theorem 5.2. This time, sift (into G;) the given gen-
erators for H, the products B, B, for all s 2 ¢, from a
current SGS (for N/{NNG;)), and the conjugates of the
SGS via the generators of G. (See [LM, Theorem 1.3]).
a

Corollary 5.6 NC contains the problem of finding the
kernel of an action (i.c., on o set other than the given
permutation domain) of a permutation group in [;.

Indication of proof: We are given G < Sym(A) and are
considering a second action ¥ : G — Sym(D). Find

e TE——



an SGS for ¥(G), always keeping track of the inverse
images in G. Sift the generators of G and the products
B,B, for s > t. Take the normal closure of the group
generated by the sifts. O

For groups in T',, Corollary 5.6 is superceded by the
more general pointwise-set-stabilizer in Section 6, but it
is used along the way to that result. It is also used in

Theorem 5.7 NC contains the problem of finding the
centralizer of a normal subgroup of a group in I's. In

particular, the problem of finding the center of a group
in Iy 15 tn NC.

Indication of proof: The problem is reducible to finding
kernels [Lu2].

6 Pointwise set stabilizers

For a permutation group G in the class Ty, we need to
determine generators of the subgroup that fixea all the
points in a specified subset of the permutation domain.
This problem has previously been shown to be in NC
only for nilpotent groups [LM] (i.e., direct products of
p-groups).

1t is useful to illustrate one of the key underlying ideas
with the following subcase; it is, in a sense, the “small-
est” subcase not covered by the algorithms of [LM]. Start
with the 6-element symmetric group Sym(A) acting on
the 3-element set, A. Then Sym(A)" acts in a natu-
ral way on the disjoint union 4,U---UA, of n copies of
A. We suppose now that we are given generators ® for a
subgroup G of Sym(A)™ and we have specified one point
in each A; to be fixed. The algorithm makes strong use of
a special normal subgroup of G. We want the elements of
G that induce, in every A;, an element of the (3-element)
alternating subgroup Alt{A). These comprise a normal
subgroup N that is obtainable in NC (for it is the ker-
nel of an induced action on []; Sym(A;)/Alt(A;)). This
subgroup N is a direct product of cyclic groups of order
3, i.e., a vector space over Z;. Suppose |[N| =3¥. It is
an easy matter, using linear algebra techniques, to find
a set of y coordinates so that /N induces the complete
Alt(A)¥ on the set Y of corresponding orbits. We then
use an appropriate canonical basis of N = (Z3)¥ to mod-
ify (in parallel) each of the elements of & so that it fixes
the target points in Y (in parallel). The modified ¢ gen-
erates a subgroup H. Now, since G = HN, and H fixes
some of the target points, the answer to the problem lies
in HN,, where N, is the subgroup of N that fixes this
subset of target points. However, no non-trivial element
of N can fix these points. We conclude first that N, =
1, and second that H M N = 1. It follows not only that
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the answer to the problem lies entirely in H but that
H has no elements of order 3. So H is, essentially, a
vector space over Zz, and the pointwise-set-stabilizer is
a subspace obtainable by linear algebra.

The general case involves reduction to the situation
where G is primitive on each orbit and then involves
the location of an appropriate analogue of the N of the
previous paragraph.

Reducing to the primitive case is easy: We may as-
sume that there is at most one point to be fixed in each
orbit (else make copies of the orbit designating different
points in each one). On each such orbit we build a min-
imal block system. The subgroup fixing the designated
point must fix the block containing that point. So the
intermediate goal involves fixing the block, a ‘point’ in
a primitive action.

We show:

Theorem 8.1 Let G in Ty be a subgroup of Sym(A4),
|A| = n, with G acting primitively on each orbit. Sup-
pose a set of points in A have been designated as “arget”
points (to be fized). Then there is a normal subgroup N
of G and a collection Y of orbits such that

(a) The subgroup of G that fizes the target points in
the orbits in Y induces a proper subgroup in a sig-
nificant fraction, s.e., 1/(log® n), of the orbits that
contain target poinis. (c = c(b)).

(b) ¥ =Y,0---0Y; with g = O{logn) and, letting
N; be the subgroup of N that fizes the target points
in YiU---UY;_;, then N; restricted to Y; is a direct
product of its constituents there, each of which is tran-
sitive and T-semisimple for some T.

{c) NC contains the problem of finding Y, N, {Y},
{m}

Roughly, Theorem 6.1 is applied as follows: First con-
gsider the case when the targeted-orbit constituents have
polynomial-size. Consider, in each orbit, the primitive
action on a minimal block system, marking the targets.
Treating Y;,Ya,... in succession, N; is used, as in the
illustration to cut down the present G to H N;4 1, which
fixes the target points in Y;. Repeat, focussing only on
the constituents that have not been affected. By (a), all
constituents will have been cut in at most O(log"*!n)
passes. Now restore primitivity in each orbit by consider-
ing the action on minimal block systems and repeat all of
the above. Since the constituents have polynomial-size,
we reach a pointwise-set-stabilizer in at most O(logn)
repetitions. Finally, we proceed to the general case by
building a structure forest (which has O(logn) levels)
and work down the tree fixing marked nodes that are
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ancestors of target points. At each level, we are dealing
with constituents of polynomial-size.

The & in Theorem 6.1 is constructed out of the socles
of the primitive groups. But the location of N, Y satisfy-
ing both the largeness condition of {(a) and the indepen-
dence condition of (b} requires additional ammunition.
It is easy to show

Lemma 8.2 Let T be a collection of isamorphism types
of simple groups. For any finite group G, there is a
unique minsmal N aG such that G/N 13 T -semisimple.

We call N the residual of G with respect to T, denoting
it by Rest(G). A residual tower in G is a normal series

1=R.< - RiaRy=0C
in which Ry = Res, (R;) for some T;.

Lemma 6.3 If G is primative then the smallest non-
trivial group in any residual tower 13 always Soc(@).

Now suppose G < G x---xG,. Denoting the ith coordi-
nate projection by pr;, assume that pr;(G) = G;. Assort
the composition factors of G into a sequence of classes
as follows: the abelian composition factors comprise the
first class; each of the other classes contain all the non-
abelian composition factors of a given order (most classes
contain just one group) and these classes are sorted by
increasing order of the groups therein. Now let T be the
first class such that Rest (G;) # G; for some 1, and let
R(G) denote the subgroup of elements that project into
Rest (G;) at all <. For G in Ty, R(G) is NC-constructible
when G;’s have polynomial size. It follows easily from the
definition of residuals that pr;(R(G)) = Rest (G;) (in
fact, this relation does not require the minimality of T),
so that unless the projections are trivial, they still con-
tain the socles in primitive coordinates (Lemma 6.3). We
shall want, in fact, a series of groups with this property:

(4)

The next two lemmata isolate critical features of se-
ries (4).

la---aR(R(R(G))) s« R(R(G)) a R(G) a G

Lemma 6.4 Let N be o group in the series ({). Then,
for any subgroup H < @, pri(H) = G; implies
pri{l HNN) = pry(N).

Lemma 6.5 Let G < Sym(A) with G in Ty and suppose
that the orbit constituents {G;} are primitive. Then the
length of series (§) is O(log® | A|) where c—1 is the num-
ber of orders taken on by non-abelian simple subgroups

of 8.

Assuming the conditions of Theorem 6.1, each So¢(G;)
will appear as the projection of a subgroup in series (4).
We may (by Lemma 6.5) select N in that series that
projects onto the socles in at least 1/{log® n) of the tar-
geted orbits; let X be that collection of orbits (X is the
“significant fraction™ of (a)). To understand ¥, we must
look more closely at the socles of primitive permutation
groups.

Lemma 6.6 (O'Nan,Scott [Ca]) Let G < Sym(A) be
a primstive permutation group, let a € A, and let
K = So0¢(Q), Kiq) = the subgroup of K that fizes a.
Then K is T —semisimple for some simple group T and
one of the following holds

(i) K is abelian, regular on A, and is the unique min-
imal normal subgroup of G; and K =1.

(i) K is non-abelian, transitive on A, and i1 the
unique minimal normal subgroup of G.

(iii) K = Ky x K, where Ky, K, are ssomorphic, non-
abelian, are each regular on A, and are the unigue

minsmal normal subgroups of G; and K =
Diag(K; X Kg).

The cases (i),(ii),(iii) involve different sources of N,Y,
so assume only one holds for above X (by cutting down
to > 1/3 of these orbits).

Case (i): Of course, this case will most resemble the
illustrated example. Assuming any ordering, 0y, O, ...,
of the orbits in X, determine (in parallel for every 1) the
subgroup N; < N that vanishes on |J,; O; (this is a
kernel). Then pr;(N;) is a normal subgroup of G;, so
by (i), it is trivial or Soc(G;). Take Y to be the set of
orbits where the latter holds. Thus, if any element of N
fixes the target points in Y it is, by (i), trivial on ¥ and
therefore (by choice of Y) trivial on X. Furthermore, N

. Testricted to the orbits in Y is precisely the direct prod-

uct of its constituents there. By linear algebra methods
(augmented by McKenzie's methods [Mc]| to separate the
characteristics) one can so factor N (each factor being
trivial on all but one orbit in ¥). As in the illustration,
we replace G by HN, = H. Again, HN N is trivial in
X and so, by Lemma 6.4, the group has been cut down
in every orbit of X.

Case (ii): On the orbits in X, N projects onto each
non-abelian socle and therefore acts as a product of di-
agonal subgroups (Section 4). Determine the diagonally-
linked factors. Since the socles are the unique minimal
normal subgroups, a link across two orbits implies a link
between the entire socles in those places. Form ¥ by se-
lecting one orbit corresponding to each linked collection
of socles. By the linking, if for some H < G, HN N does




not induce N on any of the orbits in Y, then it does not
induce NV on any of the orbits in X and g0, by Lemma 6.4,
H will be proper in G in all these places. By the selec-
tion of ¥ and Section 4, we can find SGS elements that
each act non-trivially on only one orbit. These may be
used to modify (in parallel) the generators of G so that
they fix the targeted points in Y. Again, G is replaced
by HN,. Since the latter group fixes a point in each or-
bit of Y, it has lost part of the socle there. By the above

remarks, the group has been cut down in every orbit of
X.

Case (iii): This is the only case in which ¢ > 1 (see
{b} in Theorem 6.1). There are now two minimal normal
subgroups in each socle; we refer to these as Jocle-parts.
Again, determine the diagonally-linked factors in the ac-
tion of N on the orbits in X. The links crossing two
orbits may not extend to the entire socles but could link
just one socle-part to a socle-part. In fact, we may now
consider the diagonally-linked blocks on the socle-parts
occurring in X. We call the number of such diagonal
collections the rank of ¥ in X. Form the graph whose
vertices are the orbita in X and whose edges represent
the linkings of socle-parts. We select a maximal inde-
pendent set in this graph ([KW),[Lub]) and let ¥; be
the corresponding set of orbits. In each orbit in Y] se-
lect one of the two socle-parts; by their independence
we can use the collection D; of these to fix the targeted
pointsin ¥;. Note that, by (iii), we shall have introduced
new links in N. Consider next the set Dy of diagonally-
linked socle-parts that were not represented (in either
socle-part, selected or not) in Y;. Form the collection ¥
by selecting, for each member of D2, an orbit in which
it is paired to a factor that was in Y (it exists since ¥;
was maximal). Use the members of D, now to fx the
targeted points in ¥2. Again, this establishes new links
to groups that are already in or linked to D,. But then
the rank of the remaining part of N is at most half of
that of the original (for it is half the size of the maximal
independent set). We repeat the entire process on the
“untouched” orbits in X, In at most log2|X | rounds,
the rank is reduced to 1, so no full socles remain in X.
We conclude by Lemma 6.4. O

Remark. The precise parallel complexity of the
pointwise-set-stabilizer algorithm is dependent upon the
length of series (4), which puts some function of § in the
exponent (Lemma 6.5). H, however, the G; are abso-
lutely bounded the series length is constant. This cage
is all that is needed to take care of isomorphism-testing

CGy, for fixed b,

W*m*w-ﬂ ik st
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7 Graph isomorphism

To apply pointwise-set-stabilizer to isomorphism-testing
in CGy, we reduce the latter, as usual, to computing au-
tomorphism groups ([Bal|,[Lul]). For these, we consider
the group G = [[Sym(C;); G acts, simultaneously, on
the sets of subsets of each C; x Cy, in which we want
to fix the ‘point’ corresponding to the set of edges from
color class C; to color clasa Cj. For this, then, one needs
only pointwise-set-stabilizer for permutation groups with
bounded orbits.

We briefly outline the NC-reduction of trivalent
graph isomorphism to subset stabilizer for 2-groups (the
higher-valence reduction works similarly). We remark
first that, given a set-stabilizer algorithm, we can find
subgroups stabilizing a relation (i.e., by stabilizing a sub-
get of the square of the domain), and subgroups stabiliz-
ing any number of color classes (i.e., by stabilizing the
relation “belong to same class® and following with our
“pointwise” stabilization of the different color classes).

It is sufficient ((FHL2),[Lul]) to compute Aut,(X), the
group of automorphisms stabilizing edge ¢ in a connected
trivalent graph X. We insert a new vertex v in the mid-
dle of ¢ and refer then to Aut,(X). Also, we ignore,
in a first pass, all “cross edges”, that is, edges between
vertices at the same distance from v, for these can be ac-
commodated via a set-stabilizer application in the group
otherwise obtained. For each z in X and each r > 0,
we consider the subgraph X, (z) induced on “descen-
dents” of z working “away from” the direction of v. We
determine all Iso(X,(z), X,(y)), the sets of all rooted-
isomorphisms where z and y are at the same distance
from v; it is convenient to view such sets as 2-.groups
by expanding them to the group of all automorphisms
of the disjoint union of the graphs. The trick is to dou-
ble r in each round. The group Iso( X3, (z), Xap (y)) is
formed in two stages. In stage one, we look at pairs of
points w, z at level r out from z,y and look up whether
Xc(w) and X, (z) are isomorphic. Points so related in-
duce a coloring. We cut down [ = Iso(X,(z), X.(y))
80 that colors are stabilized. We then use a construc-
tion reminiscent of a technique of Miller ([Mil}, see also
[BL]). If we imagine that descendents of the distance r
points are mutually disjoint, i.e., by temporarily making
duplicate copies, I is extendible to level 2r by piecing to-
gether level r groups (a wreath product). In stage two,
we must reconcile this illegally extended I with the real
graph, i.e., we must cut it down so that classes of equiv-
alent points (duplicates of same real point) are mapped
to classes of equivalent points. Another application of
set-stabilizer guarantees that. The action of the residual
I on real points is then extracted. At last, Aut,(X) is



derived from Jso{ X, (v), Xn(v)).

We comment, finally, on the essential ingredients in
the modification of the above reduction to produce an
NC-algorithm for the cited special case of bounded-
valence isomorphism (bounded color valence, O(logn)
points in a color class).

We exploit the fact that the groups [/ are in Ty, as-
suming a bound of b + 1 on the color-valences (by an
easy extension of results of [Lul]}. Within each color
class then, the group has size O(n°) [BCP|. But when
orbit-constituents have polyncmial size, set-stabilizer re-
duces to pointwise-set-stabilizer (look at action on col-
lections of cosets of “local® stabilizers, fix the “points®
corresponding to the stabilizers themselves). Since orbit-
constituents remain of polynomial-size when we square
the domain, we can also stabilize relations on the set.
Oune of the consequences of this observation is that we
can omit many of the edges in the graphs when we make
the f3o extensions from level r to level 2r, provided we
omit in a canonical fashion and the graph is still con-
nected, for we can then use a set-stabilizer algorithm
to cut back to the automorphisms stabilizing the set of
omitted edges. We want to omit edges so that points
at levels > r are descended from at most one color class
at level r. This can be done, for example, so that the
ancestors with the least (in some ordering) color capture
the descendents. Thus, we may assume that the descen-
dents of different color classes at level r are disjoint. In
extending Jso, let us first focus on one color class C at
level r. Instead of attempting a wreath product (which
may result in large orbits at level 2r), we generate all
the polynomial number of elements in the group acting
on C. We reject any which map w to z when X, (w) and
X, (z) are not isomorphic. (Note: we have also had to
cut down fso{ X, (w), X, (2)) so that they fix the omitted
edge set). Each element «y that remains induces a coset of
isomorphisms (on the ‘disjointed’ graph). It is a coset of
a group whose orbit constituents have polynomial-size.
Extending our results to such cosets, we are able to sta-
bilize the classes of equivalent points (again, duplicates
of the same real point), so the action on the real graph
is extracted. The answers are pieced together over all
7. Doing this in paralle! across all C, we then know the
elements of I that work in each color class. We can cut
I down so that it Lies in the legal group in each C' (again
by a point = coset stabilization). For each generator
of the resulting group, we need list only one extended
isomorphism; the rest of the group comes from conasid-
ering the isomorphisms that fix all points at level r, and
this is a direct product of subgroups of groups that were
obtained with 7= 1.

8 Comments

The parallel complexity of membership-testing in gen
eral permutation groups remains open. In light of th
machinery laid out herein, it is interesting to speculats
about the methods that might be needed for this prob
lesn. Using the augmented-structure-forest approach
the principle obstruction to membership-testing is man
ifest. It arises in the instance of a complete symmetric
group acting on a set of non-trivial blocks. If we view
the “sliced” semisimple problem, (I}, (II) of Section 4 ar:
actually solvable. To be precise, one can recognize (ir
NC) that this is, indeed, the complete symmetric groug
(so that membership-testing is clear). But, the algebraic
machinery that goes into that recognition is impressive
We can test that the group is at least B-transitive, i.e.
that every 6 point sequence maps to every other one. Ii
is known that the only 6-transitive groups are the al-
ternating or symmetric groups, and one can distinguish
between the two. So the membership test does not come
along with a ready solution to (III}. One might speculate
that the proof of the 8-transitivity result may carry more
constructive information and it probably does. However
that proof cites the monumental classification of finite
simple groups. Thus, the obstruction may simply lie ir
our ability to comprehend the algorithm.

We comment, also, on two interesting complexity gap:
that have opened.

In these proceedings, Babai [Ba2] has borrowed some¢
of our machinery in an algorithm for pointwise-set
stabilizer in the class of permutation groups witl
polynomial-size orbit constituents (without the T}, hy.
pothesis). His methods, however, are random, putting
the result into Las Vegas NC. We conjecture that thal
will be improvable to NC.

In both [Bal| and [Lul], it was observed that the
polynomial-time isomorphism tests did not seem tc
guarantee computation of canonical forms in the grapl
classes.  After a time, these issues were resolvec
[BL},[FSS]. We reopen it now, for we do not know how
to compute canonical forms for CGy in NC. Amongai
the difficulties in extending the present method could bs
the canonical choice of maximal independent sets {cas
(iii) in Section 6.)
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