Heuristic Algorithms for
Task Assignment in Distributed
Systems*

Virginia Mary Lo

CIS-TR-86-13
April 15, 1987

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

*This work was supported in part by the US. Office of Naval Research under con-
tract NO0014-79-C09775 and by the U.S. Department of Energy under contract DE-ACO02-
76 ER02383.A003.

Abstract

interference costs which reflect the degree of incompatibility between two tasks. Whereas high
communication costs serve as a force of attraction between tasks, causing them to be assigned to

such as Simple Greedy are attractive candidates for practical distributed systems. If task assign-
ment modules make a permanent assignment of tasks to Processors, the increased overhead of a
more complex heuristic is justified for the improvement in the assignment,

1. Introduction

In the distributed computing environment, a job to be executed on the distributed system
consists of a set of communicating tasks which we shall refer to as a task force. We define a
distributed system as any configuration of two or more processors each with private memory. A
system-wide operating system provides a message-passing mechanism among the processors, and
it is assumed that the cost of transporting messages between processors is non-negligible.
During the lifetime of the task force in the distributed system, task management modules guide

the task force through several clearly identifiable phases:

. task definition - the specification of the identity and characteristics of the task force by the

user, the compiler, and based on monitoring of the task force during execution.
3 task assignment - the initial placement of tasks on processors

. task scheduling - local CPU scheduling of the individual tasks in the task force with

consideration of the overall progress of the task force as a whole

. task migration - dynamic reassignment of tasks to processors in response to changing loads

on the processors and communication network.

In this paper we focus on the problem of task assignment. We use this term to describe an
initial assignment of tasks to processors which neither requires nor precludes subsequent
dynamic migration of tasks. In particular, we are concerned with centralized task assignment
algorithms that have global knowledge of the characteristics of the task force and of the
distributed system. These task assignment algorithms seek to assign tasks to processors in
order to achieve goals such as minimization of interprocess communication costs (IPC), good
load balancing among the processors, quick turnaround time for the task force, a high degree of

parallelism, and efficient utilization of system resources in general.

Our work is an extension of the graph theoretic approach to the task assignment problem
begun by Stone [22] in which the definition of the task force is limited to (1} the execution cost
of each task on each of the (heterogeneous) processors and (2) communication costs (IPC)
incurred between tasks when they are assigned to different processors. In Stone’s work a Max
Flow/Min Cut algorithm can be utilized to find assignments which minimize total execution and
communication costs. In this paper, we use Stone’s model to develop a heuristic algorithm
which combines recursive invocation of Max Flow/Min Cut algorithms with a greedy-type
algorithm to find suboptimal assignments of tasks to processors. We present simulation results

that show the performance of this heuristic to be very good.

We also discuss a serious deficiency in Stone’s model in that it makes no direct effort to
achieve concurrency, yielding assignments which utilize only one or a few of the processors. We
therefore propose an extension of Stone’s model to include an additional factor called
interference costs which are incurred when tasks are assigned to the same processor.
Interference costs reflect the degree of incompatibility between two tasks. For example, 2 pair
of tasks that are both highly CPU-bound would have greater interference costs than a pair in
which one task is CPU-bound and the other is I/O bound. Similarly, if two tasks were involved
in pipelining it would be undesirable that they be assigned to the same processor; this
incompatibility would be expressed in a high interference cost for that pair of tasks.
Simulations show that addition of interference costs as a factor greatly improves the degree of
concurrency in task assignments. We also show that network flow algorithms can be
successfully applied to the extended model to find task assignments which minimize total
execution, communication, and interference costs in certain restricted cases and near minimal

cost assignments in more general cases.

Finally, we look at several versions of our algorithm which vary in their degree of
complexity. We show that the more eflicient algorithms perform almost as well as more
complex versions. Thus, if initial task assignment is followed by later dynamic task migration,
it would be more cost effective to use a simpler task assignment algorithm. This choice is also
justified by the imprecise nature of task definition which can only make approximations of task
characteristics such as IPC, interference cost, and execution costs. However, if task assignment
modules make a permanent assignment of tasks to processors, the increased overhead of a more

complex algorithm is justified for the incremental improvement in the assignment.

Section 2 gives background information on the task assignment problem. Sections 3 and 4
discuss the two models for this problem, heuristic algorithms for task assignment, and
simulation results. Section 5 compares the efficiency of these algorithms and Section 6 discusses

conclusions and directions for further research in this area.

2. Background on the Task Assignment Problem

The task assignment problem has received quite a lot of attention in the past decade. One
approach to this problem has been through the development of centralized algorithms whose
purpose is minimization/maximization of a clearly defined objective function that reflects the
goals mentioned in Section 1. Stone and Bokhari [1], [2], [3], [22], [23], [24] conducted numerous
studies of the task assignment problem for non-precedence constrained task systems with the
objective of minimizing total execution and communication costs. Other researchers have
looked at task assignment to minimize inter-process communication costs (IPC) with constraints
on the degree to which the processors’ loads are balanced [6]; minimization of the number of
tasks per processor [14]; minimization of completion time [7], [14], [15], [19]. There is general
agreement about the desire to minimize IPC as well as to achieve load balancing and to

maximize parallelism, and the fact that these goals often come into conflict with each other.

In these many formulations of the task assignment problem, the problem of finding an
optimal assignment of tasks to processors is found to be NP-hard [11], {14] in all but very
restricted cases. Thus research has focused on the development of heuristic algorithms to find
suboptimal assignments. Many of these heuristic algorithms use a graphical representation of
the task-processor system such that a Max Flow/Min Cut Algorithm [10] can be utilized to find
assignments of tasks to processors which minimize total execution and communication costs [14],

[22], (23], {22). This is the approach we shall take in this paper.

Before proceeding, we briefly mention some additional approaches to the task assignment
problem. One such approach that is in contrast to the use of centralized algorithms involves
de-centralized negotiation between the individual processors and a manager working on behalf
of the task force. In [20], a contract bidding protocol is used in a hierarchically structured
processor system to establish the assignment of tasks to processors. In the MICROS operating
system for MICRONET |[25]|, a scheme called wave scheduling is used to assign tasks on a
distributed system that has an underlying hierarchical virtual machine which reflects the
management structure of the system. In this scheme a task force manager requests a set of
processors for its tasks and that request is transmitted in waves to lower levels of the
management hierarchy. This technique is used to achieve simultaneous, decentralized task

assignment for several task forces at the same time.

Some problems that occur in both these negotiation methods are that they do not
adequately address the problem of minimization of IPC; and they incur significant overhead
during the negotiation process. In addition, there is no concept of optimal assignment
associated with this approach and thus it is difficult to evaluate a particular assignment over
other possible assignments. However, the negotiation approach takes into account many more

factors than the theoretically oriented algorithms described earlier.

Other techniques that have been used to study the task assignment problem include 0-1
quadratic programming {5], [18], clustering analysis [12], and queueing theory [4], [18]. A good

overview of the task assignment problem can be found in [5].

3. Task Assignment to Minimize Total Execution and Communication Costs

We begin with the following model of task-processor systems and look at task assignment
to minimize total execution and communication costs. Formally, we define a task force as a set
of k tasks T ={t, t, ...t} In a distributed system containing n processors
P = {py ps, - P }: Ty denotes the execution cost of task # when it is assigned to and executed
on processor p,, 1<1<k,1<¢ <n. The execution cost of task {; on processor p, depends on
the work to be performed by that task and on the attributes of the processor, such as its clock
rate, instruction set, existence of floating point hardware, cache memory, etc. Let ¢;; denote the
communication cost between two tasks f and ¢; if they are assigned to different processors.
Throughout our discussion, we will assume that the communication cost between two tasks
executed on the same processor is negligible. These execution and communication costs are
derived from an appraisal of the characteristics of the task force and of the distributed system.
They may be specified explicitly by the programmer, deduced automatically by the compiler,
queried from the operating system, or refined by dynamic monitoring of previous executions of
the task force. For this study, we presume that the data about the execution and
communication costs is somehow available and that these costs are expressible in some common
unit of measurement. For tractibility we ignore other attributes of the task-processor system
such as memory requirements, deadlines, precedence constraints; and we assume that

communication costs are independent of the communication link upon which they occur.

An assignment of tasks to processors can formally be described by a function from the set

of tasks to the set of processors, f :T—FP. In a system of k tasks and n processors there are

n* possible assignments of tasks to processors. An optimal assignment is defined as one which
minimizes the total sum of execution and communication costs incurred by that assignment.
For example, consider the task processor system depicted in Figure 1. This system is made up
of 4 tasks and 3 processors. The execution costs z, and the communication costs ¢; are
represented in tabular form. Figure la shows the total execution and communication costs
incurred by the arbitrary assignment, and Figure 1b shows the cost incurred by an optimal

assignment (one which minimizes total execution and communication costs).

The problem of finding an assignment of tasks to processors which minimizes total
execution and communication costs was elegantly analyzed using a network flow model and
network flow algorithms by Stone [22], [23] and by a number of other researchers [9), [14), [15],
[17], {24], [26]. Using this approach a system of k tasks and n processors is modeled as a
network in which each processor is a distinguished node and each task is an ordinary node. An
edge is drawn between each pair of task nodes ¢ and ¢; and is given the weight ¢;;, the
communication costs between the two tasks. There is an edge from each task node f; to each

processor node p, with the weight

1 n -2
n-1 ,§'z’.' T oL e (1)

An n-way cut in such a network is defined to be a set of edges which partitions the nodes of the

wllq —

network into n disjoint subsets with exactly one processor node in each subset and thus
corresponds naturally to an assignment of tasks to processors. The cost of an n-way cut is
defined to be the sum of the weights on the edges in the cut. Because of the judcious choice of
weights according to Eq. (1), the cost of the n-way cut is exactly equal to the total sum of
execution and communication costs incurred by the corresponding assignment. This
construction is illustrated in Figure 2. In a 2-processor system, an optimal assignment can be

found in polynomial time utilizing Max Flow/Min Cut Algorithms [10]. However, for arbitrary

n, the problem is known to be NP-hard {11]. Thus it is necessary to turn to heuristic

algorithms which are computationally efficient but which may yield suboptimal assignments.

3.1. Algorithm A

Our algorithm, which we shall refer to as Algorithm A consists of three parts: (I) Grab, (II)
Lump, and (III) Greedy. We first describe Algorithm A informally and then give a formal

treatment of each portion of the algorithm.

The first part of Algorithm A, Grab, produces a partial (possibly complete) assignment of
tasks to processors by having each processor “grab” those tasks that are strongly attracted to it
(i.e., the weight is large on the edges connecting those tasks to this processor). This process is

accomplished as [ollow:

(1) For a given processor p; we convert the n-processor network described above into a 2-
processor network consisting of p; and a supernode p; which represents the other n-1

processors. (The details of this construction are described later.)

(2) We then apply a Max Flow/Min Cut Algorithm to this 2-processor network to find those
tasks that would be assigned to p; in the 2-processor network. This construction and
application of the Max Flow/Min Cut Algorithm is repeated for each processor, yielding a
partial assignment of tasks to processors.

(3) The n-processor network is then reconfigured by eliminating the tasks assigned in steps (1)
and (2) and by recalculating the edge weights to reflect the partial assignment. Then Grab
is applied recursively to the reconfigured network.

(4} Grab halts when no further assignment of tasks to processors occurs.

If the assignment is complete, it is optimal. However, it is possible that some tasks may remain

unassigned. In that case, Lump tries to find a quick and dirty assignment by assigning all

remaining tasks to one processor if it can be done “cheaply enough”. The precise meaning of
“cheaply enough’ is a tunable parameter and is described later. Finally, if Lump cannot
complete the assignment, Greedy is invoked. Greedy identifies clusters of tasks between which
communication costs are “large”. Greedy merges such clusters of tasks and assigns all tasks in
the same cluster to the cheapest processor for that cluster. The resultant assignment may be

suboptimal.

3.1.1. Details of Grab

In this section we describe Grab in detail and prove that if Grab produces a total assignment of

tasks to processors, that assignment is optimal.

Definition: Let Il = {5, Sy ..., 5., S "} be a partition of the tasks T' in an n-processor system
into n +1 disjoint subsets, with § * possibly empty. Let f be the (partial) assignment of tasks
to processors in which tasks in §; are assigned to processor p; i = 1,...,n and tasks in §" are
not assigned to any processor. The (partial) assignment f is said to be a prefiz of an optimal
assignment if there exists an optimal assignment for which tasks in S; are assigned to processor

p;' f = 1,...,?1 .

Theorem 8.1: Let p; be an arbitrary processor in an n-processor system. Consider the network
G; obtained from the network G in Figure 2 by the following construction: the set of processor
nodes P — {p;} are merged into a single super node 5;. For each task node # ¢ =1,..,k, the
edges {rom node ¢ to processor nodes p, in the set P - {p;} are replaced with one edge with
weight equal to the combined sum of the weights on the original edges (see Figure 3). The
minimum cut in the network G; with p; and p; as source and sink, respectively, induces a

partition of nodes in G; into two disjoint subsets, A; containing p; and A; containing p;. The

(partial) assignment in which tasks in A; are assigned to processor p; is a prefix of all optimal

assignments for G. A similar theorem was proved by Stone [22). Our proof can be found in

[14).

Lemma 8.1: Let G be a network as described in Theorem 3.1 and let p;, and p;_ be two distinct
processor nodes in G. Let A; be the set of tasks assigned to processor p;, and let A;, be the set
of tasks assigned to processor p;, by the application of Theorem 3.1 to G. Then A; N A= ¢

In other words, no two processors will try to grab the same task.

Proof: By Theorem 3.1 the partial assignment in which tasks in A; are assigned to pi, is a
prefix of all optimal assignments for G and the partial assignment in which tasks in Ay, are
assigned to p;, is also a prefix of all optimal assignments for G. If A;,) Aj, 7 ¢ then there
exists a task which is assigned to both p; and to pj, in every optimal assignment. This result is

impossible. Q.E.D.

Algorithm Grab: The first pass of Grab begins with the network G' = G as defined above. In
each pass, the Max Flow/Min Cut Algorithm is applied for j = 1,2,...,n with processor node p;
as source and the set P - {p;} as the sink (as described in Theorem 3.1) to determine the subset
of tasks assigned to p;. Note that by Lemma 3.1 no task will be assigned to more than one

processor by this procedure. The resultant assignment may be partial in that there may be

! Theorem 3.1 as stated above was shown to be incorrect by Abraham and Davidson in Task Assignment Using
Network Flow Methods for Mintmizing Communication in n-processor Systems, Center for Supercomputing Research
and Development Technical Report No.598, September 1986. The last sentence of the theorem should be reworded to
read "“The (partial) assignment which corresponds to ¢ minimum cut with minimum node cardinality in which tasks in
Aj; are assigned to processor p; is a prefix of all optimal assignments for G ." Fortunately, the error in Theorem 3.1
above does not affect the operation of Algorithm A il a Max Flow/Min Cut Algorithm which finds the minimum eut
of minimum cardinality (such as the Ford-Fulkerson Algorithm) is utilized.

10

tasks which remain unassigned. Let T™ denote the set of tasks which remain unassigned after
m passes. We construct a network G™*' {rom the network G™ used in the m th pass by
deleting from G™ all task nodes not in 7™ and by redefining the execution cost for ¢; in 7™

Onl Processor Py as

zig ! i DI M (2)

rotq !J 5"

where 5 is the set of tasks assigned to processor p, by the first m passes of Grab. In other
words, z7'*' is equal to the original execution cost z,, plus the sum of communication costs
between { and all tasks already assigned to processors other than ps- The weight on the edge
from ¢ to p, is recalculated according to Eq. (1) with the new values of execution cost for all
tasks in T™ . The process of applying the Max Flow/Min Cut Algorithm in the network g™+
with p; and P - {p;} as source and sink, respectively, is repeated for 1< 7 <n. The iteration
process halts when either all tasks are assigned or when no tasks are assigned in the last

iteration. In the latter case, Part II of Algorithm A is invoked.

Theorem 8.2: An assignment produced by Algorithm Grab is a prefix of all optimal assignments

for G.

Proof: The proof is by induction on the number of passes m in Algorithm Grab and can be
found in [14].
Lemma 3.2: If the assignment produced by Grab is complete, that assignment is optimal.

Proof: By Theorem 3.2, the assignment f produced by Grab is a prefix of all optimal

assignments for G!. Since f is a prefix of itself, it is therefore an optimal assignment. Q.E.D.

11

3.1.2. Details of Lump

If Grab halts with unassigned tasks remaining, Part II of Algorithm A, Lump, tests the
possibility of assigning all the remaining tasks to one processor. Lump is applied to a reduced
network containing the subset of tasks T™ not assigned by Grab. In the reduced network, the
processor nodes are eliminated and we only look at the task nodes with edges between
communicating tasks labeled with weight ¢;;. Lump computes a lower bound L on the cost of
an optimal n-way cut for the reduced network under the constraint that more than one

processor be utilized in the corresponding assignment. We defined the lower bound to be

L = Y, min(z)+ minc(¢ &)
teT™ ke

where ¢ (¢, ,4) is the cost of the minimum cut for some arbitrarily chosen task ¢, and task

L.
L then is the sum of two quantities. The first term is a lower bound on the execution costs in
the optimal n-way cut. This term is simply the execution costs incurred if each task in T™ is
assigned to its cheapest processor. The second term is a lower bound on the communicalion
costs incurred in an optimal n-way cut. This lower bound is computed by arbitrarily choosing
some task f, and computing all the minimum cuts between ¢, and the other tasks in T™. We
then find the minimum of these mincuts and this quantity serves as a lower bound on the
communication costs incurred in an optimal n-way cut because in such a cut, t, must be
separated from some other task. Based on this lower bound, the algorithm then checks to see il
it would be cheaper to assign all remaining tasks to one processor. If so, the tasks in T™ are all
assigned to the one processor yielding minimum total execution cost for those tasks. In this
case, the resultant assignment in combination with the assignment from Part I is optimal.

Otherwise, Part III is invoked to complete the assignment.

12

3.1.3. Details of Greedy

Part III, Algorithm Simple Greedy, locates clusters of tasks between which communication
costs are “large”. Tasks in a cluster are then assigned to the same processor, and the resultant
assignment may be suboptimal. Let T™ = {t), t,, ..., t,} be the set of unassigned tasks
remaining after Lump. Let G be a graph in which each task t is represented by a node and in
which there is an edge between each pair of communicating tasks with weight ¢;;. Greedy uses
two tunable parameters: C, a cutoff value for communication costs, and X, a cutofl value for

execution costs. For this implementation of Simple Greedy we defined

C == the average communication costs over all pairs of tasks

and
X = oo (i.e., clusters are always merged)

Algorithm Simple Greedy

Initially, each task in 7™ is in a task group by itsell.

Compute the average communication cost C as defined above.

Mark all edges between tasks ¢, tg, ..., t, for which ¢;; < C.

While there are unmarked edges remaining

e Find an unmarked edge ¢ = (t;, t;). Mark it.
G; is the task group containing ¢ .
G; is the task group containing ¢;.

. If there is some processor p, for which
E 2[0 < X = O then
4 ¢G C-'J

e Merge the two groups: G = G; | J G;

13

o Mark all the edges between tasks in G; and tasks
in G

s

e Else do not merge G; and G;.

o Assign each task group to a processor which minimizes the total execu-
tion cost of the group.

3.2. Simulations

In order to evaluate the performance of Algorithm A in finding suboptimal task
assignments which minimize total execution and communication costs, simulation runs were
performed on a variety of typical task forces. Altogether, 536 task forces were simulated with
the number of tasks ranging from 4 to 35 and the number of processors ranging from 3 to 6.
The simulations were performed under the UNIX operating system running on a VAX 11/780.

Optimal assignments were computed using a branch and bound backtracking algorithm.

The data used in the simulations are organized into four categories. Dataset 1 (Clustered)
consists of randomly generated task-processor systems in which tasks form clusters.
Communication costs between tasks within the same cluster are on the average larger than
communication costs between tasks in different clusters. Dataset 2 (Sparse} consists of

randomly generated task-processor configurations in which the communication matrix is sparse.
In particular, the communication costs are nonzero for only % of the (g) possible pairs of tasks.

Dataset 3 (Actual) consists of data representing actual task forces derived from numerical
algorithms, operating systems programs, and general applications programs. In this dataset,
specific information about the number of tasks and/or about which pairs of tasks communicate
with each other was available in the literature. Estimates of execution and communication costs

were made from information such as the number and type of messages passed between tasks,

14

from the function of the tasks, and from raw data on these costs. Dataset 4 (Structured)
consists of task forces whose task graphs have the structure of a ring, a pipe, a tree, or a lattice.

Details about these datasets can be found in [14].

The results of these simulations show Algorithm A to be very successful in finding

suboptimal assignments. Figure 4 summarizes this information by showing the distribution of

. T . . C .
the ratio -2—,’-‘—-, where T, is the total sum of execution and communication costs for assignments
o

produced by Algorithm A, and T, is the total sum of execution and communication costs for an
optimal assignment. For all datasets combined, Algorithm A found an optimal assignment in
34.8% of the cases and for dataset 2 Algorithm A found an optimal assignment in 59.6% of the
cases. In 94.6% of the cases, the cost of the assignment produced by Algorithm A was less than
1.5 times greater than the cost of an optimal assignment. Ratios greater than 2.0 were found in

T
only 3 cases of the 536 cases. The worst ratio 'TA was 2.7. Algorithm A did not perform as
o

well on the Aciual and Structured datasets because Greedy presumes some clustering of tasks

while the these datasets did not exhibit this feature.

4. Task Assignment with Interference Costs

A major flaw in the use of total execution and communication costs as the performance
criteria to be optimized is that no explicit advantage is given to concurrency. In other words,
no explicit effort is made to utilize many processors in order to reduce the completion time of
the set of tasks. Some degree of parallelism is introduced into task assignments as a by-product
of the goal of avoiding high total costs, but concurrency is not sought as a goal itself. Thus, the
use of total execution and communication costs as the performance measure often yields

assignments which utilize only a few of the available processors.

15

For example, in the two processor task system shown in Figure 5, an assignment which
minimizes total execution and communication costs is shown with solid lines (task ¢, assigned to
processor p, and tasks ¢, through ¢, assigned to processor p,). The assignment shown with
dotted lines (¢, through t; on p, and t, through t,5 0n p,) has the same cost. We note that the
latter assignment yields a higher degree of parallelism. Use of total execution and
communication costs as the performance criterion fails to discriminate between these two
assignments, and the Max Flow/Min Cut Algorithm will select the former assignment. In
systems with n identical processors, the use of total execution and communication costs as the
criteria for optimality is even more undesirable since an optimal assignment always assigns all

tasks to one processor (thereby eliminating all communication costs).

For this reason, we present the concept of interference costs which are incurred when two
tasks are assigned to the same processor. Interference costs reflect the degree of incompatibility
between two tasks based on characteristics of the two tasks and the processors to which they
may be mutually assigned. For example, a pair of tasks that are both highly CPU-bound could
have greater interference cost than a pair in which one task is CPU-bound and the other
performs alot of I/O. Interference costs serve as forces of repulsion between tasks to
counterbalance the forces of attraction due to (high) communication costs. We assume
interference costs are derived somehow from user specifications, compiler analyses, and dynamic
monitoring of the task force; and that a common unit of measure can be found for execution,

communication, and interference costs.
In particular, let T = {¢,, - - - &} be the set of tasks, P = {p,,- - - p.} be the set of
processors, and let z;, 1<i<k,1<j<n and ¢;,1<i,j <k be the execution costs and

communication costs, respectively, as defined before. Let I,({,5), 1<i,7 <k,1<gq<n be the

18

interference cost incurred if tasks ¢; and ¢; are assigned to the same processor p,. We assume
that I (¢,7) = I, (7 ,7). We define an optimal assignment as one which minimizes the total sum

of execution, communication, and interference costs.

Interference costs can be attributed to two main factors. The first factor affects every pair
of tasks that are assigned to the same processor and involves contention between tasks for the
resources of the processor to which the tasks are both assigned. In particular, when several
tasks execute on the same processor, they incur overhead due to process switching in a
multiprogrammed environment and overhead due to synchronization for access to shared
resources such as memory, I/O devices, CPU time, etc. We shall refer to the portion of
interference costs attributable to contention for resources as processor-based interference costs.
The second factor which contributes to interference cost involves only those tasks which
communicate with each other. When two communicating tasks are assigned to the same
processor, they may utilize the interprocess communication services provided by that processor
in order to send and receive messages. Thus communicating tasks incur an interference cost due
to contention for message buffers and synchronization for message-passing. We shall refler to
the portion of interference costs attributable to contention for these latter resources as
communication-based interference costs. We note that the communication-based interference
costs which are incurred when two communicating tasks are assigned to the same processor are
always smaller in magnitude than the communication costs incurred when the two tasks are
assigned to different processors. In both cases, the communicating tasks incur costs because
they utilize the interprocess communication facilities. However, if the tasks reside on different
processors, communication costs include, in addition, transit delay incurred by sending messages

through the communication subnetwork.

17

Thus, the interference cost between two tasks ¢; and ¢; which arises when they are both

assigned to processor p, can be expressed as the sum of two components:
L{i,j)= va(i:j) + ch('-:j)
where If(¢,7) is the processor-based component of interference cost and If,j) is the
communication-based component. The communication-based component satisfies the inequality
I,C(t',j) < ey

In the next three sections we show that the network flow model can be successfully extended to
several interesting cases which consider execution, communication, and interference costs.
Simulation results show that the addition of interference cost to the model does indeed yield

assignments with greater concurrency.

4.1. Interference Costs Which are Independent of Processor

In this section we consider task-processor systems for which interference cost is
independent of the processor to which the two tasis f; and ¢; are assigned. That is,
I,(1,§)=1L;. An n processor system can be modeled as a network in which an n-way cut
corresponds to an assignment of tasks to processors. Let the edge from each task node ¢ to

each processor node p, have the weight

1 n-2 1
Wy, = Tiyp = —— Ly + o Il -
! n-1 r§¢ n-1 """ 2(n-1) 152139
Let the edge between two task nodes ¢, and ¢; have the weight

!

C;J' = C"’- - IIJ

This construction is illustrated in Figure 6.

Theorem 4.1: An n-way cut in such a network has cost equal to the total sum of execution,
communication, and interference costs for the assignment corresponding to that cut. (Thus a

minimum cut yields an assignment which minimizes the total sum of execution, communication,

18

and interference costs.) The proof of this theorem can be found in [14].

It is known that the problem of finding an optimal n-way cut in a network is NP-complete
and thus the problem of finding an optimal assignment is also NP-complete. However, because
an optimal assignment is equivalent to an n-way cut, Algorithm A of Section 3 can be applied
to find suboptimal assignments with near minimal values for total execution, communication,

and interference costs.

If we further assume that I; < ¢;,1<¢,7 <k, then ¢;' =1; -¢; >0 and the Max

iy
Flow/Min Cut Algorithm can be applied to find optimal assignments for 2-processor systems.
For n-processor systems, Algorithm A described above can be applied to find suboptimal
assignments. For arbitrary [;, the Max Flow/Min Cut Algorithm cannot be invoked because
there may be edges with negative weights in the network representation of the task-processor

system. However, in this case, the Simple Greedy Algorithm of Algorithm A can be applied to

find suboptimal assignments.

4.2. Simulations

Simulations were performed (1) to demonstrate that the use of interference costs does
indeed yield assignments with greater parallelism and (2) to examine the performance of
Algorithm A in finding assignments which minimize the total sum of execution, communication,
and interference costs. The simulations used data representing typical task-processor
configurations generated from the four datasets described in Section 3. For each configuration,

interference costs were generated from the uniform distributions over the intervals
[1,27]), [1,%?], 1, -;—], and |1, %], where ¢ is the average communication cost for a particular

task-processor system.

19

For each task-processor configuration, we measured optimal and suboptimal values of tota!
costs for the configuration with execution, communication, and interference costs and also for
the same configuration without interference costs (execution and communication costs only). In
order to assess the degree of parallelism attained by assignments, we also measured optimal and
suboptimal values of completion time for each task-processor configuration, both with and
without interference costs. Our definition of complelion time is a natural extension to the
classical definition of [latest finishing time used in deterministic scheduling theory for
multiprocessor systems with execution costs only [6]. In the model with execution and

communication costs, we define completion time as

Wy = max T+ E Ciy
1€¢<n I{[I]up' ,(t})—p'
1 (),

i.e., the total execution and communication costs incurred on the processor for which these costs
are maximal over all processors. Similarly, in the model with execution, communication, and

interference costs, complelion time is defined as

w; = max m+ N ow+ Y L)
Se5n ! "l) - P' !I((")); P' 7 ((‘l)) g Pf
t 7P, i) =vr,

i.e., the total sum of execution, communication, and interference costs incurred on the processor
for which this total is maximal over all the processors. The concept of completion time is
illustrated in Figure 7 using a Gantt diagram. In this figure, the communication costs are
depicted as occuring in one lump, but it should be kept in mind that these costs are actually

dispersed in time throughout the execution of the tasks,

The five values that we measured are listed below. The interpretation of the terms total

cost and complelion time depend on whether the configuration includes interference costs or not.

20

T, , the total cost of an assignment by Algorithm A;

To, the optimal value of total cost;

w4, the completion time of an assignment by Algorithm A;

wg , the optimal value of completion time;

wy, the completion time of an assignment which optimizes total cost.

In each of the figures to be discussed below, we compare the ratio of suboptimal costs to

optimal costs. For example, the ratio :JA— reflects the performance of Algorithm A in finding
o

assignments with minimal completion time. If the ratio is 1.0 Algorithm A’s assignment is
optimal. If the ratio is 1.10 Algorithm A’s assignment is 10% greater than optimal, and so on.

In each figure, results are presented both in table form and graphically.

Figures 8 and 9 demonstrate empirically that addition of interference costs to the model
yields assignments with a high degree of concurrency. Figure 8 shows this is true for
assignments which have optimal values for total costs while Figure 9 shows this is also true for
suboptimal assignments found by Algorithm A. Figures 8 and 9 also compare the degree of
concurrency attained in assignments for the interference cost model with the degree of
concurrency attained in assignments in the model without interference costs. While the

improvement is as expected, the magnitude of the improvement is significant.

.o w . . .
Figure 8 shows the distribution of the ratio w—r for systems which include interference
o

costs and for systems without interference costs. Recall that wy is the completion time of an

assignment which is optimal with respect to total costs while wy, is the optimal value of

w
completion time. Thus, the ratio ;{- reflects the degree of concurrency attained by
o

assignments with an optimal value for total costs. From the percentage figures in the first row

et

=

21

of the table in Figure 8, we see that assignments with an optimal value for total costs also have
excellent values for completion time. For example, 22% of the assignments were also optimal
with respect to completion time, 61.0% of the assignments are less than 1.1 times the optimal

value, and 98.3% of the assignments were less than 1.5 times the optimal value. We also see

that use of interference costs yields a marked improvement in the distribution of the ratio ——.
wo

For example, when interference costs are included, 98.3% of the assignments that are optimal
with respect to total costs also have completion times that are less than 1.5 times the optimal
completion time. However, without interference costs, that figure is only 49.1%. While this

difference is as expected, the magnitude of the difference is notable.

. w . 3
Figure 9 shows the distribution of the ratio —— for systems with interference costs and for
Wo

systems without interference costs. Recall that w, is the completion time of an assignment
found by Algorithm A while wp is the optimal value of completion time. This ratio
demonstrates the degree of concurrency attained by suboptimal assignments found by
Algorithm A. The results from this table show that Algorithm A finds assignments with a good
degree of concurrency when interference costs are included in the model. For example, when
interference costs are included, 93.2% of assignments found by Algorithm A have completion
times that are less than 1.5 times the optimal completion time. However, in the model without
interference costs, only 42.3% of the assignments found by Algorithm A have a completion time

that is less than 1.5 times the optimal value.

Figure 10 demonstrates the performance of Algorithm A in finding suboptimal assignments
which minimize total execution, communication, and interference costs. (In other words, we
now ignore the issue of concurrency and just look at the performance of Algorithm A in finding

suboptimal assignments in the interference cost model.) The table shows the distribution of the

22

. T . . i . .
ratio T—A for Algorithm A with and without interference costs. It is clear that Algorithm A
o

does perform better for Stone's model than for the model with interference costs added. For
example, without interference costs Algorithm A found an optimal assignment in 25% of the
cases. However, with interference costs Algorithm A found an optimal assignment in only 3%
of the cases. Similarly, the cost of 91.39% of the assignments were less than 1.5 times the cost of
an optimal assignment without interference costs, but this figure fell to only 78.4% with
interference costs. Thus, Algorithm A is not well-suited for minimizing total costs when
interference costs are added to the model. This result is not surprising since Algorithm A was
designed for Stone’s model and thus considers interference costs only during the Grab part of

the algorithm.
To summarize,

(1} In the model with interference costs, an assignment with optimal total costs also has
excellent values of completion time. In the model without interference costs, an
assignment with optimal total costs often has poor values of completion time.

(2) This same trend hold for suboptimal assignments found by Algorithm A.

(3) Algorithm A is not as well suited as a heuristic for the model with interference costs and
we should investigate other heuristics for this model.

Thus, we have shown that it is desirable to augment Stone’s model with interference costs and
that heuristics designed to minimize total execution, communication, and interference costs will
also yield assignments with a high degree of concurrency. However, Algorithm A is not a useful

heuristic for this purpose.

23

4.3. Arbitrary Interference Costs

In this section we consider the general case when interference cost is dependent on both
the processor and the tasks involved. Let J, (v,5) be the interference cost incurred when tasks ¢
and ¢; are both assigned to processor p,. For task processor systems with two processors and

under the assumption that

I(v,5) + Io(i,5) < c.. (3)
2 ="

an optimal assignment of tasks to processors can be found using network flow algorithms. This

assumption states that the average interference cost between two tasks over the two processors
be less than or equal to the communication costs between the two tasks. Again, if we consider
interference costs as arising from the memory contention and synchronization overhead between
communicating tasks, it is reasonable to make an even stronger assumption that

Iq (’.:J-) 5%’; g =12
and thus (3) certainly holds true.

We represent the task processor system as a network as usual. The edge from task node ¢

to processor node p, is given the weight

L(i 1)
T = T+ 1<zl:<k) 2

and the edge between task nodes ; and ¢; is given the weight

' Il(":j)'*'I?('.lJ-)

Cij = &jj = >

This construction is illustrated in Figure 11.

Theorem 4.2: A cut in such a network has cost equal to the total sum of execution,
communication, and interference costs for the assignment corresponding to that cut. (Thus a

minimum cut yields an assignment which minimizes the total sum of execution, communication,

24

and interference costs.)

The proof is analogous to the proof of Theorem 4.1 and can be found in [14]. Again, the
Max Flow/Min Cut Algorithm can be applied to find optimal assignments for the 2-processor

case.

For the n processor case, a suitable model has not yet been found.

5. Comparison of Algorithms

The complexity of each of the parts of Algorithm A is discussed below. Let ¢ be the
number of edges in the network representation of a task processor system with & tasks and n
Processors.
Grab: O(nk%elogk)

There exist Max Flow/Min Cut Algorithms of complexity O (kelog k) [10] and
there will be at most % total iterations wth n min cuts per iteration.

Lump: O(k%clogk)
Computation of the lower bound L on the cost of an n-way cut when tasks are

assigned to more than one processor involves finding £-1 mincuts in a network
with task nodes only.

Simple Greedy: O(en)

Simple Greedy examines each communication edge. For each edge Simple Greedy
checks to see il there is a processor to which all the tasks can be assigned.

The Simple Greedy phase of Algorithm A was initially designed to “finish up’ assignments
that were not completed by Grab and Lump. However, because of the efficiency of Simple
Greedy, we decided to investigate its performance alone. Figure 12 compares the performance
of the phases of Algorithm A with that of Simple Greedy and two augmented versions of Simple

Greedy which we shall call Complex Greedy and Sort Greedy.

25

Stmple Greedy is the Greedy algorithm of Algorithm A.

Complex Greedy is an augmented version of Simple Greedy in which an es-
timate is made of the cost of assigning two task groups to different proces-
sors. Complex Greedy merges the two groups if and only if there exists a
processor for which the cost of assigning all tasks in the two groups is
smaller than the estimate.

Sort Greedy is an augmented version of Simple Greedy in which communi-
cation edges are examined in order of non-increasing cost. (In Simple
Greedy, these edges are examined in random order.) The sorting of com-

munication edges adds a lactor of O (eloge) to the complexity of the algo-
rithm, where ¢ is the number of communication edges with non-zero cost.

From Figure 12, we see that the performance of Simple Greedy was close to that of the
more complex Algorithm A. For example, Algorithm A found an optimal assignment in 23.1%
of the cases while Simple Greedy found an optimal assignment in 20.5% of the cases. We
conclude that when an assignment is subject to further adjustment through dynamic task
migration, efficient algorithms like Simple Greedy are more useful for a quick initial assignment
of tasks to processors. If the assignment is permanent, the better performance of Algorithm A

is worth the increased overhead.

From the table we also see that there was no significant difference in the performance of
the three Greedy Algorithms. It is surprising that Sort Greedy did not yield better results. One
would expect that elimination of communication edges in the order most expensive to least
expensive would be more effective in the identification of communicating clusters and thus yield
better assignments. One possible explanation for this phenomenon is the fact that in both
Simple Greedy and Sort Greedy, communication edges whose costs are less than the average
communication cost are climinated from consideration. As a result, primarily inter-cluster edges
remain, reducing the probability that tasks from two different clusters will be merged. The

order in which the communication edges are examined would thus be less crucial.

20

8. Conclusions and Areas for Further Research

Our investigation of the static task assignment problem has resulted in the development of
several heuristic algorithms for Stone’s model which considers execution and communication
costs only and for our model which introduces the concept of interference costs. Simulation
results indicate that these algorithms perform well on a variety of task-processor systems. In
addition, we have shown that highly eflicient algorithms perform almost as well as more

complex ones and thus are feasible for use in practical applications.

QOur current research continues to look at the task assignment problem. An obvious
extension to this research is to increase the complexity of the model to include such factors as
memory requirements, deadlines, precedence constraints, and communication link loads. It will
be interesting to see how much complexity we can include in the model before we are forced to
move from elegant graph theoretic algorithms to increasingly empirical techniques. We are also
interested in characteristics of the algorithms themselves. In particular, a task assignment
algorithm should incorporate qualities such as
monotonicity - as the resources of the distributed system increase (e.g. more processors
available), the cost of the assignment produced by the algorithm should not increase. In
other words, the algorithm should not display anomalous behavior such as the FIFO page
replacement algorithm.
sensitivity - since execution, communication, and interference costs will always be
approximations, the algorithm should not be overly sensitive to small variations in these
quanitites.
robustness (fault tolerance) - the algorithm should adapt to failures in the system such as
removal of nodes, failure of communication links, etc.

In addition, we are looking more closely at the relationship between the two goals of achieving

load balancing among processors and the minimization of interprocess communication (IPC}).

There is general agreement that these two goals are often in conflict with one another, but there

27

is no data available about the degree and circumstances for this conflict. Experiments are
underway to determine parameters of the task force that may affect the degree of conflict
between these two goals. In addition, while there is a quantifiable measure for IPC, a precise
definition of load balancing does not exist. Completion time is often used as a measure of the
degree to which an algorithm achieves load balancing, but this metric can yield fairly
unbalanced assignments. We are looking into new ways to measure load balancing within the

context of the task assignment problem.

Task assignment thus continues to ofler a wide variety of challenging problems. While
much work has focused on this problem by itselfl, it is also time to integrate our view of task
assignment into the overall picture of task managment (task definition, task assignment, task
scheduling, and task migration) -- to see its place in the total life cycle of the task force in the

distributed system.

Execution Costs

Py P Pa

t, a1 4 14
{1 5 6
t, F 2 4 24
t,] 3 28 10

Communication Costs

b, t, ty &4
.| o 3 3 8
;|35 o 6 4
13 6 o 2
f 8 4 23 0

Arbitrary
Assignment
¢ | /(1)
iy { P2
ty P2
t P2
1 ps

(a) Cost of arbitrary assignment (total execution and communication costs}

=zt Tap t Ippt Tt o+ oy + oy

=44+ 54+ 44+ 10+ 8+ 4+ 23

= 58

Optimal
Assignment
¢ | f(t)
t P2
ts P2
| m
41 py

(b) Cost of optimal assignment (total execution and communication costs)

-—_212"" zzz+ 13:']' Z."+ C13+ C”'*' Cl‘+ Coy

=4+ 5+ 2+3+3+3+6+ 8+ 4

= 38

Fig. 1: Example of task assignment problem

Execution Costs

Py P2 P3
13 n 23
L 1 o0 L
ty 14 10 21
t, 115 6 8
t; | oo 2 7

Communlication Costs

ty tp ty ty s
1o 15 2 o0 0
t,b{1s o o o o
ts] 2 o o 12 17
t,lo o 12 0 =
ts] 0 o 17 23 o

Fig. 2: n-processor network

Fig. 3: Reduced network

Distribution of T, /T,

Percent of Simulations
Total No. of -

Dataset | cimulations (?_p';“(‘)gl) <110 | <1.20 [<1.30 | < 1.40 | < 1.50
—_— = =
All Data 578% [74.1% | 84.3% | 80.9% | 92.7%
(1) Clustered 69.3% | 80.3% | 85.6% | 90.9% | 93.5%
2) Sparse 55 47.3% 70.9% | 85.4% | 94.5% | 96.3% | 96.3%
(3) Actual 168 23.8% 53.0% | 71.5% | 84.0% | 905% | 91.7%
(4) Structured 85 7.1% | 28.2% | 65.3% { 75.3% | 82.4% | 90.86%

Percent

of Cases

100

F — = — —
AL
BO
Vg
60 VA

== — — — Sparse
"""" C:rstered
tresrerarnravrer Acfual
Structured
40 |-
20 -
1 1 | I 1 | X
1.0 N 1.2 .3 1.4 L5

Optimal
T
Distribution of Cases for Which -;:S. X

Fig. 4: Performance of Algorithm A for several datasets

Execution Costs Communication Costs
Py P bt byt g 8
4 20 50 ¢ 0 15 0 0 0 0
25 10 taJo o0 %0 o o o
1 5 2 t5]o 0 o 15 o0 o
t, 10 20 t, 0 0 0 0 50 0
ts] 10 2 tsjJo o o o o 15
te | 50 10 ts{0 0 0 0 0 o0
Max Flow/Min Cut optimal
assignment assignment

—— Cost=z,+ zpp+ 2pp+ 2o+ Zsp+ ZTe + €5y =115

——- Cost = Iy -+ 231 + Z3y + Zys + Zge + ZIgs + Iy = 115

Fig. 5a: Poor assignment without interference costs

Interference Costs
6t oty by b i
¢ 0 10 10 10 10 10
ty | 10 0 10 10 10 10
t; 10 10 0 10 10 10
ty {10 10 10 0 10 10
{g |10 10 10 10 0 10
g J10 10 10 10 10 0

Max Flow/Min Cut assignment
= optimal assignment

Cost = I + Tay + I32 -+ Tye + Zgs + Tys + €12 .
+ I=3+ Iz,"" Iz;+ Izs+ Ig‘+ I“+ I;g
+ I‘5+ I“ + Iss

=115+ (5) - 10

= 215

Cost =z, + z3y + T + 2+ Zge + ZTgp + €34

=115+ () 10+ ()10
= 175

Fig. 5b: Better assignment with interference costs

Execution Costs Communication Costs
PL P b 4 4 by &
| s s t,] o 12 8 0 o
t, | 3 16 .12 0o 5 o o
1 2 2 18 5 0o o0 o
t, 12 3 ,fo o o o o9
s 7 10 10 o o 9 o
Interference Costs
t oty by, I
t,|]o 6 2 o o
tt]J6 o 2 0 o
12 2 o o o
t,Jo o o o 3
i, Jo 0 0o 3 o
X' = +1|2+I|3‘*‘I|4+I|5
12- ™2 2

=8+4:12

Fig. 8: Processor-independent interference costs

Execution Costs
PP

{ 2

ty 4

ty 4

Communrication Costs
bt i
1o 6 2
{6 o0 1
2 1 o
P,| t3 Ci2 %3
p2 1 TJZ [1 c||2 L 23 [TR R T SR N R
O1 23 45 678 9I1011121314151617 18 19---
(0} one assignment: w;=13
Pt | 1. ok
p2 11.? 1 C§| €32 1 1 1 1 1 1 t L 1 I] 1
0! 2 34 56 78 39101HI2I13141516 17 I8 |9---

(b) optimal assignment:we=9

Fig. 7: Completion time (execution and communication costs)

