Intelligent Scheduling in
Distributed Computing Systems
Virginia M. Lo

and
David Chen

CIS-TR-86-14
April 15, 1987

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON



Abstract

Our research into the problem of scheduling in distributed computing systems indi-
cates that several techniques and tools from the area of ‘““expert systems” can be success-
fully adapted for use in the design of a smart distributed scheduler. In this paper we look
at expert system approaches to the representation of imprecise knowledge, techniques for
reasoning about imprecise and unreliable knowledge, and means for handling knowledge
accumulated over time. We show that that these are precisely the types of knowledge a
distributed systems scheduler must deal with in order to make scheduling decisions and
we give examples of the use of these techniques in the realm of task assignment and task
migration algorithms. We then describe a task migration algorithm we have designed
which utilizes rule based programming and expert systems techniques to deal with out-
of-date and thus potentially unreliable data in system load tables,



Intelligent Scheduling in Distributed Computing Systems

1. Introduction

Because of the many complexities inherent in the distributed computing environment, it is
desirable that distributed system schedulers be designed in a way that gives them a degree of
“intelligence” beyond that found in typical schedulers for uniprocessor systems. Distributed
system schedulers must have the capacity to make sophisticated decisions based on complex
knowledge about the dynamic behavior of the system and its loads. Distributed system schedulers
must be extremely versatile and adaptable in order to respond to the diverse and rapidly changing

needs of both users and the system itself.

Our research into the problem of scheduling in distributed computing systems indicates that
several techniques and tools [rom the area of “‘expert systems” can be successfully adapted for use
in the design of a smart distributed scheduler. The use of rule-based programming provides a
very natural and powerful medium for expressing the type of rule-of-thumb heuristics that are
characteristic of scheduling algorithms and for expressing scheduling rules in a hierarchical fashion
as lower level rules and higher level meta-rules. In addition, expert systems techniques for dealing
with uncertain and complex knowledge can aid schedulers in making numerous decisions and

predictions based on information gathered locally and from other processors.

In this paper we take a look at specific techniques from expert systems technology that we
have found can be profitably used in distributed scheduling algorithms. In section 2, we give a
briel overview of the problem of scheduling in distributed computing systems. Section 3 defines
rule-based programming and demonstrates its suitability for use in the design of heuristic
scheduling algorithms. Section 4 gives background information on expert systems approaches to
the representation of imprecise knowledge, techniques for reasoning about imprecise and
unreliable knowledge, and means for handling complex knowledge, such as vast quaatities of
knowledge and history data, We show that these are precisely the types of knowledge that a
distributed system scheduler must deal with in order to make scheduling decisions and we give

examples of the use of these techniques for decision-making in the realm of task assignment and

Intelligent Scheduling in Distributed Computer Systems Page 1



task migration algorithms. Section 5 describes a scheduler we have designed for the preemptive
migration of communicating tasks using expert system tools. The migration algorithm makes
decisions about when, where, how, and which task to migrate based on imprecise and out of date

information. Section 6 gives conclusions and areas lor further research.

2. Scheduling in Distributed Computing Systems

The problem of scheduling in distributed computing systems has been an active area of
research for over a decade. Surveys of this work can be found in [CHLES80, TaRe85). To be very
brief, in the distributed computing environment, distributed computations consist of loosely
coupled collections of communicating tasks which together work towards a common goal.

Scheduling of these computations or task forces consists of
o task assignment: the initial assignment of each task in the task force to a processor,

e lask migration: the possible preemption of an executing task and transfer of that task to a

different processor,
e local task acheduling: the multiprogramming of tasks on a particular processor.

In all phases of scheduling the overall goal is to maximize throughput by utilizing the strategies of
maximizing parallelism for & given task force, maintaining load balancing among the processors
over many executing task forces, and minimizing the overhead of interprocess communication

{IPC) between tasks in a task force and of the scheduling algorithms themselves.

Algorithms for task assignment and task migration can be divided into two groups: (1) those
based on well-defined mathematical models such as graph theory, integer programming, and
deterministic scheduling theory, and (2) those which utilize intuitive, rule-of-thumb heuristics
such as bidding, probing, and market-type negotiations. The use of expert systems techniques is
especially appropriate for this latter group of scheduling algorithms although many of the

techniques can be applied to the mathematical algorithms as well.

Intelligent Scheduling in Distributed Computer Systems Page 2



3. Rule Based Expert Systems

In this section we give a briefl introduction to the concepts of rule based expert systems and
illustrate the usefulness of rule based programming for distributed scheduling algorithms. A

thorough treatment of expert systems can be found in |BuSh84, HaWL83, Fors84].

The basic structure of a rule based expert system consists of a knowledge base, which
represents the domain knowledge in the form of domain facts, a rule system, that describes rules
and heuristics associated with the domain expertise, and an tnference engine that utilizes the rules
and heuristics in the rule system and the domain facts in the knowledge base to approximate an
expert’s problem solving processes. The rules comprising the rule base describe relationships
between the facts in the knowledge base and ways in which new facts can be deduced from
existing facts. These rules take the form of IF-THEN statements. Expressions following the IF
keyword are called conditions and contain a list of facts that must be {rue before this particular
rule can be triggered. Statements (ollowing the THEN keyword are called actions or conclusions
and indicate the functions to perform or new facts to assert when this particular rule is triggered

and selected for execution.

The problem solving procedure involves the acceptance of input conditions which cause the
activation or triggering of certain rules. The inference engine uses & matching stralegy to collect
all the triggered rules and a conirol strategy to select which of the triggered rules to execute. The
most common matching strategies used by the inference engine are forward-chaining (data driven,
bottom-up), backward-chaining (goal driven, top-down), or a combination that finds the solution

using both forward and backward chzaining.

The use of rules and heuristics to solve problems is one of the most distinctive features in
expert systems languages. Unlike conventional procedural programming languages which only
specify how to execute something, the expert systems languages are usually declarative and specify
what to do to solve the problem. Futhermore, there is a clear separation between logic (rule
system), data (knowledge base) and control (inference engine) in expert systems. Thus, the system

is more modular and is easily extendable. In conventional languages, logic, data, and control are

Intelligent Scheduling in Distributed Computer Systems Page 3



intermixed so that it is difficult to modify the program.

Another advantage of expert systems for problem solving is the ability of the system to
manipulate the problem description itsell and to reason at multiple levels of abstraction. In
particular, in addition to containing rules about the problem domain itself, the rule base may also

contain meta-rules which are rules about the rules.

As mentioned earlier, rule-based programming is particularly suited to the design and
implementation of the type of heuristic, rule-of-thumb algorithms that have been proposed for
distributed systems scheduling, particularly in the domain of task migration [EaLZ85, RaSt85,
NiXG85, Smit84]. Many of these algorithms are based on human models of negotiation and
consist precisely of IF-THEN rules describing the appropriate action to take under specified
conditions. For example, the sender initiated strategies for task migration described in [EalZ85]
can be described by IF-THEN statements which are easily translated into rules in a rule-based

language:

Threshold Transfer Policy and Threshold Location Policy:
tf the queue length of processor-i > T and probe_count < PROBE_LIMIT,
then randomly select a processor-j,

send if a probe message, and
tnerement probe_count by 1.

tf the probe value returned by processor-j <= T,
then migrate task to processor-y.

Similarly, the drafting protocol proposed in {NiXG85) for task migration can be expressed as a

series of IF-THEN rules (details have been deliberately omitted):

if processor-i 1s sn H-load state,
then send ¢ a draft-request mesaage.

tf a dreft-request message is received from processor-j,
then send processor-j a draft-age message.

f draft-age messages have been received from all processors,
then calculate draft-standard,
compule manimum-draft-age.

Intelligent Scheduling in Distributed Computer Systems Page 4



if processor-i is in L-load state and draft standard is calculated
end processor-j draft-age equals mazimum-drafi-age,
then send a draft-aelect message to processor-j.

Thus, these rule-of-thumb heuristic algorithms are expressed very naturally in the medium of rule

based programming.

The ability to specily meta-rules about the lower level domain rules provides schedulers
with the ability to be flexible and highly adaptive to dynamic changes in the distributed system.
Researchers in the area of task scheduling algorithms have come to the realization that no single
scheduling algorithm is suitable for all types of task forces and under all types of system
conditions. Meta-level control is needed for flexible and adaptable scheduling, i.e., to decide when
to invoke various scheduling algorithms, which particular scheduling algorithm to use, and for

tuning or parameterization of algorithms [RaSt86).

For example, regular rules may specify the operation of a specific task migration algorithm
such as the threshold and drafting algorithms described above. Meta-rules, on the other hand,

may contain knowledge about which regular rules are more useful under specific conditions:

if the global system load is currently high,
then use rules defining receiver initiated migration algorithm.

tf the global system load is currently low,
then use rules defining sender indtiated migration algorithm.

Similarly, meta-level control can be utilized to decide whether a faster but less optimal task
assignment algorithm is called for versus whether the overhead of a complex optimal algorithm is
worthwhile, how many iterations of a particular algorithm to execute, how often to collect state
information for these algorithms, whether negotiations should be among all processors or a
selected subset of processors, what threshold levels of ecritical parameters should trigger task

migration, whether a centralized or decentralized algorithm should be utilized, and so forth.

Meta-level rules can also be used to provide control over the control in the expert system.
Meta-rules for conflict resolution can specify which rule or rules should be allowed to fire in the

event that many rules are triggered by the facts in the knowledge base. The use of meta-rules for

Intelligent Scheduling in Distributed Computer Systems Page 5



conflict resolution in the domain of distributed scheduling is discussed in more detail in the

following sections about decision making under conditions of complex and imprecise knowledge.

4. Uncertain and Complex Knowledge

The scheduler in a distributed system must make decisions sbout where to place tasks,
whether and when to migrate tasks, which tasks to migrate, ete. These decisions are based on
information about the tasks to be scheduled (longevity, scheduling frequency, execution costs,
communication costs and structure); and on information about the distributed system itself
(available resources, system configuration, processor loads, message traffic levels, and system
response time). This information is often highly dynamic in nature and is gathered from a variety
of sources including compilers, the users, and local system monitors resident on each processor.
Thus, the scheduler must make its decisions based on data that is complex, and data that is often

imprecise, out-of-date, incorrect, or incomplete.

In general, uncertain information exists because the data we wish to measure is itsell
imprecise in nature, because the instruments we use to measure or transmit the data are imprecise
or error prone, because the rules or heuristics we use to produce the data are uncertain or
incorrect, or because external factors such as time delays produce inconsistent and out of date
data. When making (scheduling) decisions with uncertain data, our conclusions can still result in
reasonable performance levels with the aid of expert systems techniques for representing and
reasoning about uncertainty. In the following sections, we discuss expert system approaches to
types of uncertain knowledge distributed system schedulers need to handle: imprecise knowledge,
unreliable knowledge, and incomplete knowledge. We also discuss a type of complex knowledge
that is relevant to distributed scheduling decisions: history data. Because all these classes of
knowledge overlap to some extent, many of the techniques we discuss are applicable to more than

one class,

Intelligent Scheduling in Distributed Computer Systems Page 6



4.1. Imprecise Knowledge

Imprecise knowledge involves concepts or quantities whose meaning or value is subject to a
range of interpretations depending on context, viewpoint, or external events. In the domain of
scheduling in distributed systems, many of the criteria for scheduling decisions depend on the
evaluation of imprecise concepts such as load balancing, high degree of parallelism, low
interprocess communication costs, better response time, etc. Distributed system schedulers need
means for representing these imprecise quantities and for reaching conclusions and making

decisions based on imprecise knowledge.

For example, it is desirable to define a rule which describes the system state that triggers

task migration:

if the current state of processor-f 15 heavily loaded,
then initiate task migration algorithm.

Here, we have described the state of a processor as heavily loaded, but exactly what do we mean
when we say it is heavily loaded? Typical interpretations of the term heavily loaded include
notions that the execution queue of the processor is more than some length or the average
turnaround time of tasks assigned to that processor is less than some tolerable time period.
Unfortunately, we have just explained an imprecise word heavily loaded with the equally
imprecise words some length and some period. We could try to quantify our notions by using

numeric values:

if the ezecution queue length of a processor ¢s more than 10,
or if the average turnaround time of task ¢s more than 0.5 seconds,
then the processor is heavily loaded.

These figures may be derived from empirical studies or from common sense but nevertheless even
these numerical values may not be precise enough due to different initial assumptions, poor
experimental data, or simply due to faulty instruments used during the experiments. If the
turnaround time is 0.45 seconds, then is the processor is no longer heavily loaded? We have to be
very sure about the 0.5 second limit before we can make such a claim. If the 0.5 second limit is

unreliable in the first place, we would have started with an incorrect assumption about average

Intelligent Scheduling in Distributed Computer Systems Page 7



turnaround time, and hence all calculations and heuristics based on this figure would also be
adversely eflected. Thus we see that there is impreciseness both in the notion Aeavily loaded and

in the rule which defines load in terms of queue length 10 and average turnaround time 0.5 sec.

One of the most important developments in expert systems has been the treatment of
imprecise knowledge in the reasoning process. Lotfi Zadeh [Zade78| proposed a system for this
process which is called fuzzy logic. In this system, the description of an imprecise concept such as
the turnaround tsme is fast would generate a set of possibility values such as the turnaround iime
18 more than 1 second with posaibility of 0.1, the turnaround time is belween 0.5 and 1 sccond with
posaibility of 0.8, and the turnaround time (s less than 0.5 second with possibility of 0.6. The
context of the description is also important because a fast turnaround time is still slower than a

slow CPU cycle.

Another approach to reasoning under imprecise knowledge was included in the MYCIN
expert system [BuSh85]. MYCIN introduced a numerical system in which certainty factors (CFs)
are assigned to rules to indicate degrees of beliel about the rules and their conclusions. CFs can
vary from a value of 1.0, a strong belief, to -1.0, a definite false, with fractional values in

between. Using CFs, we can supplement the previous example to make it more precise.

if the ezecution quene length of a processor is more than 10,
or if the average lurnaround time of task is more than 0.5 seconds,
then the procesaor 1z heavily loaded with CF of 0.8.

Conclusions with different degrees of belief can be combined to yield a new CF for the resulting

hypothesis by using predefined formulae based on probability theory.

Cohen [Cohe85) argues that numerical systems are not precise enough. Since the numbers
are arbitrarily chosen values, their meanings can be interpreted differently under different
circumstances. When a CF is derived as a combination of other CFs, the meaning of the resulting
number is particularly difficult to interpret. Finally, numbers are not expressive of the variety of
meanings that we wish to ascribe to data, rules, and conclusions. Cohen suggests a scheme of
endorsements for data, rule conditions and rule conclusions with quantities such as good, medium,

bad (for data), ezact, flezible, supportive (for rule conditions), and adequate, likely, unliikely (for

Intelligent Scheduling in Distributed Computer Systems Page 8



rule conclusion). For example,

if the execution queue length of a processor is more than 10, {ezact}
or if the average turnaround time of tasks is more than 0.5 scconds, {flexible}
then the processor is heavily loaded with CF of 0.8,

If the data regarding queue length and average turnaround time have good endorsements, the rule

conclusion would receive an endorsement of Ifkely. Conversely, if the data had bad endorsements

associated with them, the rule conclusion would be endorsed as uniskely.

4.2. Unreliable Knowledge

Unreliable knowledge exists when there is some degree of doubt about the correctness of the
knowledge. In the distributed computing environment, unreliability may stem from conclusions
based on conflicting data from more than one source, and from data being out-of-date due to

message transmission delays.
For example, suppose processor loads are measured in terms of several performance criteria:

if turnaround time < 0.5 sec, then the processor load (s low.
if processor queue length = 10 tasks, then the processor load is high,
if message queune lengths = 10 messages, then the processor load is high.

It is possible that the facts in the knowledge base would trigger all three rules, resulting in
conflicting conclusions.

In general, meta-rules can be used to deal with conflicts by specifying priorities among the

rules:

turnaround time ss a beller indicator of processor load
than processor queue length or message queve lengih.

The MYCIN project approaches conflict resolution using CFs and a meta-level heuristic called
unity path which is hardwired into the control strategy. When faced with many possibilities to
choose from, unity path selects the conclusion with the most definite belief (i.e., CF is close to -1
or +1).

The next example illustrates unrealiability due to out-ol-date information. For both task

assignment and task migration algorithms, it is necessary to keep track of the load status of each

Intelligent Scheduling in Distributed Computer Systems Page 9



processor in order to decide which processors are candidates to receive new or migrated tasks for
execution. This type of information can be kept in & local load table with an entry for each
processor denoting its status as heavy, light, or normal [NiXG85). Since loads are dynamically
changing at all times, the table must be updated by messages received from the processors. At
any given moment of time, the status of a processor as reflected in the load table may not

accurately represent its true current status. Thus, a simple rule such as

tf processor-t's load status 1a low,
then processor-i ts a targel for migration.

may cause migration to a processor that cannot accept the task because the load status is no

longer low.

The use of CF to deal with uncertain information can be extended to the notion of
reliability factors (RF) which reflect the degree of reliability of data, rules, and conclusions. The
reduced reliability of out-of-date information can be handled by periodically decrementing the RF
of time-critical data in a manner similar to the handling of pages in LRU approximation
algorithms for memory managment. Also, il a processor has just received a new message from

another processor, all other data received before this new message is older than it.

if @ new message has arrived from processor-t,
then decrement the RFe of all time-critical measages from processor-i.

The RF can be manipulated to respond to additional factors such as conflicting conclusions and

outright fzlse data. For example,

tf a task 18 migraled to a proceesor which has previously indicated
that it was lightly loaded, but the task is later rejected by the
processor due (o its heavy load,

then reduce the RF of the processor status.

4.3. Incomplete Knowledge

Often a scheduler needs to make a decision when some data are missing or incomplete. One
way to resolve this situation is by not making any decision. Hence when a processor needs to

choose a task to migrate, do not choose any task because some of the required data are not

Intelligent Scheduling in Distributed Computer Systems Page 10



available yet. A more plausible alternative is to make a decision but also assert it with a CF
which denotes the fact that this decision is not entirely accurate because not all the data are

present when the decison was made.

Cohen has built a similar kind of mechanism in SOLOMON [Cche85] that uses the rule
endorsement model described above to produce rule conclusions when not all the facts are present.
The endorsements used in SOLOMON are symbolic ratings rather than numerical values. For
example, to choose a particular processor for a task to migrate to, we have a rule with various

endorsements in braces:

if the stale of processor-1 is lightly loaded {necessary}
and the cost of migration to processor-1 is cheap {necessary}
and this task communicates with other lasks on proceasor-1 {supportive}
and the state of processor-1 1s reliable {supportive}

then migrate task to processor-1.

Suppose the rule condition about the reliability of processor-1 is not available when the decision is
required. Rather than waiting for the condition to appear, we can use the endorsement provided
in the rule to reach a decision. Since the necessary conditions are both present, and there is
support from the third condition, we can go ahead and conclude that the task should be migrated
to processor-1. However, because not all the conditions are satisfied, the conclusion is reached
with may-be-too-general or not adequately endorsed endorsemement. It is now up to other rules to

decide if this conclusion can be accepted.

4.4. History Data

History data is information about a particular parameter or situation that is sampled and
recorded over time. The correct management of history data can aid schedulers in many types of
decisions, in the selection of appropriate algorithms, in the analysis of bottlenecks, and in the

prediction of future workloads.

For example, in the typical computing environment, certain computations can be classified
as repeatedly scheduled task forces. This group includes systems utilities such as editors,

compilers, debuggers, and frequently used applications programs such as statistical packages and

Intelligent Scheduling in Distributed Computer Systems Page 11



database programs. Information about certain characteristics of these task forces is needed by the
scheduler in order for it to decide where and when to execute the tasks. For example, most task
assignment algorithms use estimates ol execution costs, intertask communication costs and
patterns, I/O and other resource requests. The quality of this information can be improved if the

system monitor accumulates a history profile of these frequently scheduled computations.

With the zid of history data, the scheduler can be smarter by predicting future perlormance
behavior. For example, in an interactive session, if a user repeats the edit-compile-run sequence
several times in a row, our scheduler should be able to predict with some confidence (ie. CF) that
after an edit task, the next one will be compile and alter that would be run again. Based on this
knowledge, the scheduler can perform task assignment in advance and possibly move load
modules or data files to appropriate processors. In addition, the scheduler can use this information

in its assessment of processor loads in the near future.

In order to reason about data that is accumulated over time, it is necessary to have a means
for representing history data. History data, in general, can be stored either quantitatively or
qualitatively. In the quantitative approach past data are stored in a long list. Whenever history
data is required for a decision, rules examine the list exhaustively to produce the result. In the
qualitative approach a simple symbolic datum such as an average or weighted average is stored to
represent a summary of the past history. Of course, the qualitative approach requires much less
storage area to keep track of the history data but the stored data may not be as accurate as that
of the quantitative approach. For example, when monitoring the load status of a processor, if its
history data for the past 10 time units indicates a high load, but at time unit 11, load status
changes to low, and at time unit 12, load status changes back to high again, what should we
record as the qualitative history data for this processor state at time unit 137 Although
knowledge about the average behavior of the system is usually sufficient, occasionally we do need
to know about the occurrence of abnormal behavior in the system. There is a clear cost in terms

of time and space for the greater discrimination ability of a quantitative representation.

Intelligent Scheduling in Distributed Computer Systems Page 12



An illustration of an expert system approach to history knowledge is the Ventilator Manager
(VM) program [FaKFg80|, based on MYCIN, that monitors and interprets data in the intensive
care unit of a hospital. After a cardiovascular operation, VM monitors the patient’s vital signs
(pulse rate, respiration rate, blood pressure, etc.) in order to aid in the management of a
mechanical ventilator for breathing assistance. VM’'s rules can reason about data over time. For
example, rules exist which check the pulse rate of a patient over 15 minute intervals. If the pulse
rate reaches a certain value during the testing period, then certain conclusions are drawn and
appropriate suggestionss are produced and printed to assist the doctor's decision. If VM suggests
a lower level of breathing assistance, it will generate expectations for the values of the monitored
vital signs. Hence, rules interpret current and history data to determine what actions to take and

to predict what should happen in the future.

VM uses both quantitative and qualitative approaches in storing history data. Since the
most critical period for a patient is about 1.5 hours, VM stores the most recent 1 hour data in a
queue {quantitatively), and stores the history data 1 hour ago as a symbolic value (qualitatively).
Unfortunately, VM does not fully use the certainty factors associated with each rule conclusion
even though VM's design is based on MYCIN. In fact, uncertainty is incorporated implicitly in
VM’s knowledge base because the data monitored are chosen because they highly correlate with

patients’ conditions.

6. Task Migration Rules

We have designed a scheduler for task migration which uses expert system techniques to
make its decisions using unreliable data. We treat task migration as the preemptive migration of
tasks that are members of a task force and that may have already begun execution on the
processors to which they are currently assigned. This approach differs from previous notions of
task migration {EaL.Z85, RaST85, NiXG85] which consider only independent tasks which do not
communicate with other tasks and only at the time of task arrival. Since the cost of preemption
and moving a task is very high, preemptive migration is suitable only for long lived and

nonterminating computations such as OS servers and demons, process controllers or data base

Intelligent Scheduling in Distributed Computer Systems Page 13



management applications. However, many of the decisions relevant to preemptive migration are

also necessary for non-preemptive migration of independent tasks.

We presume a heterogeneous distributed system with n fully connected processors. Each
processor contains a smart scheduling module as well as a local system monitor, Task forces
arrive at a particular processor and the tasks are all initially assigned to processors by the local
scheduler. Later, il the processor is overloaded or has a task that communicates heavily with
tasks in other processors, the scheduler will initiate migration of a task or tasks so that processor
loads are balanced, or so that heavily communicating tasks reside in the same processor. Thus,
the goal of task migration is to improve overall system throughput by balancing loads and by

minimizing interprocess communication.

In order to achieve these goals, the smart scheduler must decide (1) when to migrate tasks,
(2) how the migration should be carried out, (3) which task to migrate, and (4) where to migrate.
Most of these decisions are based on the current status of the global system state which is
determined from imprecise, unreliable, out of date and complex data. Below, we present some
examples of our task migration rules and a simple scheme for evaluating the reliability of
information about the loads on processors in the distributed system. We use rule-based
programming because of the natural way it expresses the type of rule-of-thumb heuristics found in

our algorithm and because of the convenience and clarity provided by meta-level rules.

6.1. When to Migrate

Task migration in distributed systems is triggered by changes in system state. In our
system, we are concerned with the situation in which a processor’s load exceeds a threshold value,
or when the interprocess communication between two tasks exceeds a threshold value. These

event-triggered actions can be expressed clearly in rule form.

MIGRATION-FOR-COMMUNICATION-RULE:

(IF (THE LOCATION OF ?TASK1 IS 7PROCESSOR)

AND (GREATER-THAN (THE COMMUNICATION-COST ?TASK1 TO 1TASK2)
(THE COMM-THRESHOLD OF ?PROCESSOR))

THEN (ASSERT (INITIATE-MIGRATION-WITH (?TASK1 ?TASK2)))

Intelligent Scheduling in Distributed Computer Systems Page 14



MIGRATION-FOR-LOAD-BALANCING-RULE:
(IF (GREATER-THAN (THE LOAD IN 'PROCESSOR) (THE LOAD-THRESHOLD OF ?PROCESSOR)
THEN (ASSERT (INITITATE-MIGRATION-WITH (THE ?TASK-LIST IN ?PROCESSOR)))

5.2. How to Migrate

In our system we use a simplification of results from a study by Eager, Lazowska, and
Zahorjan |EalZ85) regarding the relationship between task migration strategies and overall
system load. In particular, we assume that under heavy overall system loads, it is better to use
receiver-initiated task migration in which lightly loaded processors invite migration; while under
light to moderate loads, it is better to use sender-initiated task migration in which heavily loaded
processors initiate migration. (According to their studies, some other assumptions are necessary,

but we will ignore these for now.)

Meta-rules are used to instruct our scheduler to select the preferred strategy based on
system load. In general, the use of meta-rules gives the scheduler greater flexibility by allowing it
to dynamically select algorithms; these meta-rules can be themselves modified or deleted at run

time, providing a degree ol adaptability that is difficult to provide in procedural languages.

USE-SENDER-INITIATED-ALGORITHM-+META +-RULE:

(IF (THE GLOBAL-STATE IS HIGH)

THEN (ASSERT (THE USE-ALGORITHM IS SENDER-INITIATED))
(DISABLE (NOT (SENDER-INITIATED-RULE-CLASS RULES)))
(ENABLE (SENDER-INITIATED-RULE-CLASS RULES)))

USE-RECEIVER-INITIATED-ALGORITHM-+META +-RULE:

(IF ({THE GLOBAL-STATE IS (NOT HIGH))

THEN (ASSERT (THE USE-ALGORITHM IS RECEIVER-INITIATED))
(DISABLE (NOT (RECEIVER-INITIATED-RULE-CLASS RULES)))
(ENABLE (RECEIVER-INITIATED-RULE-CLASS RULES)))

6.3. Who to Migrate

The decision of which task or set of tasks to migrate depends on the current inter-processor
communication costs between the two tasks that reside in different processors, frequency of
communication with other tasks in the same processor, and anticipated communication and

execution pattern of the migrating tasks. The selection of tasks also has to consider effects on the

Intelligent Scheduling in Distributed Computer Systems Page 15



balancing of processor loads in the system. The following rules select one or more candidates for

migration.

SELECT-MIGRATION-TASK-HIGH-COMMUNICATION-RULE:
(IF (INITIATE-MIGRATION-WITH (?TASK1 ?TASK2))

AND (THE LOCATION OF TASKI IS 7PROCESSOR1)

AND (THE LOCATION OF ?TASK2 IS PPROCESSOR2)

AND (NOT.EQUAL !PROCESSOR1 PROCESSOR2)

AND (THE COMMUNICATION OF ?TASK1 IN 'PROCESSOR1 IS LOW)

AND (THE COMM-FREQUENCY OF ?TASK1 IN fPROCESSOR1 IS LOW)

THEN (ASSERT (THE MIGRATION-CANDIDATE IS ?TASK1 FOR COMMUNICATION)))

SELECT-MIGRATION-TASK-LOAD-BALANCING-RULE:

(IF (INITIATE-MIGRATION-WITH ?TASK-LIST)

AND (INCLUDES ?TASK IN tTASK-LIST)

AND {THE LOCATION OF ?TASK IS 'PROCESSOR)

AND (THE COMMUNICATION OF ?TASK IN 7PROCESSOR IS LOW)

AND (THE COMM-FREQUENCY OF !TASK IN fPROCESSOR IS LOW)

THEN (ASSERT (THE MIGRATION-CANDIDATE IS 'TASK FOR LOAD-BALANCING)))

When many tasks are eligible for migration, it may not be desirable or possible to migrate all of
them. Additional rules can be used to prioritize the final selection from many candidates. For
example, a task is a better choice for migration if it fulfills both the criteria of load balancing and
minimizing IPC. If no such task exists, the rules can specify that one of the criteria is preferred

over the other, or that a task be selected randomly.

SELECT-FINAL-TASK-BOTH-ENDORSEMENT-RULE:
(IF (THE MIGRATION-CANDIDATE IS ?TASK FOR TREASONI1)
AND (THE MIGRATION-CANDIDATE IS ?TASK FOR TREASON2)
AND (NOT EQUAL TREASON1 TREASON®)

THEN (ASSERT (READY-TO-MIGRATE-TASK ?TASK)))

SELECT-FINAL-TASK-PREFER-COMMUNICATION-RULE:
(IF (THE MIGRATION-CANDIDATE IS ?TASK1 FOR COMMUNICATION)
AND (THE MIGRATION-CANDIDATE IS ?TASK2 FOR LOAD-BALANCING))
THEN (ASSERT (READY-TO-MIGRATE-TASK TASK1)))

5.4. Where to Migrate

Whether the reason for migration is load balancing or the minimization of IPC, the decision
of where to migrate is determined by consulting the processor load table. This table stores the
load status of all the processors in the system as high, normal, or low based on load status

messages received from the processors. The contents of this table may not be accurate because of

Intelligent Scheduling in Distributed Computer Systems Page 16



physical and temporal limitations, We use a simple system of recency and reliability ratings to

improve the selection decision.

SELECT-MIGRATION-SENDER-INITIATED-RULE:
(IF (THE STATE OF ?PROCESSOR IS (NOT HIGH))
AND (THE RECENCY OF ?PROCESSOR IS RECENT)
AND (THE RELIABILITY OF !PROCESSOR IS RELIABLE)
AND (THE USE-ALGORITHM IS SENDER-INITIATED)
THEN (ASSERT (THE MIGRATE-TO-CANDIDATE IS ?PROCESSOR FOR SENDER-INITIATED}))

The terms "recent” and “reliable” used in the previous rules represent a qualitative
measurement of quantitative values called recency and reliability actors. The qualitative values
are translated from quantitative values that range from 0 to 10, where O means very old or very

unreliable and 10 means very recent and very reliable.

The recency factors are updated in an event-driven manner. Whenever a new load status
message is received from a particular processor, the corresponding recency factor is set to the
highest recency value (10). The recency factor for all other processors is decremented by the
recency adjustment factor for each processor. This adjustment factor can be a preset static value
or can be dynamically adjusted. This scheme eliminates the need to periodically adjust the
recency factors because only relative recency information is needed to figure out if the load
message is qualitatively recent. Note that the recency factors only give information about the
ordering of message arrivals at a given processor. Unfortunately due to the distributed nature of
this system, it is difficult to determine if a message from processor-i is actually generated before a
message from processor-j . (We are currently refining this scheme to account for message

transmission delays.)

Reliability factors are updated using information received after a task has been transfered to
the desired destination. If the migrating task is rejected by a processor even though the load
table indicated that that processor was a good candidate, the reliability factor will be
decremented according to a reliability adjustment factor similar to the recency adjustment
factors. Thus, reliability factors reflect the load stability of processors: if a processor’s load
fluctuates wildly, the load status messages will not be a reliable measurement of the actual load

status.

Intelligent Scheduling in Distributed Computer Systems Page 17



6. Conclusion

It is clear that decision making in distributed computing systems can benefit from the use of
techniques from Al to deal with uncertain and complex knowledge. The fact that there are
common concerns in the areas of distributed computing and artifical intelligence has already been
recognized through the emergence of the area called distributed artificial intelligence (DAI).
Work in DAI has been concerned primarily with higher level issues related to problem solving
involving multiple agents, such as planning, coordination, and problem representation. However,
more recently there has been some attention to the use of Al techniques for lower level decisions
involved in basic operating system functions such as scheduling. In particular, Pasquale [Pasq86]
has taken an approach very similar to ours and has looked at the use of expert systems for the

purposes of distributed system management.

There are many questions to be resolved if an expert system decision maker is to be used as
an operating system component. We are currently concentrating on the issue ol time-related
knowledge, specifically out-of-date information and history information. We feel that by
combining notions of time from distributed systems such as those proposed by Lamport {Lamp78]
and Jeflerson [Jeff8G] with representations of time from the Al community, we should be able to
increase the quality of decision-making for scheduling and other arenas of distributed systems

management.

Intelligent Scheduling in Distributed Computer Systems Page 18



[BuShgs]

[CHLESQ]
[Cohess)

[EaLZ85]

[EaLZ85]

[FaKF79)

[Fors84]
[HaWL83]

[Jefrss]
[Lamp78]

[NiXG8s)

[Pasq86)
[RaSt85]
[RaSt86]

[Smit80]

[TaRe85)

[Zade78]

Bibliography

Buchaanan, B. G., and Shortlifle, E. H., eds., Rule-Based Ezpert Systema: The MYCIN
Ezperimenta of the Stanford Heursatic Programming Project. Reading, MA: Addison-
Wesley Publishing Co., Inc., 1985.

W. W. Chu, L. J. Holloway, M. T. Lan, and Kemal Efe, “Task Allocation in Distri-
buted Data Processing,” /EEE Computer, Nov. 1980, pp. 57-69.

Cohen, P., Heurdatic Reasoning about Uncertainty: An Artificial Intelligence Approach.
Boston, MA: Pitman Publishing Inc., 1985.

Eager, D.L., Lazowska, E.D., and Zahorjan, J., “A Comparison of Receiver-Initiated
and Sender-Initiated Dynamic Load Sharing”, University of Washington Technical
Report 84-04-01, Apr. 1984.

Eager, D.L., Lazowska, E.D., and Zahorjan, J., “Dynamic Load Sharing in Homogene-
ous Distributed Systems”, University of Washington Technical Report 84-10-01, Oct.
1984,

Fagan, L. M., Kunz, J. C,, Feigenbaum, E. A., and Osborn, J. J., Representation of
dynamic clinical knowledge: Measurement interpretation in the intensive care unit. In
Proceedings of 6th International Joint Conference on Artificial Intelligence (Tokyo),
1979, pp. 260-262,

Forsyth, R., ed., Ezpert Syatems: Principles and Case Studies. New York, N.Y.: Chap-
man and Hall, 1984,

Hayes-Roth, F., Waterman, D. A., and Lenat, D. B., eds., Building Ezpert Systems.
Reading, MA: Addison-Wesley Publishing Co., Inc., 1983.

Jeflerson, D.R., “Virtual Time"”, ACM TOPLAS, Vol. 7, No. 3, July 1985, pp. 404-425.
Lamport, L., “Time, Clocks, and the Ordering of Events in a Distributed System’’,
CACM 21, July 1978, pp. 558-565.

Ni, LM., Xu, C-W, and Gendreau, T.B., “A Distributed Drafting Algorithm for Load
Balancing”, IEEE Transactions on Software Engineering, Vol. SE-11, No. 10, October
1985, pp. 1153-1161.

Pasquale, J., “Knowledge-Based Distributed Systems Management”, University of Cal-
ifornia at Berkeley EECS Technical Report No. UCB/CSD 86/295, June 1986.
Ramamritham, K. and Stankovie, J.A., “Dynamic Task Scheduling in Hard Real-Time
Distributed Systems”, JEEE Software, July 1984, pp. 65-75.

Ramamritham, K. and Stankovic, J.A., “Meta-level Control in Distributed Real-Time
Systems”, private communication, 1986.

Smith, R. G., “The Contract Net Protocol: High Level Communication and Control in
a Distributed Problem Solver”, IEEE Transactions on Computers, Vol. C-29. No. 12,
Dec. 1980, pp. 1104-1113.

Tanenbaum, Andrew and vanRenesse, R., “Distributed Operating Systems”, ACM
Computing Surveys, Vol. 17, No. 4, Dec. 1985, pp. 419-470

Zadeh, L. A. 1965. Fuzzy sets. Information and Control 8: 338-353,

. 1978. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1:

3-28.



