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ABSTRACT

A k-tree is formed from a k-complete graph by recursively adding a vertex
adjacent to all vertices in an existing k-complete subgraph. The many applications
of partial k-trees (subgraphs of k-trees) have motivated their study from both the
algorithmic and theoretical points of view. In this paper we characterize the class of
partial 3-trees by its set of four minimal forbidden minors (H is a minor of G if H
can be obtained from G by a finite sequence of edge- extraction and edge-contraction
operations.)
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1. Introduction

A k-tree is a graph that can be reduced to the k-complete graph, K;, by a sequence
of operations of ‘pruning a k-leaf’: removal of a vertex of degree k with completely
connected neighbors (i.e, inducing a K;.) A partial k-tree is any subgraph of a
k-tree or, equivalently, a graph embeddable in a k-tree with the same vertex set.

The interest in partial k-trees arises from many areas of application such as
reliability of communication networks in the presence of constrained line- and site-
failures (Farley [7], Farley and Proskurowski (8], Neufeldt and Colbourn (9], Wald
and Colbourn {12]), concurrent broadcasting in a common medium network (Col-
bourn and Proskurowski [6]), reliability evaluation in complex systems (Arnborg
(1]), and evaluation of queries in relational data base systems; for a survey see Arn-
borg [2]. In many of these problems the class of partial k-trees accurately captures
the structure of the application. Furthermore many problems which are NP- com-
plete for graphs in general have linear time algorithms for partial k-trees where k is
fixed (Arnborg and Proskurowski [5].) Note that every graph G with n vertices is
a partial (n — 1)-tree. In (3] it is shown that the recognition of partial k-trees may
be done in polynomial time for fixed k, however it is NP-hard for arbitrary k.

These practical issues motivate our study of the theoretical structure of partial
k-trees. In this paper we examine the class of partial 3-trees and characterize this
class by its set of four minimal forbidden minors.

A graph H is a minor of a graph G iff it can be obtained from G by a finite se-
quence of edge-extraction and edge-contraction operations. Edge eztraction resulis
in a graph G — e with the same vertex set as G and the edge set E(G) — {e}; edge
contraction results in a graph G/e with the edge set E(G) — {e} and the vertex set
obtained by replacing the end vertices of e in G by a new ‘big’ vertex; this new
vertex inherits all the neighbors of the two replaced vertices, without introducing a
self-loop or multiple edges.

Wagner’s Conjecture (proved in a series of papers by Robertson and Seymour
[11]), states that for every infinite set of graphs, one of its members is a minor
of another. Thus, every class of graphs that is closed under minor taking has a
complement with a finite set of minimal minors (although we do not know how
large and how many they are.)

We now show that partial k-trees are closed under minor taking and thus that
the class of partial k-trees is completely characterized by a finite set of forbidden
minors.

Theorem 1.1: Every minor of a partial k-tree is a partial k-tree.

Proof: This is obvious for edge extraction, since this operation results in a



partial graph of the original graph. To prove that edge contraction preserves the
property of being a partial k-tree, consider two cases.

(i) the contracted edge is incident with a k-leaf v of an embedding k-tree. The
resulting graph is then identical with a subgraph of the embedding k-tree with
pruned leaf v.

(ii) there is a sequence of leaf removals in an embedding k-tree, such that the
end vertex v of the contracted edge becomes a k-leaf (of the reduced k-tree) be-
fore the other end vertex, «. Pruning v and restoring all previous k-leaves (with
adjacencies to v replaced by adjacencies to u) results in a k-tree which embeds the
edge-contracted minor of the original partial k-tree. =

It follows from Theorem 1.1 that the class of partial k-trees (for any fixed k) is
completely characterized by a set of graphs which are forbidden as minors. In this

paper we show that the set of minimal forbidden minors for partial 3-trees consists
of four graphs K¢, Mg, Mg, and My, (see Figure 1.)

Theorem 1.2: The four graphs in Figure 1 are minimal forbidden minors for
partial 3-trees.

Proof: By inspection, none of the four graphs is a partial 3-tree, and any edge
contraction or extraction results in a partial 3-tree. =

The rest of the paper proves that this set is complete. In section 2 we examine
the set of safe reductions or rewriting rules which preserve membership in both
the class of partial 3-trees and the class of non-partial 3-trees. The connectivity
and cycle structure of the forbidden minors are studied in section 3. Using these
properties we prove that in all such forbidden minors every vertex has degree 3 or
4. Furthermore K5 and Mjg are the only 4-regular such minors and Mg and M,
are the only 3-regular such minors. In section 4 we show that no minors with some
vertices of degree 3 and others of degree 4 may exist thereby establishing that our
four minors form in fact a complete set. Before presenting this material we give a
few definitions.

Given a k-lealf v of a k-tree T embedding a partial k-tree G, the graph G'
obtained from G by removing v and adding all edges between the vertices of the
neighborhood S of v is also a partial k-tree. G' is said to be the result of a ‘k-star
- k-complete’ substitution of v in G. The k-complete subgraph induced in G' by S
is denoted K(S).
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Figure 1: The four minimal forbidden minors characterizing partial 3-trees.



2. Safe reductions of partial 3-trees

Let us give an example of techniques that might be applied in a search for minimal
forbidden minors for partial k-trees using the case of &k = 2.

Example: The complete graph on 4 vertices, K, is the only forbidden minor
of partial 2-trees. Partial 2-trees are easily recognizable by reducing a graph to an
edge by application of the following ‘rewriting rules’ (see Wald and Colbourn [12]):
remove vertices of degree 0 or 1, and contract 2-paths (‘series reduction’: replace
by a single edge two edges incident with a common degree 2 vertex.) Applications
of these rewriting rules create minors of the original graph.

By absence of vertices of degree 2 or less (which would lead to a smaller minor
through a rewriting rule), a2 minimal minor is cubic, since deletion of any edge must
create two vertices of degree 2 or less (every 2-tree has at least two 2-leaves, which
are present in partial 2-trees as vertices of degree at most 2.) To create two vertices
of degree 2 by contraction of any edge, every edge must be in at least two triangles:
take such an edge (z,y) and consider two common neighbors of z and y, v and v.
Since (z,u) must be in another triangle and z has already three neighbors, the third
edge incident to « must lead to v giving a Ky. =

We are now ready to approach the case of k = 3. This is the largest case with a
known set of safe rewriting rules, graph reduction rules which preserve membership
in both the class of partial 3-trees and the class of graphs which are not partial
3-trees (Arnborg and Proskurowski [4].) Besides the rules for partial 2-trees (stated
in the Example), we have three cases of degree 3 vertex reductions: the triangle, the
buddy, and the cube rules (cf. Figure 2.) In the following, we will discuss minimal
forbidden minors of partial 3-trees and call them simply ‘minimal forbidden minors’.

Lemma 2.1: A minimal forbidden minor has no safe reduction.
Proof: Otherwise, it would have a forbidden minor — since every safe reduction
creates a minor of the original graph — and thus would not be minimal. =

We observe that the cube-like configuration with the ‘hub’ (vertex z in Figure 2b)
of degree greater than 3 can be safely reduced as well. This follows from the facts
that (i) the 3-star—triangle substitution of the purported 3-leaves cannot transform
into a partial 3-tree a graph that is not a partial 3-tree, and (ii) in this case of cube-
like configuration, the 3-star-triangle substitutions produce a minor of the original
graph, thus preserving membership in the class of partial 3-trees.
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Figure 2: (a) Rewriting rules for recognition of partial 2-trees; (b) rules for the safe
reduction of degree 3 vertices in partial 3-trees.
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Corollary 2.2: The cube-like configuration with the hub of degree greater than
3 must not be present in a minimal forbidden minor.

For the rest of this section we study properties of safe reductions in partial
3-trees.

Lemma 2.3: For a partial 3-tree G, its embedding H, a minimal separator T
of H, and an instance of a safe reduction with the set of reducible vertices A such
that AN T = 0, there exists an embedding H' of G + K(T) such that vertices in A
are leaves of H'. »

Lemma 2.4: Any partial 3-tree G with an embedding H containing two minimal
separators T3 and T; that have at most one vertex in common has (a) a2 minimal
separator T3 such that T; and T; are in two different components G, = C, + K(T3)
and G; = Cz + K(Ts), respectively, where C; are connected components of G — Ty,
(b) an embedding H' with T3 as a separator, and two instances of safe reductions
with reducible vertex sets A and B such that A C C; and B C C; and A and B are
leaves in H'.

Proof: (a) Existence of T3 follows from the structure of separators in k-trees
(Proskurowski [10, Theorem 2.2].)

{b) Consider the partial 3-tree G' obtained from G by deletion of all 3-leaves of
H; the embedding of G' corresponding to H has a 3-leaf . This 3-leaf may be a
vertex of T} or T: but not both (and not a vertex of T3). In fact, there is such an z
both in G; and in G5, and we will now prove the existence in G of an instance of a
safe reduction A which is not separated from z by Ts. We proceed by case analysis
over the number of 3-leaves in H adjacent to z. We may assume that in G all of
these have degree 3 and are not involved in triangles, or they would be instances of
safe reductions (and thus H would be our required embedding H'.)

(i) If there is only one 3-leaf adjacent to z, then z has degree less than 3 in G,
or the leaf is involved in a triangle. In the former case, Lemma 2.3 states that an
embedding H' exists in which z is a 3-leaf and T} is a separator.

(iif) Assume that there are two 3-leaves adjacent to z. They either form a buddy
configuration, or one of them is involved in a triangle (closed by another edge
incident with z), or = has degree less than 3; the last case is similar to that of (i);

(iii) If three or more 3-leaves are adjacent to z, then they form a buddy config-
uration, or a cube configuration.

In the cases where the leaves contain a buddy or cube configuration, since neither
z nor any of the reducible vertices are part of T3, the whole set of safely reducible
vertices in the configuration must be on the same side of separator Ty as z.

This completes the proof of the lemma. =



Lemma 2.5: A partial 3-tree G with at least 9 vertices has an embedding H
in which two disjoint subsets of leaves correspond to two safe reductions of G.

Proof: (by case analysis based on the number of separators in an embedding
H' of G.) If H' has five or more separators, then the conditions of Lemma 2.4 are
met and the two safe reductions exist on ‘two sides’ of the separator T3. This is
also true when three or four separators do not form sides of a tetrahedron (their
vertices induce a K;.) We thus have to consider only the remaining cases of 4 or
fewer separators. As before, we may assume that all leaves have degree 3.

(i) If H' has one separator, then there are at least six 3-leaves of H' adjacent to
its vertices, creating enough instances of buddy configuration.

(ii) If H' has only two separators, then the five (or more) 3-leaves form at least
two buddy configurations.

(iii) If H' has exactly three separators then they form three sides of a tetrahe-
dron, or the assumptions of Lemma 2.4 hold. In the former case there are at least
five 3-leaves and the analysis of (ii) applies.

(iv) If H' has four separators forming a tetrahedron, then three of the 3-leaves
form a cube configuration, and two other 3-leaves form a buddy. =

Lemma 2.8: In any partial 3-tree, there are at least two instances of safe
reductions such that (a) neither of the two sets of reducible vertices is a subset of
the other; and (b) there are two safely reducible vertices, one from each instance,
that are not adjacent.

Proof: By Lemma 2.4, we only have to consider partial 3-trees without em-
beddings containing two separators with at most one vertex in common. Such
embeddings may have (i) one separator, (ii) two separators sharing an edge, (iii)
three separators that form three sides of a tetrahedron, or (iv) four separators form-
ing a tetrahedron. In these cases, there are at least (i) two, (ii) two, (iii) three, and
(iv) four 3-leaves (of an appropriate embedding). The presence of two independent
vertices of degree less than 3 in the separators would imply the hypothesis of the
Lemma. Thus, we can assume that there is a number of edges incident with sep-
arator vertices. These edges may connect separator vertices creating a number of
triangles that involve leaf vertices. Alternatively, they may be incident also with
additional 3-leaves creating instances of the buddy configuration. In cases (i)-(iii),
addition of new leaves or edges connecting separator vertices will not remove all
vertices of degree less than three without making two leaves reducible in two dif-
ferent instances. Neither will it remove all but one vertex of degree less than three
(this remaining vertex of small degree becoming one safely reducible leaf) without
creating another safely reducible leaf (or leaves.) In case (iv), the partial 3-tree
consisting of four separators and four leaves only has two vertex-disjoint instances
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of the cube configuration. Although the reducible vertices of these two configu-
rations are not independent, for every reducible vertex in one of them there is a
non-adjacent reducible vertex in the other. =

Corollary 2.7: In a minimal forbidden minor, every edge extraction and edge
contraction creates at least two instances of safe reductions.

An edge extraction in a minimal forbidden minor creates two instances of safe
reductions by decreasing the degree of the edge’s end-vertices. If the reductions
involve a vertex of degree 2, a triangle, or a buddy configurations, then these end-
vertices are safely reducible in the reductions. Since the ‘cube-like’ configuration
(Corollary 2.2) is also safely reducible, the end-vertices of the extracted edge must
be safely reducible in a cube configuration as well.

Corollary 2.8: In a minimal forbidden minor G with edge e, the end-vertices
of e are reducible in G —e.

3. Regular forbidden minors

We now examine various properties of forbidden minors. In particular we study the
existence of certain cycles through any edge as well as possible vertex degrees. This
leads to the proof that Ky and Mg (respectively Mz and My,) are the only 4-regular
(respectively 3-regular) forbidden minors.

Lemma 3.1: A minimal separator of size 2 in a partial 3-tree G can be extended
to a 3-separator of a 3-tree which is an embedding of G.

Proof: By induction over n = |G|. Basis: For n = 5, a 2-separator divides
the remaining three vertices into connected components at least one of which has
size 1. This vertex has degree 2 and can be made a leaf in an embedding H of G.
Its neighborhood in H contains the 2-separator. Inductive step by contradiction:
Assume that the lemma is not true and thus there is a minimum size partial 3-tree
G, n > 5, such that its minimal 2-separator {z, y} is contained in no separator of any
3-tree which is an embedding of G. Since G is minimal it cannot be disconnected
or have an articulation point. Likewise, there is more than one vertex on each side
of the separator, otherwise an embedding is easy to produce (it would have the
single vertex as a 3-leaf). G has no safely reducible vertex z outside {z,y}, for by
reducing z we would obtain a smaller graph G' with separator {z,y} which can
be extended, by the inductive assumption, to a 3-separator of a 3-tree H' which



is an embedding of G'; and by adding a leaf to H' we would obtain an embedding
3-tree of G violating the assumption about G. There remains the case where only
z and y (the latter — possibly after the reduction of z) are safely reducible. The
reduction cannot be the cube, because then a vertex outside the separator would be
safely reducible (see discussion above). z and y cannot form a buddy, because then
G would either not be connected or have an articulation point. So z is reducible
either because it has degree two or because it is involved in a triangle. Let us assume
that z is reducible in a triangle configuration. Since every clique separator can be
extended to a separator in an embedding k-tree of a partial k-tree (Arnborg and
Proskurowski [4]), we can assume that z and y are independent. Thus, z has two
adjacent neighbors s, t on one side of the separator and one neighbor u on another
side. In the graph G’ resulting from the reduction of z in G, y is the only safely
reducible vertex, since neither of the vertices s, ¢, or u decrease their degree. We
have to consider two cases of reducibility of y:

(i) v is not safely reducible in G. Then it has to be adjacent to s {or t) and u,
and the reduction of y in G' results in a graph without any safe reductions, thereby
contradicting G being a partial 3-tree.

(ii) y is in a triangle of G (for the discussion of the other safe reduction instance,
namely when y has degree 2, see below.) No matter what the adjacencies with
the neighbors of z, the reduction of y in G' results in a graph without any safe
reductions.

If the degree of z (or y) is 2, then the other vertex of the separator is safely
reducible in G, but not in a2 buddy, a cube, or a triangle configuration, since then
one of the neighbors of £ would be an articulation point of G. Thus both z and y
have degree 2; application of the two safe reductions to G results in a graph with no
safely reducible vertex; so G was not a partial 3-tree contrary to our assumption. =

A direct consequence of Lemma 3.1 is that we can add the edge between the
vertices of a 2-separator of a partial 3-tree and still have a partial 3-tree.

Corollary 3.2: If {z,y} is a minimal separator of a partial 3-tree G, then
G + (z,y) is also a partial 3-tree. In the next three lemmas we present various
structural properties of minimal forbidden minors. These properties will later be
used to show the non-existence of minimal minors not in the set illustrated in
Figure 1.

Lemma 3.3: A minimal forbidden minor M for the class of partial 3-trees is
3-connected.

Proof: (by contradiction.) It is obvious that M must be connected. Assume
it has a minimal separator S where S = {z} or S = {z,y}. Assume wlog. that
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M — S has two components, C; and C;, each with at least two vertices. =z has a
neighbor, call it z, in C; for ¢ = 1,2. Contract edge (z,2) to get a partial 3-tree
M; with separator S. In the case § = {z,y}, edge (z,y) is added to M;, which
remain partial 3-trees by Corollary 3.2. M; now has a clique separator, so each
of the induced subgraphs on § + C; is a partial 3-tree by the k-decomposability
characterization (Arnborg and Proskurowski [4]). However, M can be obtained by
joining two of these induced subgraphs at S, namely the C; part of M; and the
C, part of M;. So M is a partial 3-tree and thus cannot be a forbidden minor for
partial 3-trees. u

Lemma 3.4: Every vertex of a minimal forbidden minor has degree 3 or 4.

Proof: Extraction of an edge must result in at least two vertices of degree 3 or
less, since these two vertices must be safely reducible — thus there are no vertices
of degree larger than 4. Since there are no safe reductions in a forbidden minor, no
vertex has degree less than 3. =

Lemma 3.5: In a 4-regular minimal forbidden minor, every edge is shared by
two triangles.

Proof: Contraction of an edge creates a new ‘big’ vertex of degree at least 4
unless three pairs of edges incident with its end vertices are adjacent, 1.e., the edge
is shared by three triangles. Otherwise, two vertices can decrease their degrees
(which is required by Lemma 2.6) only if they are adjacent to both end vertices of
the contracted edge. In both cases, the edge is in two triangles. =

Theorem 3.5: K; and Mg are the only 4-regular minimal forbidden minors.

Proof: Let us construct a 4-regular minimal forbidden minor from a five vertex
graph consisting of a vertex v of degree 4 and its neighbors. Since each of the four
edges must be in two triangles (and no more edges can be incident with v) the other
four vertices must induce a four-cycle, C, possibly with chords. The edges of this
four-cycle can be in two triangles by adding two chords (which results in Kj), or
by adding a number of vertices to which the five vertex graph must be connected
by at least three edges (Lemma 3.3); this implies that also the fourth vertex on the
cycle is adjacent to an extraneous vertex. Since these four edges must create four
triangles (second triangles for the cycle edges), there is exactly one extra vertex
completing the only other 4-regular minimal forbidden minor, Ms. =

Corollary 2.7 gives us an idea of what the neighborhood of every edge of a
minimal forbidden minor must look like. Since an edge contraction must result in
two instances of a triangle, a buddy, or a cube configuration, we need only consider
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the six possible combinations, each implying the presence of a particular subgraph
(see Figure 3.) This facilitates analysis of regular forbidden minors.

The ‘big’ vertex resulting from edge contraction in a minimal forbidden minor
has degree at least 4 if the contracted edge has a degree 3 end-vertex (otherwise
the degree 3 vertex would be in a triangle and thus safely reducible in the minor,
contradicting Lemma 2.1). Thus, two of the safely reducible vertices created by this
contraction are neighbors of the big vertex. This implies that this big vertex is in
a triangle, in a four-cycle of a cube or adjacent to two vertices of a buddy. Before
stating this formally we introduce the following notation: Given an edge e = (z,y)
and a cycle C containing e we refer to the two endpoints of the path C —~ {z,y} as
the cycle neighbors of e.

Lemma 3.7: In a minimal forbidden minor G, an edge e with an end-vertex of
degree 3 must be included in two cycles each of which consists of either four or five
vertices. In such a four cycle, there must exist a cycle neighbor of e of degree 3 and
in such a five cycle, both cycle neighbors of e must be of degree 3. »

Theorem 3.8: M and My, are the only cubic minimal forbidden minors.

Proof: We will analyze the six cases of an edge neighborhood in a minimal
cubic forbidden minor involving two of: the triangle, the buddy, and the cube
configurations resulting from the edge’s contraction. After the basic configuration (a
graph with between 6 and 14 vertices, some of degree 3 and some of degree 2) is laid
out, we consider all possible nonisomorphic completions of the purported minimal
minor, first without and then with some new vertices. In creating these basic
configurations, four vertices will be ‘unsaturated’, with explicitely constructed two
(out of three) incident edges. (In Figure 3, these unsaturated vertices are adjacent
to s,t,u,v, respectively.) In our reasoning, we will use the result of Lemma 3.3
implying the existence of three vertex- disjoint paths between any two vertices of a
minimal forbidden minor. Thus, any set of new vertices must be connected to the
rest of the graph by at least three edges. The three edges connecting the existing
subgraph with the new vertices force the fourth edge to be incident with a new
vertex as well,

(i) (triangle-triangle) The basic configuration consists of the edge e and four
unsaturated vertices forming two four-cycles (see Figure 3a.) Since there is no way
of connecting the four vertices without creating a partial 3-tree, consider the four
‘new’ vertices, s, ¢, u, and v. (We have to show that all four of them are unique.
Indeed, identifying s and ¢ would result in a triangle, identifying ¢ and u gives a
cube; identifying both s and u, and ¢ and v, and connecting the two vertices results
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Figure 3: The six cases of an edge neighborhood in a cubic minimal forbidden

minor.
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in a graph with Mj as a minor. The only remaining case, of three new vertices, is
to identify only s and u. But the existing edges adjacent to ¢ and v cannot both be
in two required four- or five-cycles, since such cycles must include both edges (s,?)
and (s,v), f.e. a total of four edges incident to s. Vertices s and v, and ¢ and u
must be adjacent to ensure existence of second cycles involving edges adjacent to
e. But to provide the same for the remaining original edges, s and ¢ (and » and
v) must be connected by a path of one or two edges, creating a graph with an My,
minor.

(ii) (triangle-buddy) The only way of connecting unsaturated vertices in the
basic configuration without creating triangles {see Figure 3b) results in the graph
M;. As before, consider the four new vertices, s, ¢, u, and v. Identifying s and ¢
gives the buddy, identifying v and v gives the triangle, identifying s and u gives a
graph with Mj as a minor (there must be two vertex-disjoint paths from v to ¢ and
to the third vertex.) With all four new vertices present, there is no way to include
the edge €' in a four- or five-cycle, thereby contradicting the conditions spelled out
in Lemma 3.7 .

(iii) (triangle—cube) Connecting the unsaturated vertices results in either a graph
with an Mz minor or a graph with an Mjy minor. Consider the four new vertices,
s, t, u, and v (see Figure 3c.) Identifying s and ¢ gives a cube, identifying v and v
gives a triangle; to include the edge €' (resp. ¢") in another (five-) cycle, vertices s
and v (resp. ¢ and u) must be identical and s and t connected which gives a graph
with M, as a minor.

(iv) (buddy-buddy) Connecting the unsaturated vertices without creating a tri-
angle (Figure 3d) results in a graph with K5 as a minor. Identifying s and ¢ gives a
buddy, identifying t and u results in 2 graph with a K; minor (since there is a path
between s and v avoiding the existing vertices.) To include the four edges incident
to vertices s, t, u, and v into a second (five-} cycle for each, edges (s,t) and (u,v)
must exist; since there exist paths between vertices s and u, and ¢ and v that avoid
all the existing vertices, the resulting graph has a K; minor.

(v) (buddy-cube and cube—cube) To include the edge ¢’ in another cycle (see
Figure 3e and 3f), the unsaturated vertices must be connected resulting in a graph
with Mo as a minor. =

4. Minors with vertices of degrees 3 and 4

We now show that no forbidden minors may exist that have some vertices of degree
3 and others of degree 4. To this end we examine the cycle structure through an
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Figure 4: The six cases of a mixed degree edge neighborhood in a purported minimal
forbidden minor; vertices are coded as: o degree 4, ¢ degree 3.

edge in such a graph. First we note a fact about a mixed degree edge, an edge with
end-vertices of degree 3 and 4, respectively, in a purported minimal minor.

Lemma 4.1: Contraction of a mixed degree edge of 2 minimal forbidden minor
cannot result in the cube configuration.

Proof: The edge ¢" (see Figure 4a, 4b, and 4c) cannot be in any five-cycle
in which it would have two neighboring vertices of degree 3, since it would imply
an edge closing a triangle involving a vertex of degree 3. Since " is only in one
four-cycle, no supergraph of this graph is a minimal forbidden minor. =

We must now strengthen Lemma 3.7 when applied to a mixed degree edge:
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Figure 5: Overlapping cycles in a purported minimal forbidden minor with mixed
degree edges; vertices are coded as: o degree 4, o degree 3.

Lemma 4.2: In a minimal forbidden minor G, a mixed degree edge e must be
included in two cycles which overlap only on e and which consist of either four or
five vertices. In such a four cycle, there must exist a cycle neighbor of e of degree
3 and in such a five cycle, both cycle neighbors of e must be of degree 3.

Proof: By Lemma 3.7, we need only prove that the cycles must not have another
common edge adjacent to e. Let us assume that this is not true.

In the case of two overlapping four-cycles, the two vertices of the cycles that are
not incident with a shared edge must be of degree 3, otherwise there would not be
two non-adjacent reducible vertices after contraction of e (Lemma 2.6b).

If the other shared edge is incident with the degree 3 end-vertex v of e (see Figure
52) then the removal of e leaves the degree 4 end-vertex u of e (now of degree 3)
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without a safe reduction. This becomes apparent when analyzing each of the three
safe reductions that might involve u, recalling that a minimal forbidden minor must
not have a safe reduction (Lemma 2.1.)

(i) The triangle is impossible because one of two neighbors of degree 3 (r or s)
would have to be involved in it in G.

(if) The buddy would imply that the two degree 3 vertices r and s are buddies
in G, since they must be adjacent to the buddy of u.

(iii) The cube in which u would be a leaf can have as ‘the hub’ (degree 3 vertex
adjacent to the 3-leaves of the cube) either r (s is equivalent) or the third neighbor of
u, t (¢f. Figure 5a). In the former case, v and r would have two common neighbors
of degree 3 (p and the third safely reducible vertex g of the cube, which also shares
a neighbor ¢ with uv.) This would imply existence of a two-vertex separator, {s,t}
of G. In the case of ¢t being the hub of the newly created cube, the constraints on
the degree of its neighbors and the connectivity considerations (Lemma 3.3) would
imply that G have M as a minor.

If the other shared edge is incident with the degree 4 end-vertex u of e, we
consider the following cases of safe reductions involving vertex u in the graph with
the edge " removed (see Figure 5b; the vertex r has degree 4, or else it would be a
buddy of v in the original graph.)

(i) If u is in a triangle of G — €", then (s,r) is an edge and in G — ¢, r cannot
be safely reduced (r is not in a triangle, 2 buddy would make p and ¢ buddies in
G, a cube with hub ¢ (p) or s would imply a triangle in G involving a vertex of
degree 3.)

(ii) If w has a buddy in G — €", then it is p or g, which is adjacent also to s, so
there is another independent four-cycle involving e.

(iii) If » is in a cube of G — ¢", then v or s (r is of degree 4) must be the hub of
the cube and again there must be an independent four-cycle involving e.

When one of the overlapping cycles is a five-cycle, contraction of e must result
in 2 buddy and not a cube (Lemma 4.1). If there is a four-cycle overlapping the
five-cycle (see Figure 5¢), then u or v must be adjacent to one of the two common
neighbors of r and p, which creates a reducible vertex in a triangle configuration.
If there is an overlapping five-cycle (possible only through vertex ¢ in Figure 5c),
then contraction of e results in the buddy configuration involving ¢, implying that
r or p would have to be of degree 4, or p and g would be buddies in G. =

Lemma 4.3: If a minimal forbidden minor has a mixed degree edge, then the
edge is part of two non-overlapping 4-cycles.

Proof: Contraction of a mixed degree edge cannot result in the cube by Lemma
4.1. Contraction of a mixed degree edge cannot result in the buddy configuration
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either: the edge €' (see Figure 4b, 4d, and 4e) cannot use e in a five-cycle (because u
has degree 4, ¢f. Lemma 4.2), or in a four-cycle (because this would require a vertex
of degree 3 involved in an existing triangle.) Thus, all other four- and five-cycles
involving €' include vertex z, and overlap also on e".

In the case of a triangle and a buddy configuration (Figure 4e), the required
cycles around e' must include y and 2, respectively. If (y,w) is an edge in one
(five-) cycle, then (z,w) cannot be an edge, because then y and z would be buddies.
Therefore, there is a path of one or two edges from z to z, which implies a K5 minor.
In the case of two buddies (Figure 4d), the two cycles must be obtained through
edges (v,y') and (z,2'), which also implies a K minor of G. »

For the case where one of the cycles is of length five, the cycles do not overlap
even if the edge has two end-vertices of degree 3.

Lemma 4.4: For every edge e with two degree 3 end-vertices in a minimal
forbidden minor, if at least one of the two required cycles is of length 5, then the
two cycles do not overlap on an edge adjacent to e.

Proof: Two such cycles of length 5 cannot overlap on an edge adjacent to e, or
the degree constraints for the safely reducible vertices would be violated (see Figure
3d, 3e and 3f). A 4-cycle overlapping with a 5-cycle leading to a buddy configuration
(through contraction of e) creates a triangle involving degree 3 vertices. When
a 4-cycle overlaps with a 5-cycle leading to a cube configuration, Lemma 2.6(b)
requires vertex z (see Figure 6) to have degree 3, since vertex y would be in the set

of safely reducible vertices of the cube. This results in a 2-vertex separator (v,w),
contradicting Lemma 3.3. =
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Theorem 4.5: No minimal forbidden minor has both vertices of degree 3 and
vertices of degree 4.

Proof: In a minor G with mixed vertex degrees there is an edge ¢ = (u,v),
where u and v have degree 4 and 3, respectively. According to Lemma 4.3, e must
be in two non-overlapping 4-cycles (see Figure 7.) We will show that such an edge
must not exist. First, we show that the neighbors r and ¢ of u have degree 3. Then,
we show that u cannot be safely reducible both in G — (v,v) and in G — (u, s).

Assume that one of r and ¢, say ¢, has degree 4. This implies that ¢ has degree
3 (to be able to take advantage of the triangle created by contraction of e), and
that there is another non-overlapping four-cycle around the mixed degree edge (, q)
(Figure 7a). The edge €' = (v,¢) must be in two four-cycles (other than {u,v,q,t))
since a five-cycle would have to share another edge with the second required cycle
contradicting Lemma 4.4 (by Lemma 3.7, both neighbors — along the five-cycle — of
end-vertices of ¢’ would have to be of degree 3.) But the only two four-cycles that
include €' and another vertex of degree 3 can be obtained through addition of edges
(z,w) and (p,t), (since (g,r) would create buddies v and r unless r has degree 4,
in which case, however, (u,v,q,r) cannot be used as a required four-cycle). If these
edges were present, p and w would have to be of degree 3 and {r,z} would be a
separator of G.

Since an edge between any of the neighbors of u would close a triangle involving
a vertex of degree 3, {r,s,t,v} is an independent set. This implies that if any edge
incident to v is removed, u becomes reducible in a buddy or a cube.

Consider first removing the edge e = (u,v). This results in either (i) a buddy
or (ii) cube configuration in which u is reducible.

(i) If we have a buddy configuration, then the other reducible vertex in it is
neither p nor g, since they are both adjacent to v while u is not. Call the other
reducible vertex in the buddy z (Figure 7b). Since all neighbors of u, and their
neighbors are given, u cannot be reducible in a buddy configuration of G — (u, s).
u cannot be reducible in a cube configuration of G — (u,s) since then the hub of
the cube would be v or r (¢ is isomorphic to r). But if the hub were v (Figure 7c),
then p and ¢ are both of degree 3 and have another neighbor in common (beside
v.) Since all the other vertices except s have known neighborhoods, this results in
a separator of size at most 2, contradicting Lemma 3.3. If the hub were r (Figure
7d), the edge (s, p) would have to be present and {s, g} would be a separator of G.

(ii) If u is safely reducible in a cube configuration of G — (u,v), then we consider
the location of the cube’s hub. If r is the hub, then the other reducible vertices of
the cube (beside u) must be p (sharing a neighbor - s or ¢ — with ©) and a neighbor
of r that shares another neighbor — v — with p; this vertex must be ¢. Thus, p and
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g have degree 3 which implies that {s,t} be a separator of G. If s is the hub, then
depending on the choice of the other two safely reducible vertices in the cube (thus
adjacent to 8), we have three subcases. One choice is of both p and ¢ as adjacent to
s; this results in s and v that are buddies in G. Another choice gives p (alternatively,
g) and another vertex z (not g) adjacent to s; these two vertices have, however, no
other common neighbor (required in a cube.) Finally, two ‘new’ vertices, z and y,
may be the remaining neighbors of s. This implies a common neighbor z of z and
y (Figure 7e) which cannot be identical to any earlier introduced vertex (if z were
identical to p or g there would be a triangle with a vertex of degree 3). Since this
is the only remaining configuration around a mixed degree edge e, we must have it
also around edge (u,s) (since s — as the hub of a cube — has degree 3), as shown
in Figure 7f, where {w, z} is a separator of size less than 3. No alternatives remain
around a mixed degree edge, and the proof is complete. =

An immediate consequence of Lemma 3.4 and Theorems 3.5, 3.8, and 4.5 is:

Theorem 4.8: Partial 3-trees are completely characterized by the forbidden
minors Ks, Mg, Ms and Mm.

As stated in Section 1, the class of partial k-trees for any fixed k is completely
characterized by a finite set of minimal forbidden minors. It is natural to wonder
whether our results for ¥ = 3 can be extended to k > 4. In our proofs we depended
heavily on the complete set of safe reduction rules which characterize partial 3-trees.
Using a similar approach it would be difficult to extend our results to partial k-trees
for higher values of k, since no such sets of rules are known for k > 4.
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