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Abstract

We present a technique for synthesizing systolic arrays which have non-uniform data flow gov-
erned by control signals. The starting point for the synthesis is an A ffine Recurrence Equation—a
generalization of the simple recurrences encountered in mathematics. A large class of programs,
including most (single and multiple) nested-loop programs can be described by such recurrences.
In this paper we extend our earlier work [RFc| in two principal directions. Firstly, we present
a class of transformations called data pipelining and show that they yield recurrences that have
linear conditional ezpressions governing the computation. Secondly, we discuss the synthesis
of systolic arrays that have non-uniform data flow governed by control signals. We show how
to derive the control signals in such arrays by applying similar pipelining transformations to
these linear conditional expressions. The approach is illustrated by deriving the Guibas-Kung-
Thompson architecture for computing the cost of optimal string parenthesization.

1 Introduction

Systolic arrays are a class of parallel architectures consisting of regular interconnections of a very
large number of simple processors, each one operating on a small part of the problem. They
are typically designed to be used as back-end, special-purpose devices for computation-intensive
processing. A number of such architectures have been proposed for solving problems such as matrix
multiplication, L-U decomposition of matrices, solving a set of equations, convolution, dynamic
programming, etc. (see [GKT,Kuna,Kunb] for an extensive bibliography).
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Most of the early systolic arrays were designed in an ad hoc, case-hy-case manner. Recently
there has been a great deal of effort on developing unifying theories for automatically synthesizing
such arrays [CS,C,DIa,LM,LS,LW,MW Mol,Qui,RFS,WD)]. The approach is to analyze the program
dependency graph and transform it to one that represents a systolic array. The problem of synthesis
can thus be viewed as a special case of the graph-mapping problem where the objective is to
transform a given graph to an equivalent one that satisfies certain constraints. For systolic array
synthesis there are two major constraints, namely nearest-neighbor communication and constant-
delay interconnections.

The initial specification for the synthesis effort is usually expressed as a recurrence equalion—an
equation which recursively defines the value of a function at all points in a domain, in terms of its
value at other points in the domain. The domain is defined separately and is usually a convex hull
in Z" (Z denotes the set of integers). In most of the earlier work cited above, the recurrence was
restricted to a special case, called Uniform Recurrence Eguations (UREs). Here, the difference,
P — g, between a point, p, and any point, g, that it depends on, is required to be a constant vector,
b. For such recurrences, the dependency graph of the computation can be shown to be a lattice in
Z™. The problem of synthesizing a systolic array can then be solved by determining an appropriate
affine transformation (i.e., one that can be expressed as a translation, rotation and scaling) of the
original lattice. Such recurrences were defined in a seminal paper by Karp et al. [KMW] even before
systolic arrays became popular, and much of the recent research is based on their foundations.

One principal reason that such an approach has been so successful is that the semantics of all
systolic arrays can be formally described by recurrences that have uniform dependencies. This
fact has been independently observed by a number of researchers [Cheb,MR,RK], notably those
addressing the problem of systolic array verification. This implies that as long as the computation
defined by 2 URE is well formed, there is a very direct mapping of the recurrence to a systolic array.
We have therefore argued in a companion paper [RFc] (see also [RFc]) that forcing a designer to
provide an initial specification that has uniform dependencies is too restrictive. We proposed a
new class where the dependencies of 2 point p are affine functions of p- The recurrence equations
characterizing such computations are called Affine Recurrence Equations (AREs*). We have also
shown that simple systolic architectures (i.e., those that have uniform data flow) can be synthesized
from AREs by a two-step process consisting of determining an affine transformation (i.e., a timing
function and an allocation function) and a transformation called data pipelining. The first step is
very similar to the techniques used for UREs. However, it merely yields a target architecture—one

“In some of our earlier work these recurrences are called Recurrence Equations with Linear Dependencies (RELDs),
but the name ARE, first introduced by Delosme and Ipsen [DIb), is more appropriate.



whose data flow is neither spatially nor temporarily local. The second step, namely data pipelining,
permits the dependencies to be localized, so that the architecture is systolic. A similar approach
(called broadcast removal) has been described by Fortes and Moldovan [FM] although they do not
describe how a timing function (which is called a linear schedule there) can be derived.

In this paper we present two main results. First, we develop a complete characterization of data
pipelining, and present a taxonomy for it. We will show that the most general class of pipelining
may be viewed as a source-to-source transformation that converts the ARE into a recurrence that
has uniform dependencies at all points except those at certain boundaries. We call such recur-
rences Conditional Uniform Recurrence Equations (CUREs), because they have the property that
the dependencies are uniform but the computation is governed by conditional erpressions. Data
pipelining is thus a constructive method for obtaining the CURE from the ARE. Our second result
is a systematic method for deriving systolic arrays that have non-uniform data flow, governed by
control signals. In such arrays, the data flow may change direction and/or speed within the array,
and certain processors may perform specialized computations. The change in speed /direction or
the specialized computation may either occur at all times, or at certain instants determined by
control signals, and may be restricted to certain processors (such as those on a specific boundary),
or may involve all processors in the array. We describe how such systolic arrays are synthesized
from the CUREs obtained by pipelining the dependencies of the original ARE.,

The rest of this paper is organized as follows. In the following section we formally define the
various classes of recurrences that we shall use, and develop some notation. We also summarize
how systolic arrays are synthesized from UREs, and briefly describe the main idea underlying data
pipelining. Then, in Section 3 we present a taxonomy for the pipelining operations, and show how
this yields a systematic procedure to derive a CURE from the original ARE. The taxonomy includes
a generalized class of pipelining called multistage pipelining, where a number of dependencies may
be involved in a single pipeline. Section 4 describes how to synthesize systolic arrays (with non-
uniform data flow) from CUREs. To achieve this, we introduce a technique called control pipelining
which is similar to data pipelining except that it is applied to the conditional expressions of the
CURE. This yields a set of control dependencies which correspond to the control signals that
govern the computation. The rest of the synthesis procedure is similar to that for UREs, except
that there are additional constraints on the choice of timing and allocation functions, corresponding
to the requirement that control signals must also have systolic interconnections. We illustrate the
technique (in Section 5) by systematically deriving a well known systolic array for computing
the cost of optimal string parenthesization (the so called “dynamic programming” array [GKT]).
Finally we conclude by comparing our results with the approaches of other researchers.



2 Recurrence Equations: UREs, AREs and CUREs

We begin by introducing some notation. The following definitions are based on those by Karp et
al. [KMW].

Definition 1 A Recurrence Equation over a domain D is defined to be an equation of the form

f(p) = o(f(aq1), f(g2)... fqr))

where PE D;
gg€Dfori=1...k;
and g is a single-valued function, strictly dependent on each of its arguments.

A system of recurrence equations is a set of m such equations, defining the functions f1, f2,... fim.

In any equation defining say f;, any of the f's (i.e., not restricted to f; itself ) may occur on the
right hand side.

The domain D, of the recurrence is a subset of Z*, and for the remainder of this paper we
restrict our attention to the case where D is a convex hull. It should be immediately clear why
such recurrences are an attractive starting point for synthesizing any class of regular architectures.
The computation of the function f at any point in the domain involves applying the function g to
exactly k arguments. The function g thus represents an atomic computation that is repreatedly
evaluated with a number of different arguments, and thus precisely defines the functionality of the
processor. The relationship between p and the g¢;’s determines where the k arguments are to come
from. Based on this we have the following classes of recurrences.

Definition 2 A Recurrence Equation of the form defined above is called a Uniform Recurrence
Equationiff ; = p+b;, for i = 1,..., k, where the bj’s are constant n-dimensional vectors.

Definition 3 A Recurrence Equation is said to have Affine Dependencies (called an Affine Recur-
rence Equation) iff g; = Ajp+ b, for i = 1,...,k,

where Aj’s are constant n X n matrices;

and b;’s are constant n X 1 vectors;

Example 1: [due to Quinton] The following system of UREs, defined over a domain D =
{[,7)]1 0 £ 4,0 < j < k} computes a stream of numbers,* ¥p,¥3,...,Y;,... which is the result of

*We use upper case (and subscripts) to indicate input (and output) values, and lowercase for values associated
with points in the domain.



convolving a stream, Xo, X1,...,Xj,... with a sequence of weights, Wy, Wy,..., Wi_;.
. T . o e . . T
y((6,3]) = w(l&d] ) +w((i,g] Y+ 2(fi-1,5 - 1}) (1)
. T . T
w(li,g]') = w(li-1,4]")
. T . . T
z([i,]') = =([i-1,i-1])
Y; will be computed at [z, k]T, provided the following boundary conditions are satisfied:
. T
y([t,O] ) =0
aT
w([0,5]) W;
B T
z([,0]) = X;

Note that [¢, j]T is a point in the domain, and y, w and z are (correctly) defined as functions
that take a (two-dimensional) vector as arguments, as defined above. There is however, no loss
of generality and some notational convenience if we view them as functions that take two integer
arguments, ¢ and j, and we shall do so in the remainder of the paper. Also, observe that the above

system of recurrences becomes a single URE, if we view the value computed at any point [i,j]asa
tuple of three terms—y, w and z. We may write this single URE as follows:

fG,7) = [y(1,4), w(i, j), z(4, 7))
= [(Hlf(irj - 1) + r[2f(i - l,j) * HSf(i - laj - 1))1
H2f(i - 11j)1 HSf(i - laj - 1)]
Here I, is the tuple-projection function that returns the i-th component of a tuple, and the bound-
ary conditions are the same as above. i

Example 2: Using the method of dynamic programming, the cost C;,; of optimally parenthe-
sizing the i through j elements of a string (i < j) may be defined recursively as follows:

Cij = min (Cix + Ci;) + h(i,])

where A(i,f) is the cost of the outermost parentheses; for strings of just two elements, which do
not have any substrings, C; 41, is 2(i,7 4+ 1). Hence the cost of parenthesizing a string of length n
is C1n. If we replace the n-ary “min” operator by a binary min function and iterate over the index
k, we have C;; = f(i,4,1) where f(i,j,k) is defined by the following ARE.

o f,5,k+1)
f(i,4,k) = min ( f,i+ k,l)J+ fli+k,5,1) ) ?

The boundary conditions are f(i,i +1,1) = h;;, f(i,5,7 — i) = 00, and

oy f(4,4,2)
f(i,4,1) = ki +mm(f(i,i+ L)+ f(i+ 1,.1',1))



Figure 1: Domain and Dependency Structure for the String Parenthesization ARE of Egn 2

The domain of the ARE is the tetrahedron ABCD, determined by the vertices (1,2,1), {1,n,1],
[n~1,n,1] and [1,n,n - 1] (see Fig. 1). Alternatively, it may be specified by the linear inequalities
1£i<n-1,2<j<mnand k <j—i Also note that at the k = 1 boundary, the computation
is not simply a value available from the external world, but a new value computed at some point
inside the domain. The dependencies of the ARE are as follows:

100 0 100
A1= 010 b1= 0 ;A2= 1 01 b2= 0 ;A3=
¢ 01 1 0 00O

QO =
[ B R



Definition 4 A Conditional Uniform Recurrence Equation over a domain D is defined to be an
equation of the form:

a(flaa) f(@2).. - flarm)) if ¥a(p)
92(f(q21), F(922) - - - f@2,mz))  if 92(p)

f(p) = :

9k(f(qr1)y flarz2). .. f(arm,)) i (D)
90(f(g01), f(g02) ... f(Gome)) otherwise
where p€ Dy

each g; ; is of the form p+b;;, where b; ;’s are constant n-dimensional vectors
(the set of all the dependency vectors b;; is denoted by W);

each ¥;(p) is an affine guard ezpression given by the conjunction of a finite

number of expressions of the form p 2 0, (where 7 ' are constant vectors
in Z" and &’ are constants in Z);

and gi’s are single valued functions which are strictly dependent on each of their
arguments.

We assume that the computation is determinate, and that the guards are evaluated sequentially.
Since the conditional expressions [1r,T p= 9?]:‘:1...1: define a set of hyperplanes, they implicitly define
the domain of the CURE.

2.1 Synthesizing Systolic Arrays from Uniform Recurrences—An Outline

As mentioned earlier, most of the earlier work on systolic array synthesis has concentrated on UREs,
Since the dependency structure of the entire computation is completely specified by a small set of
constant dependency vectors, it is only necessary to analyze these vectors in order to synthesize
a systolic array. If we assume that the computation of g takes unit time once its arguments are
available (a reasonable assumption since g is a strict function), then the problem of synthesizing
a systolic array can be solved by mapping the original URE to a space-time domain by affine
transformations. Such a mapping must satisfy the following constraints.

¢ The data dependencies of the original algorithm must be rendered spatially and temporally

local since systolic arrays have nearest neighbor interconnections (spatial locality) and a finite
memory in each processor.*

“Note that the finite memory mandates temporal locality, since the value used by any processor must have been
produced by its neighbor only a finite number of “clock-ticks™ ago.



® These transformed dependencies must be uniform over the whole space-time domain, since
the processors in a systolic array are identical and have similar interconnections indepen-

dent of their physical location in the array. The importance of this requirement has been
demonstrated elsewhere [Raj].

¢ The mapping must be bijective i.e., two distinct points in the index-space should be mapped
to two distinct points in the space-time domain. If it were not so, the computations from two
distinct points in the problem domain would be scheduled on the same processor at the same
time, giving rise to a conflict.

¢ The time component must preserve the dependencies of the original index-space, i.e., in order
to schedule the computation at any point, all its arguments must first be evaluated.

o The space component of the transformed dependency vectors must correspond to nearest
neighbor interconnections.

The time component of the mapping is called a timing function, and the space-component is
the allocation function. It has been shown that first two constraints mentioned above can both be

satisfied if we use affine projections as our mapping functions. Then the timing function has the
form

t(p) = ’\TP+ oy

and is fully characterized by a vector z\;r and a scalar constant a,. The allocation function (which
maps every point p to an (n — 1)-dimensional processor space) is similarly defined by

ﬂ(P) = Aap +a,

where A; is an (n — 1) X » matrix and a, is an # — 1 vector. The complete mapping is thus defined
by

I
T2

=Ap+a5[§§]p+[§:] 3)

Tn-1




Then the third constraint js satisfied if A is non-singular; the causality constraint is satisfied if
for each dependency b;, .\;rbi <0and Vpe D, z\;r P+ a¢ > 0; and the final constraint is satisfied by
ensuring that for each dependency b;, A;b; € P, where P is the set of permissible interconnections
(ie, P = {[0,0],[£1,0],{0,£1], [£1,+1]} for the standard case). In general there is no unique
solution to the above set of constraints, and a family of arrays are synthesized by finding solutions
to the integer programming problem outlined above. It is also not critical which part of the problem
is solved first—determining a timing function, or finding an allocation function.

2.2 Synthesizing Systolic Arrays from Affine Recurrences—Data Pipelining

When synthesizing systolic arrays from AREs we follow a similar approach. However, we have
shown [RFc] that merely using affine transformations alone is not enough. It is necessary to
explicitly pipeline the dependencies of the ARE. The key idea underlying data pipelining may be
summarized as follows. If more than one point in the domain depends on some other point, one of
them can use the value for its computation, and then pass it on to the other(s). Let p and p' be
two points in D such that Ajp + b; = Ajp’ + b; = ¢q. Thus, computation of both f(p) and f(p")
need f(g) as their i-th arguments. Now, if we let p — p' = v, we may introduce a new function f’
defined by f'(p) = f'(p+v). It is simple to implement f’ on any processor—it is simply an identity
function that outputs the value it receives. However, by using f' we may transform the definition
of f to be
f(p) = g(f(Arp +b1), f(A2p + b2),... F(p)... f(Axp + b))

where the i-th (affine) dependency [A;, b;] has been replaced by a uniform dependency v. For the
above scenario to work correctly, this transformation should be applicable throughout the entire
domain. Also, the point that receives the value first, must be computed before the other point, thus
imposing a partial order on these points. We shall discuss these ideas formally as follows.

Definition 5 The i-th co-set C(p) of a point p in D is defined as the set of points in D, all of
which depend (as their i-th dependency) on the same point as p, ie.,
C(p) = {q| Aig+ bi = Aip+ by}

Analogously, the i-th inverse co-set of a point p is defined to be the set of points in D that depend
on p, i.e.,

CT (0} = {a| Aig+b; = p}

Lemma 1 A point p’ belongs to the i-th co-set of p, iff it is separated from p by a vector in the
null space of A;.



Proof: For any two points p and p’ in D that depend on the same point g (as their i-th
dependency), it is true by definition, that A;p+ b; = ¢ = A;p’ + by,
ie., Ai(p’—p)=0.
Hence (p' — p) is a solution of A;z = 0 and thus belongs to the null space of A;.
Conversely, if v is a vector in the null space of A;, and p is any point in D, consider the point
P’ = p+v. By definition of the ARE, 7' depends on (as its i-th dependency) A;p’ + b;, i.e.,
on Aj(p + v) + b;. Since Ajv = 0, this is simply (A;p + b;}, which is the seme point that p
depends as its i-th dependency. I

We assume in the remainder of this paper that the dependency matrix A; is singular. The
reason for this is that the equation Ajz = 0 will then have several (actually infinite) nontrivial
solutions v, and hence the co-set of any point in the domain will contain at least one other point,
and the idea of data pipelining makes sense.

Once we have been able to identify, for any p € D, the set, C (p), of points that may potentially
share their arguments, there are two questions that we must address. First, we must be able to
“link” up the elements of C(p) in a pipeline. Since we want to transform the affine dependency
into a uniform one, we must identify a vector p, such that adding any multiple of it to p will yield
an element of C(p), and conversely, every element of C(p) can be expressed as p + kp (for k € Z).
This means that p must be a basis (see [Cas]) for the null space of A;. However, since the null space
of A; may be (depending on its rank) multi-dimensional, we may have to deal with a set of basis
vectors (which are in general, not unique). Moreover, the choice of p must be such that if there are
any other constraints that the schedule is to satisfy, they must not be violated. The second crucial
problem that we must solve is that of “initializing” the pipeline. Suppose that we have been able
to find a (set of) appropriate basis vectors for the null space of A;. All this will be of no use, if
we cannot somehow make the required value available to at least one point in C(p). Only then
can this value be passed on to other points in C(p). The investigation of this problem leads to

our taxonomy of pipelining transformations. Before we formally address these two questions, we
illustrate the ideas with a simple example.

Example 1: (contd) Consider the convolution problem described earlier. However, rather
than starting from the URE of Eqn. 1, let us look at the problem definition. Convolution is
specified by the equation Y; = Zf__“.& W; * X;_; and the decision to iterate over the j index yields
the following equation, which is not (yet) an ARE. (as before, the upper case notation indicates
that we refer to the elements of the input streams, and not values at points in the domain.)

Y: = y(i, k); where y(i,7) = y(i,j - 1)+ W; % X;

=i

10



The domain of this computation (D = {[i,j] | 0 < 7,0 < j < k}) also follows directly from the
decision to iterate over j. At each point {i, j]T the computation requires the value of W; and X;_;.
These are input values that are not computed anywhere in the domain, and hence they must be
obtained from the boundaries of the domain.* Since the length of the W stream is k, it makes
sense to assign it to the i = 0 boundary (this is the only boundary of D of the correct length).

Similarly, we assign the X stream to the k = 0 boundary.! We now have the following ARE for the
computation.

y¥(5,3) = y(i,5 - 1) + w(0, j) » z(i - 5,0) (4)

and the boundary conditions y(,0) = 0, w(0,5) = W; and z(i,0) = X;. We see from Eqn. 4
that at any point [i,_;f]T € D we need values from [i,7 — 1]T, [O,j]T and [i — 7, O]T, and thus the
three dependencies are as follows ([Ay,b;] for y (which is a uniform dependency), [Az,b;] for w
and [A3,b3] for ).

R M RS H R RS H

Of these, the dependencies [A2,b2] and [A3, bs] need to be pipelined. In order to do so, we first
determine the null space of A and A3. By simple linear algebra, we can show these to be [a, [l]T and
[b,8]" respectively (this means that all points given by [i+a,j]" require the same W value as 4,317,
and all points [i + b, j + b]T require the same X value as [z, j]T }. The next step is to determine the
right basis vectors, p2 and ps, for the null space. We see that since both A, and Az have rank 1, their
null spaces are one-dimensional, and their integer bases are unique modulo sign, namely [:1:1,0]T
and [:{:1,:1:1]T respectively. So the problem is to determine the sign of the basis vectors. Consider
the dependency [Az,bz]. Intuitively, we should “thread” the points in the co-set of 2, j]T in such
a direction that they “lead to” [0, j]T. This is done by ensuring that the dot product of the basis
vector pz and ((A2p+b2)— p) is positive. Thus ([0, ] - [4,7])- [a, D]T > 0, which implies that a < 0,
and hence the correct basis, o, is [-1,0]". Similarly, for [Aa, ba), ([i— 7,0] = [i,4]) - [6,5]" > 0, which
implies that b < 0, and hence the basis, p; is [—-1,—1]T. Using these two basis vectors as the new
uniform dependencies, we obtain the URE of Eqn. 1. In order to do 50, we have introduced two
functions w(%, j) and z(%, §), and these are simply the identity functions with uniform dependencies

[-1,0] and [~1,-1] respectively. At the boundaries of the domain these functions take the value
W; and X;_; respectively. il

“The URE of Eqn. 1 thus overspecifies the problem, and may rule out some interesting solutions.
!There is another assignment for X, the j = k boundary, and this too yields some interesting architectures.

11



From the above example it is clear that we may view data pipelining as a transformation for
converting the original ARE into a URE. The timing and allocation functions may now be deter-
mined (using the standard techniques) and the target architecture may be synthesized. Although
the three steps (pipelining, determination of a timing function and choosing an allocation function)
are very closely related, and the choice of one affects the others, they are not inherently sequential.
This fact has been well known in the context of uniform dependencies.” With affine recurrences, the
pipelining operation may also be included in this list. We shall therefore use some of the constraints
that apply on timing and allocation functions to guide the pipelining.

3 A General Theory of Pipelining Transformations

We shall now describe the pipelining transformations in detail. We first develop some basic results,
and then present a taxonomy of such transformations. Initially we concentrate on the case when a
single dependency is being pipelined in isolation (called simple pipelining). We shall then extend
these results to the case where the pipeline involves more than one dependency (multistage pipelin-
ing). Our taxonomy is based on the observation that once we have identified the co-set of a point,
pipelining involves the solution of two distinct, albeit related, problems.

 Determining a basis for the null space. Depending on whether the null space is one-dimensional
or multi-dimensional, the pipeline is said to be linear or extended.

e Initializing the pipeline. Depending on how the pipeline is initialized, the transformations
are classified as direct or indirect.

We shall now address these two problems. In general, if the rank of an n X n dependency matrix
A is n — k, its null space consists of a k-dimensional subspace. Since the domain D consists of
lattice points in Z", the null space is a sub-lattice of this. Formally (see [Cas)), a lattice is the set
of all points of the form z = uay + - + Un@y, Where the u;’s are integers and a;'s are linearly
independent real vectors called its basis. The basis is not unique, and in particular, if v; ; is an
integer matrix with determinant +1, then a} = 2; vija; constitute an alternate basis(see [Cas)).
Hence it is important to choose the basis, just as one chooses timing and allocation functions from
the space of all such functions that satisfy the causality and locality constraints.

*For example, some authors choose to pick an allocation function first, while others determine a timing function
first.

12



Definition 8 A vector p is said to be consistent with an ATF [, o] iff /\-:. p<0. Aset T = {p;}
of vectors is consistent with an ATF [);,a;] iff each of the p;’s is consistent with [Ae, a¢]. We say
that p (or I') is A;-consistent.

Definition 7 A vector p is said to be consistent with an allocation function [Aayaq] iff Agp € P,
the set of permissible interconnections. As before, a set T = {pi} of vectors is consistent with an

AAF [Aq,aq) iff each of the p;’s is consistent with [Ag, aq]. If p is consistent with both the timing
and allocation functions, it is said to be A-consistent.

Intuitively, we can say that if a vector p is consistent with an ATF [A, ;] then we can augment
any ARE for which [A;,a] is a valid ATF by introducing a new dependency p, and still retain
[At, @] as a valid ATF. Conversely, if we intend to use a vector p as a new dependency, the timing
function that we choose must be A;-consistent. The same argument holds for Aq-consistency. We
thus see that although the basis is potentially infinite, in practice we are concerned with a small
number of vectors. This is analogous to the fact that in the traditional approach to systolic array
synthesis, a large number of timing functions are possible, but only a few of them are of practical
interest, Moreover, in a semi-infinite recurrence, the allocation function is predetermined by the
problem specification (it must project the domain onto a finite processor space, and hence must
be along the ray of the domain). As we shall see later, the problem of initializing the pipeline also
imposes constraints on the direction of pipelining, especially for extended pipelines.

We know that if the basis of the null space of the dependency A is A¢-consistent, the timing
function imposes a partial order on all the points in C(p). There is thus at least one point, p, , that
is the earliest scheduled point in C(p), i.e., Vg € C(p), t(pL) < 1(q). The following lemma gives an
important property of such points, namely that they must lie on or near a boundary of the domain.

Lemma 2 If {p;|i=1...k} is a A-consistent basis of C(p), thenpy, +p; @D, fori=1...k.

Proof: Let, if possible, (p1 + p;) € D. By definition, t(pL) < Upy + pi), e, )\:‘p; > 0. But
this is a contradiction, since p; is \;-consistent. |

The above lemma implies that in order to solve the problem of initializing the pipeline, we must

make f(q) available to p;, since these are the only points in C(p) which do not depend on any
other point in D.

13



3.1 Simple Linear Pipelining

Let us consider the case when rank(A) is n — 1, so that the pipeline is linear. In this case pis
unique (modulo sign), and the sign too may be determined from the requirement of A.;-consistency
(note that both p and —p can never be A;-consistent simultaneously). As a result, p; is a unique
function of p. We are now in a position to address the problem of initializing the pipeline. We
must determine the conditions under which the value of f(g) = f(Ap + b) can be made available
at the point p,. The simplest case is when ¢ and p) are identical, in which case we have direct
pipelining, where the pipeline is initialized at p, itself. A simple extension is the case when ¢ is a
constant distance from p,. We define the two classes of linear pipelines as follows.

Definition 8 An affine dependency [A, b] can be pipelined with a direct linear pipelining function
if the rank of A is n — 1, p is a A,-consistent basis vector for the null space of A, and p; = q. The
pipelining function is given by

rion ) f(P) ifp=
flo) = { flp+p) ;tﬁerwl;:e (5)

Definition 9 An affine dependency [A, b] can be pipelined with an indirect linear pipelining func-
tion iff the rank of A is n — 1, p is a A,-consistent basis vector for the null space of A, and there
exists a A-consistent vector p’ such that p, p' = q. The pipelining function is given by

v ) flp+p) ifp=p
f(p)—{ f(p+p) otherwi:e (6)

Observe that since py is a function of p, we may compute it by determining the intersection
of a line given by p + up with a domain boundary. Since the domain is a convex hull, it is always
possible to partition it by means of a finite number of hyperplanes into regions (each of which is a
convex hull) such that a line p + up passing through ali the points in the same region will intersect
a single boundary of the domain, say 1er =#§. By simprle analytic geometry, this point (i.e., the

intersection of p + up and 1er = @) is given by p + (8—;71-':2). Hence p, , expressed as a function of
P, has the following form.
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, T

P+ (2L if 41(p)
''r

p+(8’—;;r’:,d)p if ¢2(p)

pL =4 (M

T
| P+ (52 i i(p)

Here each ¢.(p) is a conjunction of expressions of the form p" p = v which partition the domain
into the regions mentioned above. Thus, the test for p = pL is simply a disjunction of a set of
conjunctions of the form (¢1(p) Amip = 6}V (da(p) ATap = 82) V...V (¢:(p) A 7; p = 8;). The
following theorem gives us necessary and sufficient conditions for the existence of a simple linear
direct pipeline.

Theorem 1 An affine dependency [A,b] can be pipelined along a simple linear direct pipeline if
and only if the rank of A is n — 1, p is a A-consistent basis Jor the null space of A, and

A((Ap+b)-p)=0

The pipelining function, f'(p) defined by

() if ¢1(p)
O 0 e
f(p+p) otherwise

Proof: The result follows follows directly if we can show that p1L=qiff A((Ap+b)-p) =0. To
show this, we see that if ¢ € C(p), then by definition of co-set, all points in C(p) depend on
q, and because of A,-consistency, ¢ must be the earliest scheduled point in C(p), i.e., py = g.
Conversely, if p; = g then ¢ € C(p). But this is true iff g — p is in the null space of A, i.e.,
if A((Ap+b)—p)=0.

Moreover, by the preceeding discussion, and the fact the disjunctions can be separated into
separate cases, the pipelining function is as described above.

Corollary 1 The necessary and sufficient conditions Jor simple linear indirect pipelining are that
rank(A) isn — 1, A has a A-consistent basis, p and

A((Ap +b) — p) = constant
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The pipelining function is given by

flp+ o) if ¢i(p)

flp)= (8)

flo+0") i ¢i(p)
F'(p+p) otherwise

Corollary 2 The pipelining functions for simple linear pipelining (both direct and indirect) are
CUREs

3.2 Simple Extended Pipelining

Let us now return to the more general case when the rank(A) is n — k. Assume, for now, that p,
is unique. We choose the first basis vector, say p, arbitrarily, as long as it is A-consistent. This is
the initial direction of the pipeline. Note that as in the case of linear pipelining, we may partition
the domain into regions such that all pipelines in each region (along the direction p,) intersect the
same domain boundary. We may thus define the pipelining function as follows.

hp) if ¢i(p)
filp) = : (9)
I (P) if ém (P)

where each of the functions f;(p) is the pipelining function for one partition. A useful heuristic for

the choice of py is to minimize the number of such partitions. We shall now concentrate on the
details of the f;'s.

For each f;, we know that all the pipelines intersect a specific domain boundary, say, ?i';' p=0,.
Since C(p) is a k-dimensional lattice, we know by Lemma 2 that p. belongs to the intersection,
denoted by Cy(p), of C(p) and ) p = ;. However, C, (p) is a k — 1-dimensional sub-lattice of C(p),
and has k-1 basis vectors. Note that any set of basis vectors for C1(p), together with p, constitute
a basis for C(p). Hence, we can make f(q) available to every point in the domain (by pipelining it
along py) if we can first pipeline it to each point in Ci(p). We therefore choose our second basis
vector pz, such that it is a A-consistent basis vector for Ci1(p), and pipeline along p, within Ci(p).
By the reasoning used in Lemma 2, p; must be on a boundary of Cy(p), i.e., the intersection of
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Ci(p) with another bounding hyperplane of D. This boundary in not unique, but as before, we
may partition Cy(p) into regions with one boundary for each region. Again, a useful heuristic for
the choice of p; is one that minimizes the number of such partitions. Let the boundary be given by
1r2 p = 0, and let us denote the new intersection by Cy(p). We now choose the third basis vector
to pipeline in C3(p) and so on, until eventually, Cy_;(p) is a linear pipeline, and we reach p1- We
may thus define each of the fi(p)’s as follows.

[ f(p+9") ifm p=61 Amgp=0s A ...x:_1p=0k_1/\1r:p= 0y

filp+ ) Hmp=6iAmp=6A...1T_1p=06i,

fi(p) = 5 : (10)
fe(+py) ifnp=6

| fe(p+ p1) otherwise

It is clear from the above discussion, that not only must the set of basis vectors be A-consistent,
but they must also be parallel to the boundanes of D. Thus, p; may be arbitrary (as long as it is
A-consistent), p; must be parallel to 1r1 p = 61, p3 must be parallel to 1'r1 p=¥6; and '.'r2 p=02,and
similarly, px must be parallel to each of the boundaries involved in the above equation. This serves
to prune the space of possible basis vectors. As in the case of linear pipelining, the above scheme
will be useful only if we can initialize the pipeline at p,. This can be done if q is close to (i.e., a
constant vector away from) py, i.e., if

A((Ap + b) — p) = constant

Note that we have made one important assumption, namely that p, is unique. Let us look at
the implications of this. Let p; not be unique. Then, the set of points p; constitute a sublattice
of C(p) (since they all lie on the same timing hyperplane) and in the pipelining process described
above, one of the sublattices, say C;(p), will consist entirely of the points p,. This sublattice will
not have a A.-consistent basis vector. This means that we have a set of points, each requiring
the value of f(g), and each one scheduled at the same time instant. Clearly, it is impossible to
pipeline f(g) to each of them, so they must all depend directly on g. There is thus no way to avoid
broadcasting, except by choosing a different, possibly suboptimal, timing function.

3.3 Multistage Pipelining

We have so far addressed the problem of pipelining an affine recurrence into a uniform one for a
single dependency [A;,b;], in isolation. In each of the schemes that were proposed, the primary
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condition for initializing the pipeline was that the point § = A;p+b; must be “close” to the null space
of A, in the sense that A;((Aip + bi) — p) must be a constant. While this class of transformations
is useful in a large number of cases, the above condition may not be always satisfied. We shall
now present another technique called multistage pipelining, where it will be possible to pipeline
a particular dependency, even though this condition is not satisfied. As with simple pipelining,
multistage pipelining too, may be classified as linear or extended, direct or indirect. The pipelining
is achieved by building the pipeline exactly as described above; thus if the value of f(g) can be
made available to p,, then the pipelining is successful. In simple pipelining, the basic assumption
was that this could be done, provided that the vector p; — q was a constani vector (independent
of p). The question that we now address is what happens if this is not true.

Multistage pipelining is based on the key observation that there is an alternative way in which
py can receive the value of f(g). Consider the j-th inverse co-set, C; "(q) of q (for i # j, ie.,
corresponding to some other dependency [A;,b;]). Clearly, if this dependency is pipelineable, then
every point p’ in C; - () can get the value of f(q) as its j-th argument. If this set is “close to”
(i.e, a constant distance from) p, , then we can successfully pipeline the i-th dependency too. All
that we have to do is to obtain the value of f(g) at py from the pipelining function for the j-th
dependency. The condition for multistage pipelining can thus be stated as follows.

A;((Aip + b;) - p1) = constant

where [Aj;, bj] is a pipelineable dependency. The pipelining function fi(p) (for the indirect extended
case) is defined by Eqn. 11 below.

( filp+o) if ﬂ’:‘p =8 A r;p =0 A. ..r:__lp =0y A W:p =
filp+pd ifwfp:01A1r;rp=02/\...7r:_1p=0k_1

fi(p) = < : (11)
filp+py Hnip=0

| fi(p+p) otherwise

Note that this function is identical to Eqn 10, except that at py (i.e., in the first line of the
definition), its value is f;(p, + p') rather than f(pL + p’) where f; is the pipelining function for
[Aj,b;]. For notational simplicity, we have shown the case when all the pipelines intersect a single
domain boundary, and there is no need to partition the domain. Thus the subscripts here refer to

the dependency that is being pipelined, unlike in Eqn 10 where they indicate a specific partition of
the domain.
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4 Synthesizing Systolic Arrays from CUREs

Since all the pipelining functions that we have described in the previous section are CURE?’s,
we now have a constructive procedure to transform an ARE into a CURE. These CURE’s have
no computational expense (at all points in the domain, the value that they return is identically
equal to their inputs), except for the linear conditional expressions (LCEs). Moreover, the new
dependencies that have been introduced are consistent with the timing and allocation functions. It
would seem that the target architecture is induced automatically once the data pipelining functions
are determined. There is however, one essential difference between a URE and a CURE. In a
URE, the timing and allocation functions determine which point is mapped to which processor at
which time, and the definition of the recurrence determines that the processor functionality is g.
In a CURE (see Defn. 4), the processor functionality is somewhat more complicated. Clearly, the
processor must be capable of computing each of the functions, gg, 91,92, - -, gk, and the computation
is no longer strict, since the arguments of only one of the g’s are used at any time instant. In

addition, each processor must compute the LCE’s that determine which gi is applicable. Let us see
what this computation would entail.

Since convex hulls are closed under affine transformations, the image of D in the processor-time
space is also a convex huli. In particular, the image of a hyperplane " p = @ is another hyperplane,
Ty = ¢, where p is a point in the processor-time space. We denote the n — 1 dimensional
vector representing the processor id by T, and since p’ = [z, t]'r = Ap + a and X is non-singular,
7" =7"A"'and 6 = 0+ 1" - a. Thus each LCE in the CURE is the conjunction of a number
of linear expressions of the form uT [z, t]Top v, where “op” is a comparison operator. Computing
each of these involves a dot-product (of two vectors) and an integer comparison. More significantly,
it also requires the values of 7 and ¢, i.e., the processor must be aware of its location in the array
and also the current time. An array of such processors can hardly be considered a systolic array,
where each processor is expected to be small and simple and all processors must be identical. We

call such architectures quasi-systolic. More formally, we have the following definition.

Definition 10 An architecture is said to be quasi-systolic if it is made up of a number of processors,
each one capable of computing a small number of functions, and all its data dependencies are regular,
uniform and tesselating. However, the control that determines which specific function is to be used
by any processor at any time is not based on any local function.

We thus see that the pipelining transformations vield a quasi-systolic array. However, we are
interested in architectures that have no global control, i.e., pure systolic arrays. In order to obtain
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such architectures from the quasi-systolic arrays, we use a transformation called control pipelining.
Control pipelining is based on the simple observation that as in data pipelining, there is no need to
recompute the control information if we are able to share it. Let us first consider the case when all
the LCE’s are conjunctions of equalities, and thus have the form, 7r'1r p=%hA...A wip = 0. We
see that all the points on the hyperplane 1r;-r P = 8; will satisfy the i-th conjunction of the LCE, and
hence belong to what is called its i-th control co-set. As in the case of data pipelining, we need to
determine a A-consistent basis for this (n — 1-dimensional) sublattice. The value that is pipelined
along this pipeline is simply the information that the linear condition 1r;-r p = 0; is satisfied, i.e., a
boolean value. Moreover, since {A;, @,) maps the domain D on to an (n — 1)-dimensional processor
space, the intersection of the pipeline with another domain boundary must lie on the edge of the
processor array. Hence, unlike data pipelining, there is no need for ertended pipelining, and we

may easily initialize the pipeline at the appropriate boundary. These results are described formally
by the following theorem.

Theorem 2 Given that Cisa CURE' and the linear conditional expressions in C are conjunctions
of some of 1r'1rp &, 1rz p=2¥0a ..., o mP = Om, and [A, o] genemtes a valid quasi-systolic array that
computes it. The CURE C' which is identical to C but has each 1r p = 8; replaced by f,(p) defined
below, is equivalent to C and [\, a] generates a pure systolic array for it, if for i = 1,...,m, 3o;
such that

T

o =0
At g < 0
and M,-0; € P

The f;’s are defined as fi(p) = fi(p+0;), and are initialized to 1 at the boundary of the processor
array.

The proof is obvious from the above discussion, since the first condition on o; ensures that it
is a basis vector for the hyperplane 1r;-r p = 6;, and the other two ensure A-consistency., We also
have a straightforward extension to the case when some of the expressions are inequalities. In that
case each processor, T contains a one-bit register which is initialized to either 1 or 0, based on
whether 7; (A~1[z, 0)” )+ @) — 0; is positive or not. The value in this register is used instead of the
conditional expressnon 7r p 2 8;. The function f;(p) corresponding to the control pipeline for the
equality case, m; p 8; is used to toggle the value in the register.



5 Example: Optimal String Parenthesization

Let us now return to the problem of Example 2 (Section 2). As described there, Eqn. 2 defines an
ARE to compute the cost of optimally parenthesizing a string, using a simple dynamic programming
algorithm. In this section we shall describe how data pipelining and control pipelining can be used
to derive the well known Guibas-Kung-Thompson systolic array for this problem. We first note that
this ARE does not admit an affine timing function. A formal proof of this is described in [Raj],
and is based on the argument that the longest dependency path in the ARE is O(n?), i.e., the
algorithm itself is a quadratic one, and hence cannot be implemented on a systolic array. It is
therefore necessary to reformulate the problem as an ARE that has a valid ATF, and we shall use
the ARE shown in Eqn. 12 below, as a starting point for the synthesis. We must emphasize at this
point, that our theory does not claim to answer the question of how this ARE is obtained. Indeed,
this problem involves issues in automatic programming, and techniques such as the “fold-unfold”
transformations of Burstall and Darlington [BD] could be profitably used. Also note that we have
included all the boundary conditions as part of the recurrence itself. The domain for this ARF is
the convex hull bounded by ¥ > 0, j ~i>2k,i>0and j > 0 (see Fig. 2).

c(1l,n) = f(1,n,1)

where f(i,j,k) is defined as

[ hij fji—-i=1
[ i+ k1) + f(E+ k,7,1)
h; ; + min Fli,5,k+1) ifk=1
f(i'nj"'k11)+f(j—kajv1)
fG,5:k) =1 oo if2+k>j—i (12)

fit k1) + f(i+k,5,1)
min fl4,k+1) otherwise
{ f(5-k1)+ f(5 - k,5,1)
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Figure 2: Domain and Dependency Structure for the String Parenthesization ARE of Eqn 12

5.1 Timing Function

The first step in the synthesis procedure is to determine an ATF, [A, a] (denoted by [[a,b, <), a]) for
this ARE. Techniques for determining timing functions for AREs are discussed elsewhere (see [Raj]).
It can be shown that [[a,b,<]", a] is a valid ATF if it satisfies the following inequalities (for all [1, 7, k]
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in the domain).

b(j~i-k) > —c(k-1)
ak < c(k-1)
c < 0
bk > c(k~-1)
a(j—i—k) < c(k-1)

Since a, b and ¢ are restricted to be integers, and § ~ i > 2k, these can be reduced to c < 0;
b > —c and a < c. The optimal ATF thus corresponds to the smallest integer (absolute-valued)
solution to the above inequalities, and is given by Aopt = [-1,1, _1]1* (with aop = 1), i.e.,

(6,5, k)= j—i—-k+1

Thus, the time at which the computation terminates, i.e., t(2,n,1)is n — 1.

5.2 Pipelining the Data Dependencies

The next step in the synthesis procedure is to pipeline the affine dependencies. For this the null
space of each of A;, Ay, Ay and As must first be computed. It is easy to show that the rank of each
of these matrices is 2, and hence their null spaces are all one-dimensional, specified by a single basis
vector each, say pi, p3, p4 and ps, respectively. It is also a matter of straightforward linear algebra
to solve the appropriate systems of equa.tlons and derive that p;, ps, ps and ps are respectively,
[0,m4,0]", [mz,0,m,]", [0, my,—my]" and {ms,0,0]".

However, the dot-product p, - X is [m2, 0, —mg}T - [-1, 1,_1]-1- which is zero (similarly p4 - \ is
also zero). This means that it is impossible to obtain a basis for the null spaces of either A; or
A4 that is A;-consistent . It is therefore necessary to choose another timing function for which the
basis of the null spaces of A; and A; can be ),-consistent. It is seen that [-2,2, —1] satisfies this
requirement, and hence a satisfactory ATF is the following

Wi, 5,k) =2(j i) -k +1

In fact, it can be shown that {[-2, 2, —1] »—1} is the optimal ATF that is also A-consistent. Thus,
t(1,n,1) is 2n — 2, and the algorithm is half the speed of the optimal one. However, this is the only
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way the algorithm may be implemented on a systolic array. Now, A.-consistent basis vectors for
each of the dependencies can be derived, and are [0, —1,0]T, (1,0, —l]T, [0,-1, —1]T and [1,0,0]7.

The next step is to pipeline each of the dependencies of the ARE, either by using direct pipelining
or through multistage pipelining. To recapitulate, for any affine dependency [Aj, b;], the condition
for simple pipelining is that for any point p = [4, 7, Iﬂ:]T € D, the expression A;((Aijp+ b;) — p) must
be constant.

For the four dependenmes that need to be pipelined, A;p + b; are [i,i + &, 1] [i + &, 7, 1] ,
[i,7—k, 1] and [j-k, 7, 1] respectively, and hence the values of (Ajp+b;)—pare [0,i+k—7,1— L]
[k,0,1-£]", [0, ~k, 21— —&]" and [j—k—i,0,1- —k]”, respectively. Then, the values of A; ((A,p+b) -p)
for each of the four dependencies ma.y be easily computed to be [0,1 - k 0] for Ay, [1,0,0]" for
A, [0,-1,0)" for A4 and [1—4,0,0]" for As. Thus, it is clear that only [Az,bs] and [A4,by] can be
pipelined by a simple linear indirect pipeline. By straightforward computational geometry we can
determine that for all points in the domain, both Cg(p) and Cy(p) intersect the £ = 1 boundary,
and py; and pg, are [i+k—1,7, 1] and [¢, 7 —k+1, 1] respectively; thus the terminal dependencies
are g5 = [1,0 0] and g = [0,-1,0]", respectively (note that they are A;-consistent). Thus the
pipelining functions f; and f4 are as follows.

falivdok) = { ARy B
fa(i+ 1,5,k — 1) otherwise
and o _
fuliyj ) = { f(t,-j.— 1,k) 1fk=1.
fa(3,5 = 1,k = 1) otherwise
It is also clear from the above discussion that [A;,b1] and [As,bs] are not amenable to simple
pipelining; if any pipelining is to be achieved, it must be multistage. In order to test for this,
it is again straightforward to determine that p,; and psL both lie on the j — i = 2k boundary
and are [i,i + 2k,k]" and 7 - 2k, J,L] respectively, and hence Ajp+ b — p;y (for i = 1,5) are
[0,—k,1 - k]" and (k,0,1 — k)" (denoted henceforth by A; and As) respectively. Since [Az,by)
and [A4,by] are the only dependencies that have been pipelined so far, the [A;,b;] dependency
can be multistage pipelined iff either A; - A; = constant or A4 - Ay = constant. Similarly, for the
dependency [As, bs], A5 must satisfy either Ay-Ag = constant or Ay A5 = constant. It is a matter of
straightforward algebra to ascertain that indeed, A4-A; = [0, -1 ,00" and Ay-Aj = [1,0,0]". Thus,
it is possible to pipeline [A;,b,] by first pipelining along the dependency p;, and then switching
to a new dependency p4 (and its corresponding function f,). Similarly, [As,bs] can be completely
pipelined by first pipelining along the dependency ps, and then switching to a new dependency p,
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(and its corresponding function f,). The original ARE is thus equivalent to the following system
of CUREs.

e(1,n) = f(1,n,1)

where f(i,7,k) is defined as

( hi; fj—i=1
fl(i!i+ k, 1) + fZ(i + kvj'l 1)
hi; + min fl, 5,k +1) ifk=1
.f‘l(iij - k! 1) + fS(J - k’j! 1)
oo
AR 26> j— i

fl(i:i + k9 1) + f2(i + k,j: 1)
min f(i,5,k+1) otherwise
L f‘l(iij_krl)‘l‘fS(]_kaJ!l)

where

fali 3, k) = { fG+1,4k) k=1

Jfo(i4 1,7,k - 1) otherwise

f(i,7 - L,k) ifk=1
Ja(4,7 -1,k —=1) otherwise

f4(i:j: k) = {
and

- faGig k) 2k =j—i . B4 k) H2%k=j-i
5, 8)= I k) =
N5, k) { f(i,7 - 1,k) otherwise L) fs(i+1,5,k) otherwise

5.3 Determining the Control Dependencies and Allocation Functjon

The final step in the synthesis procedure is to choose an allocation function that satisfies the
constraints of locality of interconnections, and if necessary, choose appropriate A-consistent control
dependencies ¢;. The allocation function must also map these control dependencies to neighboring

processors. From the above CURE, it is clear that the guard expressions that need to be evaluated
are the following.

k=1
i—-i = 2
ji—t =1
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The data dependencies of the CURE and the associated delays (derived from A - p;) are as follows.

{0,—-1,0] for fi with a delay of 2 units
[1,0,—-1]  for fo with a delay of 1 unit
[0,-1,—1] for f; with a delay of 1 unit
(1,0,0] for fs with a delay of 2 units
and [0,0,1) for f with a delay of 1 unit

The terminal dependencies are [1,0,0] for f2, and [0,-1,0] for fy. It is also clear that the value
h; ; is a constant value, to be input from the external world, and that all the points in D need its
value when k = 1. Thus, the most obvious choice for an allocation function is thus a simple vertical
projection, i.e,,

[a:,y] = a(i:js k) = [i’j]

With this allocation function, the five dependencies above are mapped to [0, —1], [1,0], [0,-1],
{1,0], and [0,0], respectively. This means that each processor [z, y] gets two values (corresponding
to f2 and f; ) from processor {z + 1, ] over lines of delay and 2 time units, respectively; it similarly
receives two values (f; and fy ) from processor [z,y — 1] over lines of delay 1 and 2, respectively.
The value corresponding to f remains in the processor (in an accumulator register) and is updated
on every cycle. Thus the only remaining problem is to choose appropriate control dependencies for
the three control planes k = 1, j — i = 2k and j — i = 1, specified by 7, = [0,0,1] 72 = [-1,1,-2]
and 73 = [-1,1, 1], respectively. However, the third one intersects the domain at only one line
[i, + 1,1] and this line is mapped by the allocation function to the processors [i,i + 1).* As a
result there is no need for a control signal. All the processors [i,i + 1} merely output the value
hiit1 at time instant ¢ = 1. The important control dependencies are thus those corresponding to
7y and 7. These correspond to control signals o; and oy if 7y - oy =0and mg-0p = 0. It is
very straightforward to deduce that oy should be [c;, ¢;,0] where ¢; and ¢; are arbitrary integers.
The conditions of A-consistency yield one constraint, namely 2(¢c; — ¢;) must be negative, and the
constraint of locality of interconnections yields another constraint, namely that the vector [c;, ¢;)
must be one of the six permissible interconnection vectors {(1,0),(0,£1), (+1,+1)}. This yields
only two possible values for oy, [1,0] and [0,-1] and any one of them can be chosen (say the
former). This corresponds to a vertical control signal that travels with a delay of two time units.
For o2, the analysis is similar; o3 - 75 = 0 yields ¢ = [e:,€; + 2¢k, ci], A-consistency yields 3¢i < 0.
However, nearest-neighbor interconnection cannot be achieved, since the smallest (absolute) value

*In fact this line is the only part of the domain that is mapped to this subset of the processors.
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Figure 3: Final Architecture for String Parenthesization

for ¢y that satisfies A-consistency is -1, and that is not nearest-neighbor (any larger absolute value
for c; will correspond to an even more distant interconnection). If this last constraint is relaxed
oz = [0,—-2,-1] is a valid choice. This corresponds to a (horizontal) control signal that connects
every alternate processor and travels at a speed of two processors every three time units,

The final architecture that this yields is shown in F igure 3 and is identical to the Guibas et
al. [GKT] one, which is a well known systolic array and is considered by many to be a classic
example of the intuitive eureka steps involved in systolic array design. One important point that
needs to be mentioned here is that although the techniques presented in these two chapters have
been developed in the context of pure systolic arrays (i.e., those that permit only nearest neighbor
interconnections) the same techniques are directly applicable when the architecture is not strictly
systolic. As we have just seen, merely relaxing a few constraints achieves this result.
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6 Related Work and Discussion

Recently the problem of pipelining of dependencies of an algorithmic specification has become the
focus of increased research activity. We shall now present a historical perspective, and attempt to
relate the results presented here to the contributions of other researchers. The earliest work on this
problem was by Fortes and Moldovan in their “broadcast removal” paper [FM]. They showed that
the broadcast in an array that had affine dependencies could be eliminated if one pipelined along
the null space of the dependency. Although many of their techniques are valid in the general case,
their definition of broadcast was somewhat restricted. They defined broadcast as the condition
where a number of points depend on a single one, and they are all scheduled at the same time.
Thus, for example, the convolution example presented in Sec. 2 does not have any broadcasts, and
hence does not need any pipelining. Hence, although their work was pioneering, the significance of
their results has been overlooked. Moreover, they did not address how the array (with broadcast)
was derived in the first place.

In [RPF] we addressed the problem of determining affine timing functions for AREs and also
described null-space pipelining (a detailed version of that paper appears as [RFc]). Multistage
and control pipelining that we have described in the current paper were first recorded as [RFa]
(subsequently published as [RFb]), and some early work on the taxonomy was also presented
in [Raj]. The string parenthesization array has been the an interesting architecture that has been
widely investigated in the literature. We shall now summarize those results.

Guerra and Melhem have presented a method to derive the systolic array for the string paren-
thesization problem [GM]. Given a specification that is in canonic form (their definition of canonic
form consists of statements that have uniform dependencies but may have conditional expressions—
analogous to CUREs), the standard mapping techniques may be used. Their paper addresses the
problem of transforming the specification into a canonic form. Their initial specification, is more
general than UREs, but different from AREs. The dependencies between a. point p and a point q
must be such that p — ¢ must be constant in all but one dimensions, and is arbitrary in the one
dimension. This is a very awkward formalism to work with, and although the results are applicable
to the string parenthesization problem, it does not generalize well.

Chen’s Crystal system [Chea)] takes a different approach, espousing a general-purpose parallel
program development methodology. Although the example used in her paper is again string paren-
thesization, the techniques that are presented are applicable to arbitrary algorithms. However, the
price for the generality is that simple techniques that we use for restricted cases (such as AREs) are
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not fully utilized, but a degree of “overkill” is required. As stated in the paper, “The set of synthesis
methods ...is by no means a complete set,” and since the system general-purpose, “...new theo-
rems and new insights ...[can] be integrated readily within the existing design framework.” But
once the library of available transformations grows, it will become extremely difficult to manage,
since an exponential number of possible matches (of the template in the library, against the current
program) must be tried out. This makes such a system very inefficient. We discuss a few specific
problems with the approach of Crystal as follows.

The initial specification describes a set of processes aver an index space, the ensemble of such
processes can be depicted by a directed acyclic graph (DAG) and all the transformations are
crucially linked to the DAG. Hence, determining, say, the fan-out of a node—a problem that is
“solved” in a single line in the paper (see page 465)—involves determining the out-degree of a graph,
an O(n) problem. During the course of the synthesis, a number of such traversals of the DAG must
be made. An immediate result of this is that infinite computations, such as many signal-processing
applications cannot be handled (note for instance, that in the Appendix, one of the first things that
the user specifies is the problem size: n = 6). Another step that Crystal must perform is to infer
that the fan-out of the DAG is O(n). How it does this, given just an specific instance of a family of
DAGs is not explained. This problem is impossible to determine in general, without explicit user
input. Moreover, each input program to the system is a separate problem, and architectures for a
family of problems cannot be synthesized, except by going through the system for each instance.
The approaches based on recutrences can be easily parameterized (see for example [Qui)).

Let us consider Proposition 4.2 in Chen’s paper, which is used to derive an O(n) algorithm
(equivalent to the ARE of Eqn. 12) from a quadratic one that is similar to Eqn. 2. The proposition
states that an associative (binary) operator applied to a sequence of operands may be replaced by a
composition of ternary operations. Clearly, similar claims are valid for 4-ary or 5-ary operations, and
since the problem size is just 6, a naive user might be tempted to use one of these transformations
hoping to get a fast implementation. However, it can be seen that none of these will work. Thus,
in order to use the system, the user needs to have knowledge of what the final architecture is to
be. At this stage, this is not really a critical shortcoming of Crystal; after all our theory too, does
not explain how the linear time algorithm is obtained. Any system that automatically provides the

book-keeping functions while a user tries out a number of transformations will serve a very useful
role in the design process.

The problem is that Crystal continues to use the power of such a general program transformation
framework even after the linear time algorithm has been derived. The results that we have presented
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indicate that constructive techniques are available for AREs,. For example, since it has been shown
that systolic arrays must correspond to recurrences with uniform dependencies that have affine
timing functions (see [RK]), and hence any algorithm that has super-linear speed is an overkill.
Thus, there is no need to have a operator that has more fan-in than a ternary ore. The same
argument indicates that there is no need to consider broadcast removal schemes that are super-
linear (such as a tree). Thus, a user directive to Crystal or heuristic decision made by Crystal
may be avoided. Similarly, Lemma 2 that was presented in Section 3 indicates that of the linear
schemes, the ones that initialize the pipe in the middle are impossible, and it is totally unnecessary
to attempt such transformations.

Huang and Lengauer too, describe a system [HLa] that can transform a class of programs
into systolic arrays. Although the example that they use is the algebraic path problem [HLb] it
has enough irregular data flow to be of interest. Their system toco suffers from the drawbacks of

Crystal, by using a general theorem-prover based reasoning system, when constructive methods are
available,

The system that comes closest to the results presented here is possibly the DIASTOL system of
Quinton et al. In [GIQ] they describe how the string parenthesization array may be derived using
their methodology. Their results were derived independently of ours and are along the same lines.
The initial specification is a system of multi-linear recurrence equations (MLRE) which are not
formally defined, but seem similar to AREs. A sequence of transformations is applied, eventually
yielding a system of UREs (strictly speaking, they are not URESs, but have conditional expressions
and are hence CUREs). Timing and allocation functions are then selected to yvield the classic
Guibas et al. array, as well as an improved one that has only about half the processors.” The paper
does not present a constructive theory, but only its application to the specific problem, and thus
leaves a number of issues unresolved. We describe a few of them here.

The first transformation that is used is called “middle serialization,” and is similar to Chen’s
Proposition 4.2, in that it yields a linear time algorithm from a quadratic one. As in Crystal, such
a transformation cannot be automated using simple linear algebra (as the remainder of DIASTOL
seems to use) and requires extensive user interaction. The paper however, does not clearly state

this, and the reader is left with the impression that all the transformations have a constructive
theory underlying them.

*This improved architecture and also another similar one can be derived from the system of CUREs of Sec. 5 by
the allocation functions a(3, j, k) = [i, X] and a(i, 7, k) = [4, k).
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The next transformation is the pipelining of the dependencies, of which two are pipelined
(using simple pipelining) and two pipelines end at some other domain boundary which is not close
to the desired destination. For these pipelines they use a transformation called routing (analogous
to multistage pipelining) which “switches” the pipeline to a different direction. The process is
explained in one line, “In order to route c;; from the point [i,k, i] [where it is computed] to
[i,2k — 4,k] it can be seen that k ~ i translations along [0,—1,-1] are sufficient.” There is no
explanation of why/how this particular direction was chosen and how this may be automated. The
observation that the second stage of the pipeline is identical to the pipeline for another dependency,
is made later and is not related to the decision to route along the chosen points. As we have shown,
this is a crucial part of the decision to “switch.” Otherwise, why not pipeline from [i,k, 1] first
along [0, —1,0] for j — i — 2k steps (thus reaching [i,i+ j — k, i}), and then along [0,-1,—1] for k—¢
steps, thus reaching [z, j, k] as desired? Or any ofa number of such variants? Moreover, the paper
does not discuss control pipelining at all. Clearly, the ideas are similar to our techniques, but the
mathematical theory underlying the transformations had not been fully developed then (1987).

Recently, these problems have attracted considerable attention. Yaacoby and Cappello have
addressed the pipelining problem [YCa,YCb)] and also the problem of scheduling of AREs [YCc].
In particular, they give necessary and sufficient conditions for the existence of ATFs for a system of
AREs. Note that our earlier results [RFc] gave only sufficient conditions for the existence of ATFs
for AREs; by using the Yaacoby-Cappello results we can directly inform the user when an ATF
does not exist for the given specification. Then it is then up to the user to specify an alternate
ARE. Even more recently Roychowdhury et al. [RTRK] have presented a theory of pipelining that
seems more general than ours. They consider affine dependencies, as well as affine “targets,” which

may permit transformations such as arbitrary rearrangements of sequences of associative operators,
etc.

6.1 Efficiency Considerations and Conclusions

Before discussing efficiency conditions, we must mention the principal limitation of our method.
Our initial specification is a single ARE, and not a system of AREs, and hence we are unable to
address some of the more general problems. Rao et al. have introduced [Rao] Regular Iterative
Algorithms (called RIAs, see also [JRK,RK]) are similar to UREs (except, that the computation
at any point is not considered to be atomic and different variables at the same index point may
be computed at different times on different processors). RIAs permit conditional computations,
where the value of a variable at any index point may be computed by one of a finite number of
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functions (like the functions g; in CUREs), depending on some (affine) conditional expressions (like
the ¥:(p) in CUREs). However, all the functions g; are required to have the same dependencies,
and the conditional computation is thus a restricted form of that available in CUREs. In spite of
this there are a number of issues that are interesting. Rao et al. have shown that with RIAs (i.e., 2
system of recurrences with uniform dependencies), a schedule that is an affine function only of the
index point is not adequate—it merely provides a coarse timing function, and the scheduling of the
different functions (labeled by say integer subscripts) of the system may cause conflicts. The true
timing function must be an affine function of the index point plus a linear function of the subscripts
(subject to some renaming). The question that arises is, what happens when we construct a system
of CUREs by pipelining a single ARE? For the initial ARE, it is perfectly adequate to consider
only coarse timing functions. However, on pipelining this ARE we get a system of CUREs, and for
arbitrary CURESs, coarse timing functions are inadequate. As a result, it seems that the restriction
that the pipeline must be lambda,-consistent may be overly pessimistic and may needlessly rule
out certain transformations. Note that the main intent of this paper was to present the pipelining
transformations. We believe that the theory described here can be adapted to the case of systems
of AREs, if the coarse as well as the fine components of the timing functions are determined first.

We now discuss the efficiency of our algorithms. It is clear that for the case when the null space
of the dependency is linear, the pipelining process is deterministic, and the pipeline, if one exists,
is unique. For the higher dimensional case there is quite some leeway in the choice, but we have
given a useful heuristic to restrict the choice. We also observe that all the examples that we have
encountered so far have linear pipelines. The only case that is of some concern is control pipelining,
where the basis is clearly n — 1 dimensional. However this needs only a simple linear pipeline (since
the domain boundary must correspond to a boundary of the processor array, and a value of 1 can be
easily fed there). Hence almost any arbitrary direction will do, and it does not significantly affect
the final array—the At and the AT? complexity remains the same, and the processor functionality
is affected only in the direction of the control signal. The approaches based on recurrences thus
provide a compact (finite) representation of the entire computation graph, independently of the size
of the problem. This is the crucial power of the methodology. The computation of the pipelines,
timing functions etc, depend on matrix operations and a search, which may seem more complicated
than graph-traversal type program transformation tools, but the asymptotic complexity is certainly
in favor of the recurrence based approaches.

Synthesizing a systolic array from an ARE involves three steps, namely determining an affine
timing function (ATF'), determining an allocation function, and data pipelining of the dependencies.
These three subproblems may be solved in any order, as long as certain mutual constraints are
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satisfied. ITowever, each of these steps requires the solution of an integer constraint satisfaction
problem and in general, there is no unique solution. The synthesis problem thus involves a search,
and the order in which one attempts to solve the constraints can critically affect the efficiency of

a synthesizer based on the theory. This problem is interesting in its own right, and is beyond the
scope of this paper.

We have presented a technique for systematically deriving systolic architectures from a general
class of recurrence equations. Our principal contributions have been to propose two major steps for
the synthesis process (in addition to determining a timing and allocation function). In the first step
the dependencies are pipelined, so that results that are required by more than one points in the
domain can profitably be shared by being pipelined among all the points that require them, We have
presented a theory for such pipelining transformations. We have shown that in the general case,
this results in a recurrence equation that has uniform dependencies, but must perform a non-strict
computation (governed by conditional expressions). Our second result has been the development
of a technique whereby the computation of these conditional expressions may be optimized, thus
yielding systolic arrays that have control signals governing the data-flow.
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