Backward Execution
in Nondeterministic
AND-Parallel Systems

John S. Conery

CIS-TR-86-09
November, 1986

Abstract

A new algorithm for “backward execution” in AND-parallel logic
programs is described, and new implementation techniques for this
class of algorithm are introduced. The dataflow graph that determines
forward and backward execution orders, the status of subgoals, and
other state information in an AND process are represented by bitsets,
and the steps of the algorithm are efficient operations on bitsets. Data
from simulations show the implementation techniques are effective, and
form the basis of several interesting future experiments.

Submitted to the
Fourth International Conference on Logic Programming

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON



1 Introduction

Nondeterminism is one of the distinguishing features of logic programs.
There may be more than one way to satisfy a user’s goal statement, lead-
ing to more than one set of output values. Nondeterminism is achieved in
sequential systems through backtracking; when the system has a choice in
methods for solving a goal, it saves the current state of the computation on
a stack so the other choices can be explored later.

This simple control algorithm is not applicable in AND-paralle] systems.
When the sequential left-to-right solution order is replaced by parallel con-
trol, in which more than one goal can be solved at a time, the notion of
“most recently solved goal” cannot be used to select a backtrack literal if
one of those goals fails. There are two general classes of techniques for gener-
ating multiple results in AND-parallel systems. The backtracking algorithm
can be replaced by a join algorithm that combines streams of results from
processes that solve individual goals (Taylor et al [11], Kalé [7], Li and Mar-
tin {8]), or a backward execution algorithm can accept results one at a time
and coordinate re-solution after a goal fails. The first backward execution
algorithm was designed and implemented in an interpreter based on the
AND/OR Process Model (Conery [2]). Recent algorithms by Chang, De-
spain, and DeGroot [1], Lin, Kumar, and Leung [9], and Woo and Choe [13]
are improvements on the original algorithm, designed either to avoid an er-
ror that caused that algorithm to miss some correct solutions, or to be more
efficient by making some decisions at compile time. Hermenegildo and Nasr
presented an algorithm for a model similar to RAP [5,6].

In this paper we present a new algorithm and its implementation. The
new algorithm was developed independently as part of a project to study low
level representations and implementation techniques for systems based on
the AND/OR Process Model (Conery [3], More [10]). As is the case for other
backward execution algorithms, the order of solution of goals and decisions
about backtrack literals are based on directed acyclic graph (dag), containing
one node per literal. In the new algorithm, the dag is represented by an
adjacency matrix, and other state information is represented by bitsets. The
algorithm was designed to be implemented efficiently as a series of simple
set operations.

The new algorithm is similar to the Lin-Kumar-Leung and Woo-Choe
algorithms, to the extent that all three select the same backtrack point given
the same history of failed literals. The new algorithm allows for optimiza-
tions in subsequent steps, however, leading to fewer messages being sent to



descendants and a higher percentage of independent work being saved. An-
other contribution of this paper is to implementation technology. We show
how simple data structures and a few simple operations on them can form
an efficient implementation of a backward execution algorithm.

2 Data Structures

In the abstract model, literals of a clause body are identified by terms of the
form #N, where N is the lexical position of the literal in the body of the clause.
Many runtime decisions are based on a linear ordering of literals, determined
by the shape of the graph. For example, after literal #N is selected as a
backtrack literal, generators that follow #N in the linear ordering are reset.
In the original implementation, the linear ordering was represented by a
list, and decisions based on position in the linear ordering required access
to this list. In the new implementation, we dispense with an explicit list
and represent a literal by an index which indicates its position in the linear
ordering. Thus the decision “does ¢ follow j in the linear ordering?” is
reduced to the comparison i > j without reference to an actual list.

The dag that controls both forward and backward execution is repre-
sented as a binary adjacency matrix. Row ¢ of the graph can be considered
a bit vector, with bit j set if node 7 is an immediate predecessor of node
j, i.e. node i is a generator that binds variable(s) consumed by j. Many
of the steps of the backward execution algorithm are based on relations de-
rived from the dag. As a time/space tradeoff, these relations are represented
explicitly, also as binary vectors. predecessors[i] is the set of predecessors
of node i; bit j is set if literal j is an immediate or indirect predecessor of
literal i. successors|i] is defined similarly. candidates[i] is the set of literals
that are possible backtrack literals after node i fails (Section 3.3).

The head of the clause has a special status, and was treated as a special
case in the original algorithm. In the new algorithm, the head is represented
by two nodes, HG and HC. HG is the head literal in its role as generator
of values for variables that are bound in the start messages that creates
the AND process. HC is the head in its role as consumer; this node is a
successor of the generator of every variable that is unbound in the head
when the clause is invoked. HG is assigned the index 0 in every graph, and
HC is given an index higher than the index of any body literal.

The newest implementation of the backward execution algorithm is based
on a static ordering of the literals in the body of a clause. Like DeGroot, we

2



will assume the graph is created at compile time and does not change during
execution [5]. The bit vectors representing the dag and the predecessor,
successor, and candidate relations are all created before the algorithm is
applied. The steps in compiling information for an AND process are: apply
the literal ordering algorithm to the clause to create a dag, obtain a linear
ordering, label the literals according to their index in the linear ordering, and
finally build the adjacency matrix and relations. The new representation
may lead to efficient operations on dynamic graphs, so the restriction to
static graphs may be eased; this is the subject of future work and will be
explored further in Section 7.

The AND process maintains the status of each literal and updates it as
necessary after each forward or backward step. A literal is solved if an OR
process has been created for it and the OR process has returned a success
message. A literal is pending if an OR process has been started for it but
has not yet returned a result, and it is blocked if some of its predecessors
in the dag are not yet solved. The AND process maintains three bitsets to
represent these states, where 1 € § if literal ¢ has status 5. There are two
reasons for representing status information this way, instead of as a vector
of status indicators. After each step, we want to quickly ascertain the set of
enabled literals so we can start OR processes for them. The decision as to
whether or not a literal is enabled is easily made: a process can be started
for literal ¢ if 7 € blocked and predecessors[i] C solved. Second, a literal
may have the status of solved and pending at the same time, as a result of
the way results are cached by the AND process (Section 3.2).

The final data structure is a set of marks associated with each generator
literal. i € marks[j] if j is potentially the cause of the failure of node i.
Whenever a literal fails, its index is added to the mark set of each of its
predecessors since each predecessor is potentially the cause of the failure.
How the marks are used to select the backtrack literal is explained in the
next section.

The dataflow graph for a map coloring problem used to illustrate many
backward execution algorithms is given in Figure 1 along with the linear
ordering of the literals, the index of each literal, and the sets of predecessors,
successors, and candidates for each literal.



Call:

—_—

color(4,B,C,D,E).

Clause:
color{A,B,C,D,E)
(1) next(A,B) A

(5) next(C,D) A
(2) next(A,C) A
(3) next(A,D) A
(6) next(B,C) A
(4) next(B,E) A
(7) next(C,E) A
(8) mnext(D,E).
next(green,yellow).

next(green,red).
next(green,blue).
next{(yellow,green).
next(yellow,red).
next(yellow,blua).
next(red,green).
next(red,yellow).
next(red,blue).
next(blue,green).
next(blue,yellow).
next{(blue,red).

Candidate Sets:

1: {2,3,4} 2: {1,3,4}
3: {1,2,4)} 4: {1,2,3} 4
5: {1,2,3} &: {1,2}
7: {1,2,4} 8: {1,3,4}

Figure 1: Example Dataflow Graph and Relations



3 The Backward Execution Algorithm

The solution of a goal statement by a parallel AND process is carried out
as a series of indivisible steps. Each step is triggered by the arrival of a
message from a descendant OR process. The receipt of a success message
from the process for literal i leads to a forward step: i is removed from
pending and added to solved, and OR processes are started for each newly
enabled process. The receipt of a fail message leads to a backward step: one
of the generators that contributed directly or indirectly to the failure of i
must be sent a redo message, and other generators related to ¢ might have
to be reset.

The original backward execution algorithm of [2] was defined in terms
of forward and backward execution phases. When an AND process received
a fail message, it embarked on a backward path in the dag until the pre-
decessors of the failed literal had created a new set of bindings. Any fail
messages from processes for literals not on the backward path were post-
poned for later processing since they required the starting of a new path.
The backward execution phase of the new algorithm lasts for just one step,
the step that processes the fail message. After this backward step, the AND
process is ready to accept and process additional fail messages. Situations
that led to multiple failure paths and postponed message processing in the
earlier algorithm are handled naturally by successive backward steps in the
new algorithm, and backward and forward steps can be freely intermixed.

The rule for selecting the literal to send a redo message to, and the rules
for deciding which generators have to be reset, will be explained in this
section. A concise description of the algorithm is given in Figures 3 and 4
at the end of the paper.

3.1 Processing a Fail Message

The first operation performed by the AND process after literal : fails is
to add i to the marks of every predecessor of i. The backtrack literal is
determined by finding the literal latest in the linear ordering which has ¢
or a successor of ¢ in its set of marks. Since literals are indexed according
to the linear order, this step consists of a linear scan of the marks vectors,
working from the highest index to the lowest, looking for a literal j such
that
marks[j] N ({{} U succli]) # 0



If the backtrack literal has index 0, i.e. the backtrack literal is the head of
the clause, the AND process fails.

The reason we must look for a successor of ¢ as well as ¢ itself can be
explained by the example in Figure 1. Suppose the process for literal 4 fails
as a result of the bindings produced by its predecessor, literal 1. The correct
step is to send a redo message to the process for literal 1. Since literal 4
has not been solved, there can be no processes for its successors in the dag,
and thus no marks from its predecessors in the mark vectors of literals 2
and 3, and the selected backtrack literal is literal 1. However, what would
happen if literal 4 sends a fail message because the corresponding process
has produced all possible solutions for its subgoal? In other words, suppose
the process for literal 7 rejects every value produced by the process for literal
4. Literal 7 might be solvable with the combination of a different value from
literal 2 and the original value from literal 4. The correct backtrack literal
in this situation is 2. Thus, after literal 4 fails, the AND process searches
for a generator with a mark of 4 or a successor of 4; in this case it finds 2
marked by the failure of 7 and selects 2 as the backtrack literal.

After the backtrack literal is identified, the AND process obtains an-
other result from the corresponding OR process and resets the generators
that follow the selected literal in the linear ordering. The reset operation
is how the AND process creates the cross product of tuple values for con-
sideration by consumers. By analogy with nested FOR loops, the backtrack
literal is a generator that corresponds to one of the index statments, and the
generators that are reset correspond to index statements closer to the body
of the loop [4]. In a straightforward implementation of the redo and reset
operation, a redo message is sent to the OR process for the backtrack lit-
eral, and the OR. processes for the literals that are reset are replaced by new
processes. Situations where a redo message can be avoided are described in
the next section, and an optimization that leads to fewer resets is discussed
in Section 3.4.

3.2 Result Cache

Resets can be made more efficient by introducing a “restart” message and
timestamps so existing OR processes can be reused. Further savings are
possible if the AND process maintains a cache of results from each generator
and uses bindings from the cache during redo and reset operations. In the
current implementation an AND process maintains two lists, named old and
new, for bindings produced by each generator. old is the set of values already



used by the AND process. When a success message arrives from a generator,
the current bindings of its variables are placed in old and the variables are
set to the values indicated by the success message. A reset consists of moving
the current bindings plus all bindings from old to new, and then selecting
a set from new to be the current bindings. From this point on, as long as
new remains non-empty, the AND process takes bindings from new instead
of sending a redo message to the OR process.

Some complexity is added to the message interface for the process by
the use of a cache. A situation may arise where the new list for literal ¢
is empty, but old is non-empty, and a redo message has been sent to the
process for literal . In this situation the status of ¢ is pending, since the
process is waiting for a result from the OR process for ¢. Next, suppose
the processing of a fail message on behalf of another literal causes i to be
reset. Since old[i] is not empty, we can move all the bindings from old to
new and consider 7 to be solved. However, the OR process for i may still be
working on the redo message sent earlier, so we cannot simply remove ¢ from
the pending set. This is the situation mentioned earlier where a literal is in
two status sets simultaneously: in this case i is both solved and pending.
The message interface correctly handles cases where success or fail messages
arrive for literals the AND process considers solved.

3.3 Candidate Sets

A data structure introduced earlier but not used so far is the set named can-
didates for each literal. candidates(i] is the set of literals that are possible
backtrack literals after the process for literal i fails. Obviously all prede-
cessors of ¢ should be included in this set. As a previous example showed,
some literals that are not predecessors of ¢ belong to this set, as well. In
that example, literal 2 was selected as the backtrack literal after the failure
of literal 4. candidates[i] is the set of predecessors of 7 and the predecessors
of the successors of i, excluding 1 itself:

predecessorsi] U cp(i) — {i}

where
cp(i) = U predecessors(z}]
zesuccli)
The candidate set is used in two situations. First, it helps when selecting
the backtrack literal. The first description of the search for the backtrack
literal indicated a search backward through the linear ordering for a literal



with a mark set containing the failed literal i or one of its descendants. In
fact, not all literals are considered; we only have to check the marks on the
literals in candidatesfi]. How this leads to a more efficient search is discussed
in Section 4 below. The second application of the candidate set is related
to deciding which generators to reset, which is discussed next.

3.4 Resetting Fewer Generators

In the original backward execution algorithm, when literal { was chosen
as the backtrack literal, every generator following ¢ in the linear ordering
was reset, This is a waste, however, if these generators have nothing to
do with the failure that caused i fo be selected. Not only are innocent
generators reset, but their consumers have to be canceled, even when these
generators and consumers may have settled on an acceptable value. It is
clearly worthwhile to reset as few generators as possible. Chang, Despain,
and DeGroot used this idea in their backtracking algorithm [1].

What we need to do is reset only those literals which, along with the
backtrack literal i, contribute to the solution of the successors of i. These are
all the literals with i in their candidate set. However, j € candidates|i] iff : €
candidates[j], so the set of generators that must be reset after selecting literal
i as the backtrack literal can be restricted to those literals in candidates|i]
with index greater than i.

4 Notes on Efficient Implementation

The potential efficiencies of the new backward execution algorithm are based
on the fact that all of the data structures can be represented as bitsets and
corresponding operations are fast operations on sets. Many processors have
instructions for manipulating bit fields that represent sets. The most obvious
are bitwise OR for union and bitwise AND for intersection.

Some processors have a “find first set bit” instruction that will return
the index of the first element in a set. This leads to an efficient enumeration
of the elements of a set. For example, when looking for a backtrack literal
after the failure of literal i, the algorithm selects as the backtrack literal
the latest literal j in the linear ordering such that ¢ € marks[f]. Instead of
starting from the end of the array of mark vectors and working toward the
front, testing to see if 7 is an element of each set of markings, we can use
the definition of candidates[i]. The find first set bit instruction applied to
candidates[{] gives the index of the first set of marks to test. This use of



find first bit set, combined with masking and loop indexing instructions, can
be used in many places in the new algorithm to enumerate the elements of
a set.

5 Comparison with Other Algorithms

The main problem to be solved by a backward execution algorithm, and
the source of the error in the earlier algorithm, is how to remember all
potential backtrack points after a failure and how to use these points in the
context of any combination of intervening success and failure messages. In
the following discussion we will be concerned with what happens after literal
Ly fails. Assume the potential backtrack points are literals B = {L;...L;}
and that Ly € B is selected as the backtrack literal. B, is B—{L;}, the set of
remaining backtrack points. All three algorithms compared here select the
same literal given the same failure history; what differs is how this history is
represented and used. The basic problem is to remember all the elements of
B, so that if L; later fails, the these literals can be considered for backtrack
points along with the predecessors of L.

The algorithm by Lin, Kumar and Leung [9] stores the unused backtrack
points By in a B-list associated with the backtrack literal L;. Items of the B-
list are sorted according to their placement in the linear ordering. Initially
the B-list of a literal contains only its immediate predecessors. When L,
is chosen for backtracking, the elements of B, are merged with this list.
When L, later fails, the new backtrack literal is taken from the B-list of
L. The difference between this approach and our new algorithm is that
in our algorithm, instead of saving B, with the backtrack literal for use if
and when that literal fails, we scatter the information that L; failed among
the mark sets of the elements of B,. When I later fails we have to search
these mark sets, but, as described in the previous section, this search can
be done efficiently, and in general the first literal checked is the backtrack
literal. Another difference is that our algorithm is based on sets and literal
indices instead of lists and a linear ordering list. However, the techniques
introduced here can be applied to the Lin-Kumar-Leung algorithm to make
it more efficient. B-lists can be replaced by B-sets, the merge in step 3 of
their algorithm can be done by setting B; to B;UB;—{j}, and the backtrack
literal identified by the first element of a B-set.

In the Woo and Choe algorithm, the equivalent of the B-list of the failed
literal is reconstructed from information stored with the literal. Instead of



(8) (&)
(b) (©) () ()

(D O @ @©® ©
Candidates(c) = {a} Candidates(c) = {a,b}
(2) (b)

Figure 2: Candidate Sets

storing B, with L;, the identity of the failed literal L is stored in a redo
cause set (RCS) associated with L. This is similar to the mark set of our
algorithm; the difference is that Woo and Choe mark only the backtrack
literal, not all predecessors of the failed literal. When L, later fails, the
RCS of this literal is used to construct, dynamically, the same information
stored in the B-list for L;. The elements of 53 after step 4 of the Woo and
Choe algorithm are the same as the B-list of the failed literal in Lin, Kumar,
and Leung’s algorithm.

The biggest difference between the new algorithm and the two described
above is the use of candidate sets when deciding which literals to reset after
selection of a backtrack literal. The B-list or S3 of the other algorithms does
not give us any information about which generators have to be reset. This is
illustrated by the graphs in Figure 2. After the failure of literal 4, literal 2 is
selected for backtracking. In the graph on the left, literal 3 should be reset,
because it has a descendant in common with the backtrack literal. Such a
descendant has to consider all combinations of values from its predecessors,
and when an “outer variable” from a generator early in the linear ordering
gets a new value, all “inner variables” must be reset. In the graph on the
right, however, literal 3 does not have to be reset, since it has no descendants

10



in common. This information is captured in the candidate set for literal 2;
node 3 is in candidates[2] in the graph at the left but not in the graph on the
right. In both other algorithms, literal 3 is reset after 2 is selected, regardless
of whether it has descendants in common with the backtrack literal. There
is no information about literal 3 and how it is related to literals 2 and 4 in
either the B-list for literal 2 or the computed set S3.

6 Results of Experiments

The new algorithm was implemented in Modula-2 in a simulator that mea-
sured the number of steps required to solve a nondeterministic goal. In
keeping with the goal of performing only simple set operations, Modula-2
bitsets were used to represent the dag and derived relations. The results of
several simulations are presented in Table 1.

The simulator was used to test a number of aspects of the implementa-
tion. The independent variables of the tests were whether or not to use a
result cache, whether or not to use the candidate set to decide which literals
to reset, and variations on the order messages were processed. Messages
in the AND process’ input queue could be removed in serial order, random
order, or giving preference to certain types of messages or messages from
designated processes. The hypothesis was that by processing fail messages
first, the chances were that some descendants would be canceled before their
messages caused the AND process to take some useless steps [2]. This was
almost always the case.

There are four groups of columns in Table 1, labeled C/C, C/A, NC/C,
and NC/A. The letter(s) before the slash indicate whether or not a cache was
simulated (NC means no cache), and the second letter indicates whether only
candidate generators were reset {C) or if all generators were reset (4). The
numbers in the columns are means, taken from three simulation runs, where
each run used a different message order. For each test, the line marked Desc
gives the total number of immediate descendant OR processes that were
created. Cons is the number of descendants that were pure consumers, not
generating any variable bindings. This is intended to be a measure of the
efficiency of the AND process; a large number of consumer processes cor-
responds to a large number of tuples considered by the AND process. The
most efficient AND process is one that would generate exactly those tuples
that are solutions for the problem. The last line is the number of execu-
tion steps, corresponding to the total number of success and fail messages

11



Problem: C/C C/A NC/C NC/A

Map Coloring (72)
Desc 520 520 645 645
Cong 483 483 464 464

Step 713 713 982 982

Willow (9)
Desc 39 39 42 58
Cons 25 25 25 31
Step 68 68 76 92
MM (1)

Desc 30 32 33 36
Cons 27 39 24 24
Step 41 43 48 50

Tough (112)
Desc 1605 1605 4527 4527
Cons 1016 1016 1412 1412
Step 1899 1899 6022 6022

Table of results from simulation runs. Each number is a mean from three
executions, each with a different message queue strategy. In the graphs,
generators that are immediate predecessors of the head, i.e. generators
that produce output values, are drawn as double circles. The number in
parentheses by the name of the graph is the total number of solutions to the
problem.

Table fg Data



received.

The use of a result cache leads to significant savings in large programs,
with fewer reset operations and execution steps. The use of candidate sets to
decide which literals to reset does not always lead to more efficient execution.
The reason is that in many clauses, the head is a consumer of the “last row”
of generators, i.e. in most cases there are no literals that (1) produce values
not exported to the calling procedure, and (2) follow the last generator
that does produce exported values. When all generators are related because
they have HC as a common descendant, every generator is in every other
generator’s candidate set, and there is no difference between the cases where
all generators are reset and only candidates are reset. A graph in the Table 1
that does show a difference is the “double m.” In another experiment, not
shown, “tough” was modified so that only one variable was returned through
the head. This problem showed a dramatic gain in efficiency when only items
in the candidate set of the backtrack literal were reset.

7 Future Projects

There are a number of interesting future projects based on the new algo-
rithm. The first is part of the definition of a virtual machine for programs
of the AND/OR Process Model. The current implementations are all inter-
preter based, where the basic cycle of the interpreter is to select a message
from a system wide queue, find the process that is the target of the mes-
sage, apply the indicated state transition, and store the new process state
and output messages. There is nothing in the system tailored to each indi-
vidual clause, the way open-coded unification is tailored to compiled clauses
of the Warren Abstract Machine [12]. The next stage in the implementation
of backward execution is the definition of sequences of compiled code based
on the operations of the new algorithm.

Another interesting project is to see if dynamic graphs can be manipu-
lated efficiently by the new algorithm. When a generator can bind a variable
to a nonground term, new dependences are introduced into the clause. The
key to efficient handling of this situation is to notice that the new depen-
dences are always between successors of the generator that introduces the
dependence. It may be possible to refine the agorithm so that when a new
dependence is created, bits are added to the representation of the dag to
reflect the dependence, and the proper candidate sets are updated. When
the AND process backs up to the generator, the dynamic dependences can

13



be erased along with its mark set, pending the arrival of a new value.

A similar project involves creating the candidate sets dynamically as
generators succeed. Suppose the head node HC is a successor of nodes 4
and 5 in Figure 2. This means the left and right “branches” in the tree are
related, so generators of the left branch are candidates for the right branch,
and vice versa. When the AND process is working on the first result, the two
branches are independent. It is only when we are working on later results,
in response to a redo message, that we have to worry about resetting the
right branch for every new value from the left branch. If the candidate sets
can be created dynamically, the dependence between branches will not be
made until the first result is computed.

A fourth project involves keeping the bindings stored in the result cache
in a strict order. In the current implementation values can be retrieved in
any order, since taking a value from the cache is equivalent to receiving a
success from a descendant OR process and the AND process is not allowed
to depend on the order of results from descendants. Consider a case where
a set of generators and consumers has settled on an acceptable set of values
after a number of redo and reset operations. If one of the consumers also
has as a predecessor that is selected as a backtrack literal by an unrelated
failure, the generators of this group are all reset and the acceptable value
will have to be recomputed. However, if the AND process can order its
results, it may be possible to skip combinations that are known to fail. The
definition of this ordering and its effect on the rest of the algorithm have to
be explored in greater detail.

8 Summary

There are now a number of competing methods for generating multiple re-
sults in parallel AND processes. One class of methods, based on joining
result streams from descendant processes, does not use any form of back-
tracking. Instead, the AND process retains results sent from each descen-
dant and computes the stream of final results via a dynamic join operation.
Examples are operations in the Reduce-OR Process Model (Kalé [7]) and
the Sync Model (Li and Martin [8]). The other class of methods uses a gen-
eralized form of backtracking, called backward execution, where an AND
process works on one result at a time and handles the failure of a descen-
dant by re-solving a previously solved goal. Falling in this category are the
algorithm presented here and the algorithms of Lin, Kumar, and Leung [9]

14



and Woo and Choe [13].

There are optimizations to be made at the conceptual level for both class
of methods. For example, in both the Reduce-OR Process Model and the
Sync Model, the size of intermediate relations can be reduced considerably
by using the structure of the solution order graph. In backward execution
models, savings can be realized by a judicious choice of literals to reset [1].
Part of the decision of which style is preferable will depend on the applica-
tion. If most queries are “setof” queries that require all results and there
are sufficient resources to devote to the task, it makes sense to work on all
results simultaneously. If few answers are needed, or resources are scarce, or
the answers should be produced in a demand-driven fashion, working on a
single result at a time might be better. Ultimately, however, a large parf of
the decision about which class of algorithm is preferable will depend on low
level implementation. This paper introduced low level representations and
operations that significantly speed up the operation of backward execution
algorithms.

15



Procedure back-up(FL):

FL: The literal corresponding to the failed process.

1. Add FL to the marks of each literal in pred(FL).

2. Let BL be the latest literal in the linear ordering with a set of marks
containing a literal in {FL} U succ(FL). If there is no such set of
marks, BL is HG.

3. If BL is HG, the AND process fails, otherwise continue.

4. Call next-result(BL); if it fails, make the recursive call back-up(BL),
otherwise continue. (pext-result is defined in Figure 4)

5. Initialize a set MV to be the set of variables generated by BL, and let
marks(BL) = 0.

6. Work toward the end of the literal ordering, starting from BL, and do
the following to each literal L:

(2) If L consumes a variable in MV, cancel the OR process for L, set
marks(L) to @, and move L to the set of blocked literals. If L is
a generator, add the variables generated by L to MV.

(b) If L is a generator in candidates(BL) and does not consume a
variable in MV, set marks(L) to ® and call reset(L) (Figure 4). If
the values of the variables generated by L change as a result of
the reset, add them to MV.

7. For each literal {L | L € Blocked, pred(L) C Solved} start an OR
process and move L from Blocked to Pending.

After receiving a fail message from process for L: Call back-up(L).

After receiving a redo message: Call back-up(HC).

Figure 3: Backward Execution Algorithm

17



Result Cache Algorithms

Old For each generator, the list of results sent from the OR process and
used to set the value of the corresponding variables.

New For each generator, the list of future bindings for its variables. Gener-
ally these are “recycled” values, not values just arrived from the OR
process and waiting to be applied.

Procedure next-result(L): Return OK if the variables generated by L can
be given new bindings, or if the process for L can potentially send new
bindings.

1. If New(L) # 9, add the current bindings to Old(L), and remove a set
of bindings from New(L) and make them the current bindings. Return
OK.

2. If L € Pending, add the current bindings to Old(L), remove L from
Solved, and return OK.

3. If the process for L has failed, return FAIL.

4. Add the current bindings to OId(L), send the process for L a redo
message, move L from Solved to Pending, and return OK.

Procedure reset(L): Return TRUE if the variables generated by L change
values as a result of the reset.

1. If L € Blocked, do nothing, return FALSE.
2. If Old(L) = @, do nothing, return FALSE.

3. Move all bindings to New(L), setting Old(L) to the empty list. Remove
a set of bindings from New(L) and make them the current bindings.
Add L to Solved and return TRUE.

Figure 4: Maintaining a Cache of Results

18



References

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

Chang, J., Despain, A.M., and DeGroot, D. AND-parallelism of logic
programs based on static data dependency analysis. In COMPCON
Spring 85, (Feb.), IEEE, 1985, pp. 218-225.

Conery, J.S. The AND/OR Process Model for Parallel Interpretation of
Logic Programs. PhD thesis, Univ. of California, Irvine, 1983. (Com-
puter and Information Science Tech. Rep. 204).

Conery, 1.S. Parallel Execution of Logic Programs. Kluwer Academic
Publishers, Boston, MA, 1986.

Conery, J.S. and Kibler, D.FF. AND parallelism and nondeterminism in
logic programs. New Generation Computing 3, (1985), 43-70.

DeGroot, D). Restricted AND-parallelism. In Proceedings of the Inter-
national Conference on Fifth Generation Computer Systems, (Tokyo,
Japan), 1984, pp. 471-478.

Hermenegildo, M.V. and Nasr, R.I. Efficient management of backtrack-
ing in AND-parallelism. In Proceedings of the Third International
Conference on Logic Programming, (London, England, Jul. 14-18),
Springer-Verlag, 1986, pp. 40-54.

Kalé, L.V. Parallel Architectures for Problem Solving. PhD thesis,
SUNY Stony Brook, Dec. 1985. (Univ. of Illinois at Urbana-Champaign
Tech. Rep. UTUCDCS-R-85-1237).

Li, P. and Martin, A.J. The Sync model for parallel execution of logic
programming. In Proceedings of the 1986 Symposium on Logic Pro-
gramming, (Salt Lake City, UT, Sep. 22-25), 1986, pp. 223-234.

Lin, Y., Kumar, V., and Leung, C. An intelligent backtracking algo-
rithm for parallel execution of logic programs. In Proceedings of the
Third International Conference on Logic Programming, (London, Eng-
land, Jul. 14-18), Springer-Verlag, 1986, pp. 55-68.

More, N. Implementing the AND/OR Process Model. Master’s thesis,
Univ. of Oregon, 1986.

[11] Tayler, S., Lowry, A., Maguire, G.Q., and Stolfo, S.J. Logic program-

ming using parallel associative operations. In Proceedings of the 1984

16



International Symposium on Logic Programming, (Atlantic City, NJ,
Feb. 6-9), 1984, pp. 58-68.

[12] Warren, D.H.D. An Abstract Prolog Instruction Set. Tech. Note 309,
SRI International, Oct. 1983.

[13] Woo, N.S. and Choe, K. Selecting the backtrack literal in the AND
process of the AND/OR Process Model. In Proceedings of the 1986
Symposium on Logic Programming, (Salt Lake City, UT, Sep. 22-25),
1986, pp. 200-210.

19



