A Greedy Approach
to a NP-hard Problem

for Permutation Groups

Kenneth D. Blaha

CIS-TR-86-16
May 4, 1988

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

A Greedy Approach to a NP-hard
Problem for Permutation Groups

Kenneth D. Blaha*

Department of Computer and Information Science
University of Oregon

Abstract

Given generators for a permutation group G on n letters, the question has been posed as to
whether or not a natural polynomial time Greedy Algorithm could be used to find a minimum
base for G. We show that the Greedy Algorithm does not always find a2 minimum base for G.
In fact, the minimum base problem is NP-hard, and the corresponding decision problem, “does
there exist a base for G of size no more than L7, is NP-complete.

Let G be a permutation group of degree n, and let M(G) denote the size of a minimum base
for G. Then the Greedy Algorithm produces a base of size O(M(G)loglog n), and this bound is
sharp with respect to worst case performance. 'The maximum size of a nonredundant base for G
is bounded above by O(AM(G)log n). This, too, is optimal in the sense that there exist an infinite
number of permutation groups that realize this upper bound.

1 Introduction

The concepts of a base and strong generating set were introduced by Sims in 1970 and used as an
efficient method to store and analyze large permutation groups [?], [?]. Since then bases and strong
generating sets have played a key role in the development of numerous group theoretic algorithms.
Furst, Hopcroft, and Luks showed that Sims’ algorithm for computing a base and strong generating
set runs in time O(n®) [?]. In 1982 Jerrum described an algorithm for computing a base and strong
generating set with running time O(«®) [?). Later we shall point out how a reduction in the size of
the base can result in a reduction in both the time and space complexity of any algorithm that uses
a base and strong generating set.

With this savings in mind a polynomial time Greedy Algorithm (described later) was suggested
in [?, pages 10, 15] for constructing a small base for a permutation group G, specified by generators.
The question then arose as to whether or not this Greedy Algorithm would always find a2 minimum
base for G [?]. We show that this is not the case, and that the problem of finding a minimum base
for G is, in fact, NP-hard. The corresponding decision problem of determining whether there exists
a base of size less than or equal to L (a positive integer) is NP-complete. Moreover, both problems
remain NP-hard even if we restrict G to be a cyclic group or an elementary abelian p-group.

*Research supported by ONR Grant N00D14-86-0419.

Under the assumption that P # NP, we may assume that there does not exist a polynomial
time algorithm that computes minimum bases for permutation groups. Thus, the most that one can
hope to do efficiently is find minimum bases for special classes of groups, or find algorithms that
will compute “small” bases (i.c., approximation algorithms). To determine if a base is small we shall
compare its size to the size of a largest (nonredundant) base, and the size of a minimum base. The
following results indicate that the Greedy Algorithm is a reasonable approximation algorithm.

Let G be a finite permutation group of degree n, then O(M(G)logn) is an upper bound for the
size of a nonredundant base for G. Moreover, for any k£ > 1 and for any = sufficiently large, there
exists a permutation group G of degree n such that, M(G) =k, and G has a nonredundant base of
size at least ¢(klogn). Here, ¢ is a constant that does not depend on k or n. Thus, we may conclude
that the upper bound O(M(G)logn) is “sharp”.

In comparison the size of a base produced by the Greedy Algorithm is bounded above by
O(M(G)loglogn). This bound is also “sharp”, since for any & > 2 and for any n sufficiently
large, there exists a permutation group G of degree n with, & = M (G), and a base produced by
the Greedy Algorithm of size at least ¢/(M(G)loglogn). Once again ¢ is a constant that does not
depend on % or =n.

This paper is organized as follows, Definitions, basic mathematical tools, and a description of
the Greedy Algorithm are found in section 2. In this section we also provide an example to show
how the Greedy Algorithm fails to find a minimum base. Section 3 contains applications for a base
and the motivation for finding a small base. In section 4 we prove that the minimum base problem
is NP-hard. In section 5 we analyze the performance of the Greedy Algorithm. In the last section
we summerize our results and describe several problems.

2 Preliminaries

2.1 Definitions

Let 2 = {1,2,...,n} and let G be a subgroup of Sym(f) (G <Sym(Q)). We define the product of
two permutations g,%¢G on wefl by the formula w9 = (w9)k. By the degree of G # {1} we mean
the number of points moved by G.

Let we, then we call {w9)geG} the G-orbit of w. For A C 2, we define the set G4 =
{9eG|V aeA, a? = a}, called the poini-wise set stabilizer of A. If A consists of a single point, a,
then we write G4 = G,. If Il € G, then we define an equivalence relation on G in which two ele-
ments ¢, heG are equivalent & gh~lefl. The equivalence classes of G under this relation are called
the right cosets (Hg) of H in G, and we let G : H denote the set of equivalence classes. By |G| we
denote the order of G and by |G : 7| the index |G|/|H| of Il in G.

For any abstract group G, we define G* < Sym(G), called the right regular representation of G.
The elements of G* are constructed as follows. For ecach g in G we define the permutation ¢*eG*
which acts on G via right multiplication. ‘That is, for each “point” x in G, 29" = zg.

The above definitions and notation are taken from [13]. The following definitions are due to Sims
and may be found in [11].

A lbase for G is a sequence of points B = by,bq,...,b;, b;eQ, such that the only element in G
fixing all of the ¥; is the identity. We say that base B has size k, and we denote the size of a smallest
base for G by M(G). The tower of subgroups G = G® > G! > ... > G*¥ = {1} where G' is the

subgroup of G that fixes by,...,b;, 1 < i< kis the_ chain of stabilizers of G' relative to B. We shall
call a base nonredundant if each of the inclusions G*=1 > G¥ is proper. A strong generating set for G
relative to B is a subset Z of G such that G* is generated by ZNG, 0<i<k—1.

2.2 Problems, Running time, and Poly-time Reductions

The following is the list of problems that we are interested in.

X3C Input: A finite set ¥ with [¥| = 3¢ and a collection Af of 3-clement subsets of Y.
Question: Does A contain a subcollection M’ such that every element of Y is contained in
exactly one member of A{'?

SB Input: G < Sym(Q) given by generators and a positive integer L < |92].
Question: Does there exist a base for G of size no more than L?

MEM Input: G < Sym(Q) given by generators, and ge Sym(Q).
Question: Is geG?

MB Input: G < Sym(§2) given by generators.
Output: A minimum base B = by, ba,...,b; for G.

ORD Input: G £ Sym(§) given by generators.
Output: |G|.

The problem size of MB, SB, MEM, and ORD is a function of the degree of the group and
the number of generators used to specify the group. The problem size of X3C is 3¢+ |M]|. We say
that there is a polynomial time reduction from one problem to another if there is a polynomial time
algorithm that transforms any instance of the first problem into an instance of the second problem,
and there exist a solution to the first problem instance if and only if there exist a solution to the
second. Thus, if we have a polynomial time algorithm for the second problem we can convert this to
a polynomial time algorithm to the first.

In [7] it is shown that X3C is NP-complete. A discussion of the implications of this statement
can be found in the first two chapters of [7]. In short, if we assume that P # NP (a statement that
many believe to be true), then there does not exist a polynomial time solution to X3C. In section 4
we reduce X3C to SB, whicl in turn suggests that there doos not exist a polynomial time solution
to SB or MB.

When discussing the running time and space complexity of algebraic algorithms we shall follow
convention and assume the size of the input js linear in the degree of the group.

2.3 Mathematical Tools

The following facts shall be used throughout the paper and proofs of these statements may be found
in either [13], or [10].

fact 1 Let G < Sym(9) and wefl. If r is the size of the G-orbit of w, then |G : G| =r.

fact 2 Let G be a finite group and geG. Then G* = G (G* isomorphic to G) and
(G™)g = {1}.

fact 3 Let G < Sym(Q), and let A = ay,az,...,0; beabasefor G. If r; = |G—? Gi| forl1<i<k,
then (by Lagrange's theorem) |G| = ryrg---ry.

Remark 2.1 Given G = (0) < Sym(Q) and base B = by, by,...,b define r; to be the size of the
G-orbit (cycle of o) containing b;. Then G™ = (¢”) where r = lem{r1,72,...,tm}, 1 <m < k.

Proof: G™ = {07}, & j is the smallest positive integer such that o7 fixes bi,...,bm. But o7 fixes b;
& r; divides j. O

The following notation will be used in section 4 and in section 5. Let X be any finite set and
X1,X2,...,X, be subsets of X such that their union is all of X. Let K = (3,,)"‘I (p any fixed
prime), and K = (0|zeX). For each X; define H; < K by H; = (o;|zeX;) (H; = (2,)%1).

Let 2 be the disjoint union of the II;, and let # = H{ x Hy X ... x H}. Now each element of H
is an r-tuple (hy,...,h.), and we may view JI as a subgroup of Sym(Q) as follows: if weQ, say weH;,
then w®trhr) = Hh;,

Define a homomorphism Il : k' — H via I{oz) = (h1,...,h,) where k; = a2 if zeX; and h; = 1
otherwise. Note that ker(Il)= { 1 }, since every clement zeX is in some X;. Thus, K = II(K), and
we may view II(K') as a permutation group on Q.

The reader may find it helpful to look at the example given at the end of this section, where the
groups K,II(K), and [T are constructed from sets X = {a,b,¢,d e, f}, X1 = {a,b}, Xz = {c, d},
X3 = {e, f}, and X, = {a,c,e}.

Remark 2.2 Let X' C X, and K' < K defined by K' = (oy|zeX’). If weH;, then (K", =
I{{oz|ze(X’\ X3))).

Proof: II(K')y = {(h1,..., k.)ell(K')| R = 1} = O({oz|ze(X'\ X;)))
The first equality follows from fact 2 and the second follows from the definition of I1. O

Remark 2.3 Let G be any finite group and H < G. Then there ezisis H' < G*, with H' = H, and
H' partitions the set G inlo |G : I | II'-orbits of size |H]|.

Proof: Let ® : G — G* denote the isomorphism between G and G* given by &(g) = ¢°. Then
®(H) = H' and the left cosets (gH) of 1 in G are the H'-orbits. D

2.4 The Greedy Algorithm

In this section we outline Jerrum’s algorithm (8] for computing a base, and strong generating set.
We then explain how the algorithm can be modified to include the Greedy heuristic. The input to
Jerrum’s algorithm is a group G < Sym({1,2,...,n}) specified by generators. The output of the

algorithm is the base B = 1,2,...,n and a data structure that contains a strong generating set for
G.

[Jerrum’s Algorithm]
for i = 1 to n do begin

(1) Using generators for G'~! compute a set of coset representatives for G* in Gi-1.
(2) Update the data structure. _
(3) Compute a set of O(n?) Schreier generators for G*.

(4) Reduce the Schreier generators to a set of O(n) generators for G*.
end

In [1, pages 10, 15], it was observed that there was no need to specify the base in advance; point
b; can be chosen after a set of generators for G*~? is known. The Greedy heuristic is to pick a point
b; that will force |G'| to be as small as possible. Since |G| = @, where r is the order of the
G'~1.orbit of b;, this suggests that we choose b; from a largest Gi-1.orbit.
[Jerrum’s Algorithm with Greedy heuristic]
i=1.
while G~! # 1 do begin

(0) Pick a point b; from a largest G~ 1.orbit.

(1) Using generators for G*~! compute a set of coset representatives for G* in G¥~1.

(2) Update the data structure.

(3) Compute a set of O(n?) Schreier generators for G'.

(4) Reduce the Schreier generators to a set of O(n) generators for G%.

(3)i=1i-+1.
end while
end

The running time of this algorithm is dominated by step (4). Thus, Jerrum’s algorithm may
be modified to include the Greedy lheuristic without increasing the asymptotic running time of the
algorithm.

We conclude this section with an example that serves two functions. First, it gives the reader a
concrete example of how sets X and X; are used to build groups K, II(X), and H described above.

Second, it shows that the Greedy Algorithm fails to find a minimum base for the specific II(X)
constructed.

example # 2: Let X = {a,b,c,d,e, f}, X1 = {a,b}, Xa = {¢,d}, X5 = {e, f}, and X4 = {a,c, e)}.

Following the construction outlined above (with p = 2) we define the following 5 abstract groups:

g = (c;,,lzeX) (K = (29)8), Hi = {0a,00), Hz = {0y04), Ha = (0e,04), Hy = {04,0.,0.), and each
i< K.

Then @ is the disjoint union of the H;, and H = Hy x Hy x 3 x H;. We write each element
of H is a 4-tuple (hy,...,hy), and view I as a subgroup of Sym(£) via we, then w(hhs) = wp;
if weH;. The monomorphism Il : K — J/ maps the generators of K to the following elements
in H: N(as) = (03,1,1,03), I(ay) = (03,1,1,1), N(oc) = (1,07,1,07) H(oy) = (1,0},1,1),
I{e.) = (1,1,0;,0:), (o) = (1,1,0},1).

Let G = II(K), then G is a permutation group of degree 20, and |G| = 64. Let B = by, b, b3, by
be a sequence of points from §, and G = G° > G! > G? > G® > G be the chain of stabilizers of G
relative to B. Then using remark 2.2 we compute generators for each group in the chain.

none G = ({oa,08,0c,04,0¢,07))
biell, G!' = H((“’n“&“!))
boeH, G? = H((ad,af))
byeH, G® = II({oy))

byeH, Gt= {1}

Since G* = {1} we know that B is a base for G. Furthermore, since we know the generators for each
group in the chain we can use remark 2.3 to find the orbit structure of each group in the chain.

Group Orbit Structure
G° m H; s Hy
G! {1,0,}{os,0.0} {1,04}{0c,0.04)} {1,04}{0e,0.04} trivial
G? trivial {1,0a}{oc,0:04} {1,0i}H{oe,0.04} trivial
G? trivial trivial {1,604 }{oe 004} trivial
Gt trivial trivial trivial trivial

Any base for G produced by the Greedy Algorithm must begin with a point byeH,, since H, is
the largest G-orbit. The reader may verify that the base B is one that the Greedy Algorithm could
produce. From the orbit structure of G! it is clear that the Greedy Algorithm will always produce
a base for G of size 4. A minimum base for G has size 3 and consist of one point from each of the 3
sets Hy, H3, and Ha.

3 Applications and Motivation

We mentioned in the introduction that the size of the base affects the space and time complexity
of algebraic algorithms that use a base and strong generating set. In particular, it was shown in [2]
that the running time of Jerrum’s algorithm is O(k2n®), where k is the size of the base produced by
Jerrum’s algorithm and = is the degree of the group. Once one has a base and strong generating set
it is quite easy to solve both MEM and ORD. In fact, MEM can be solved in O(nk) time and
ORD is the product of & integers [6)].

A small base can also lead to a reduction in the space required to store elements from the group,
since every element in the group is completely determined by its action on the base. Very small bases
are also critical for CAYLEY [d], and for various computer constructions of simple groups.

Given generators for a group G <Sym(Q) one is often interested in finding subgroups of G that
have a particular properties (e.g., finding the center of G). One technique used to compute such
groups is backtrack search (3]. A small base can be used to improve the time complexity of backtrack
search algorithms, since the size of the base limits the depth of the backtrack search tree [9].

There is one final motivation for finding 2 small base that we should mention. In {1] the Greedy

Algorithm was used along with other leuristics to speed up the overall running time of their back-
tracking algorithm with symmetry.

4 Reductions

We shall show that even when the group G is restricted to cyclic groups or elementary abelian p-
groups, the small base (SB) problem is NP-complete, which implies that minimum base (MB) is
NP-hard.

It is not difficult to show that the SB problem is in NP. We guess a base for G, B = by,b,..., bz,
and check that £ < L. Then use Jerrum’s algorithm to verify that B is a base for G.

Theorem 4.1 SB is NP-complete even if G is constrained o be a cyclic group.

Proof: We have already shown that SB is in NP. Thus, it will suffice to show that X3C reduces to
SB, where the group constructed for the SB problem is a cyclic group.

Let (Y, M) be an instance of X3C with |Y| = 3¢ and M = r. We may assume, without loss of
generality, that each y in Y is contained in at least one meM. Let P = {p;,ps,...,p3,} be the set
of the first 3¢ primes. Define f : ¥ — P such that f is injective. For each 3-set m; = {z,y,2z} in M
let s; = f(z)f(y)f(z),i=1,...,r.

Let n = X7_,s;, and let Q@ = {1,2,...,n}. Construct ge Sym(Q) with cycle decomposition
consisting of r disjoint si-cycles Cj, 1 £ ¢ < r. From this we construct an instance of SB, where
G = (o) and L = ¢. This is a polynomial time reduction since n is O(g*(log g)*r), which is polynomial
in 3¢ 4+ r. To finish the proof we need only show that our instance of X3C has a solution iff the
instance of SB has a solution.

Let B = by,bs,...,b; be a sequence of points from Q, where J; is a point in cycle Cy, and k < q.
Let s = lem{sys, 8y1,...,81}, then by remark 2.1 we have

B is a base for G 4 s = p1pz -+ pag = |G}
& k = q and the s; are all relatively prime
< the sets mys, Mg, ..., my are disjoint
4 the q 3-sets my,my,...,my in M cover Y. O

Corollary 4.2 Finding a minimum base for a cyclic group is NP-hard.

Proof: This follows immediately from theorem 4.1. G

Thus, the MB problem appears intractable even for cyclic groups. In the above reduction of X3C
to SB the order of the orbits of the cyclic group increased, as the problem size of X3C increased.
One might wonder if it is possible to solve the SB problem efficiently for groups that are restricted
to have “small” orbits. The following theorem proves that the SB problem remains difficult even if
we restrict the group to have orbits of order no more than 8.

Theorem 4.3 SB is NP-complete even if we restrict G to be an elementary abelian p-group, with
orbils of size no more than p® (p a prime).

Proof: It will suffice to show that X3C reduces to SB where the group constructed for the SB
problem is a elementary abelian p-group.

Let (Y, M) be an instance of X3C where |Y| = 3¢, M = {m1,m,,...,m,}. We shall assume,
without loss of generality, that each y in Y is contained in at least one m;.

Now we shall use the construction outlined in section 2.3 to define groups K, II(K), and H. Let
X =Y,and X; =my, 1 <i<r. This gives us a group K = (£,)™, a group H <Sym(2), and a
monomorphism II : K — H.

Let G = II(K) = {Il(0,)|zeX), and L = q be our instance of SB . This is a polynomial time
reduction, since || = rp® and there are only 3¢ generators. Hence, to finish the proof we need only
show that our instance of SB has a solution iff the instance of X3C has a solution.

Let B = by,by,...,bx (£ < q) be a sequence of points with b; in G-orbit Hy. Let Y5 = Y, and let
Y; =Yy \ my for 1 < i < k. Then by remark 2.2 we have G = II({o, |yeY:)), for 1 < i < k.

B is a base for G & G* = II({0, |ye¥s)) = 1
&Y. =0
¢ k= ¢, and all the my are disjoint
< my,Mar,...,My cover X. O

Corollary 4.4 MB is NP-hard even if G is restricted to be an elementary abelian p-group.

Proof: This follows immediately from theorem 4.3. O

5 The Greedy Algorithm and Bounds for the Size of a Base

We know that the Greedy Algorithm cannot be used to solve MB. One might now ask whether
the Greedy Algorithm is a good approximation heuristic for computing a small base. To answer
this question we need to know (1) how big can a nonredundant base be, and (2) how big can a
base produced by the Greedy Algorithm be? In this section we shall answer these two questions by
comparing the sizes of these bases with size of a minimum base.

5.1 Bounds for the Size of a Nonredundant Base

Remark 5.1 Let G be a permutation group of degree n, and suppose that all the orbits of G have
order no more than c. Let v le the size of any nonredundant base for G, then r < M(G)loge L.

Proof: Fact 1 and fact 3 imply that 2" < |G| < MG O

Lemma 5.2 Let G < Sym({1,2,...,n}), and let r be the size of a nonredundant base for G. Then
r is O(M(G)logn) and this bound is sharp.

Proof: By remark 5.1 we have r < M(G)logn. To prove that the bound is sharp it will suffice to

show that for any & > 1 and for any n sufficiently large, there exists a permutation group G on n
points such that,

'throughout this paper log = log;

1. M(G) =k.
2. G has a nonredundant base of size Q(klogn).

Once again we shall use notation from section 2.3. Let X = {1,2,...,rk}, where r > 1 4 logk.
Let X; = {r(i—1)+1,...,ir}, 1 i< k,and Xj4p = {§}, 1 £ j < rk. Let G =TI(K) = (Z,)*. If
we let p = 2, then G £ Sym(Q) and || = k2" + 2rk = n.

Since a largest G-orbit has size 2" and |G| = 2" it follows from facts 1 and 3 that a minimum
base for G must have size at least k. Let A = ay,43,...a; where a;eH;, then by remark 2.2 it follows
that A is a minimum base for G.

Now we shall show that the group G has a nonredundant base of size at least Jklogn. Let
B = by,by,...,brx where bjelly;, and let G = G® > G! > ++- > G™* be the chain of stabilizers of G
relative to B. Remark 2.2 implies that |G’] = 2", and it follows that B is a nonredundant base
for G, and the size of B is rk > %klog n. Given & we have shown that for every integer r > 1+ logk
there exists a permutation group of degree n = k2" + 2rk satisfying properties 1 and 2. The fact that
k2" < n < k2741 is enough to insure that the theorem holds for all values of n sufficiently large. O

5.2 Bounds for the Greedy Algorithm

Let G be a permutation group on n points and let B = b,bdg,...,bn be a base produced by the
Greedy Algorithm. We shall show that m is bounded above by O(M(G)loglogn). This upper bound
is “sharp™ with respect to worst case performance.

Remark 5.3 If G be a permutation group of degree n, and B = by, b;,...,b; is a base for G, then
there exists a G-orbit of order |G|.

Proof: Follows from fact 1 and fact 3. O

Lemma 5.4 Let G < Sym({1,2,...,n}) and B = by, ba,...,byn a base for G produced by the Greedy
Algorithm, then m is bounded above by O(M(G)(loglog |G| — log M(G)) + M(G)).

Proof: Let G = G® > G! > -.- > G™ = {1} be the chain of stabilizers of G relative to B. First we
prove by induction that,

]Gi| < |G|((M(G)—1)/M(G))i,0 <i<m. (1)
The statement holds trivially when ¢ = 0. Assuming the statement is true for ¢, we shall show
that it is true for i + 1. Since M(G*) < M(G) it follows from remark 5.3 that G* must have an

orbit of order at least |G| ™S, Since bi41 was chosen via the Greedy Algorithm we know that
|G' : G*+?| is the order of a largest G*-orbit. Thus |G* : G™+1| > |GI[YM(G), and this implies that
|GiH1] < |GFIME@-DIM(G) < |G|(IMIG)-1)/M(@)™*?

i = [2M(G)(loglog |G] - log M(G))] = |G| < 2M(€), 2

This statement is proved by the following implications:
i = [2M(G)(loglog |G| ~ log M(G))]

i > 2M(G)(loglog |G| — log M(G))
. log M{G)—=loglog |7

= log ((M(G)-1)/M(G))
ilog (M(G) — 1)/ M(G)) + loglog |G| £ log M(G)
((M(G) = 1)/ M(G)) log |G| < M(G)
G|(M@-1)/ME) ¢ oM(G)

|G|} < 2M(G) by 1.
To finish the proof of the lemma first observe that if a group has order less than or equal to 2M(G)

then any nonredundant base for that group has size less than or equal to M(G). Now, combining 2
with the fact that the Greedy Algorithm produces a nonredundant base, we are done. O

L R

Theorem 5.5 Let G be a permulation group of degree n and let B = by, by, ... by be a base for G
produced by the Greedy Algorithm. Then m is bounded above by O(M(G)loglogn).

Proof: By remark 5.3 it follows that » > |G|*(). But this implies that M(G)logn > log|G|. From
lemma 5.4 we know that there exists a constant c such that,

m < e(M(G)(loglog |G| — log M(G)) + M(G))
< e(M(G)log (M(G)log n) — log M(G)) + M(G))
< e(M(G)loglog n + M(G)).

Therefore, for n > 4 there exists constant ¢’ such that, m < M (G)loglogn O.

We shall conclude this section with a theorem that proves that the bound given in theorem 5.5
is “sharp”. The following technical lemma will be needed.

Lemma 5.8 Let r, k be to posilive integers such that r > k* > 4. Definerg =r and r; = r;{_q -
[rica /K] for i > 1. If v = |(k/2)(og(r + k) —log (k + 1))], then r, > 1.

Proof: Define so = r and 5; = s5;-; — %=L —1for i > 1. By a straightforward inductive argument,
we have s; < r; Vi. Let a = (1 — 1/k), then s; = a'sg — %’;’: Thus

$i21 @ alsg— 1= >
& al(so+ k)2 hk+1
< tlog a + log(so + &) > log (k + 1)

. . log(r+k)=log (k+1)
1S e D

Theorem 5.7 For any integer k > 2, and n sufficiently large there exists a permulation group G of
degree n such that,

1. M(G)=k.
2. G has a base produced by the Greedy Algorithm of size Q(M(G)log log n).

10

Proof: Let Y be a set of order 7k (r > k%). The set is then partitioned into k sets of order r,
A1,0,A20,-..,Aro. We now recursively define sets A;j for 1 < i < k,and 1 < j < 7 (7 definded

later) as follows: A;; is a subset of A; ;-1 created by removing [L’-‘b;:;‘-l] elements from A;;_;.
The elements removed from the k sets Ay j-1,A2;-1,..., Ak j-1 are placed in a set Y;. Note that
|Y;] = |Aij-1]. Let v = [(k/2)(log(r + 1) —logk + 1)]. The value of v was computed in lemma 5.6
to insure that |[A4; ;] > 1 for all values of 7 and j.

We shall use the sets defined above to construct elementary abelian 2-groups, K, II(X), and H,
exactly as outlined in section 2 of this paper. Let X =Y, X; = Ajpfor 1 £ ¢ < k,and Xy = Y;
forl1<j<n.

Let G = II(K), then G is a permutation group of degree n = k27 + 2lVil g a2l 4 4 9%l and
G = (2Z,)™. To finish the proof we need to show that G satisfies the properties 1 and 2 stated above.

Consider the sequence of points A = a;,4dz,...,a; where a;eH;. Since X =Uf=1 A;p, it follows
from remark 2.2 that A is a base for G. Moreover, since the largest G-orbit has size 27, facts 1 and
3 imply that A must be a minimum base for G.

Next we show that the Greedy Algorithm could select B = by,bs,...,b, as a partial base for G,
where bjeH ;44 It will suffice to show that b; is in a Gi=-orbit of maximal size. By remark 2.2 we

have Gi= = Tl({o|ae(X\ Ulny Xits)) = ({osloe Uiy Aio1)))

Now using remark 2.3 we see that the points in H; are partitioned into G?~!-orbits of size 2l4ij-1
for 1 < i < k. The action of G'~! on points iy is trivial if 1 €7 < j—1 and transitive if j <1 < .
Thus b; is in a G7~ -orbit of size 2*7, and this is 2 maximal G~-orbit.

So far we have shown that G has a minimum base of size &, and that the Greedy Algorithm can
produce a base of size at least 4. Since r > k? there exists a constant ¢’ such that v > ¢'klogr =
¢! M(G)logr. To show that the (partial) base B has size (M (G)loglogn) it will suffice to show
that for some constant ¢”, r > ¢ log n, where n is the degree of G.

n = k2r + 2"l 4 ol2l 4 | 4 2P
< kor 4 ortk pol¥al o 4 olVAl
S kor +21‘+k+1.

Given k we have shown that for every integer r > %? there exists a permutation group of degree
n = k2r 4 2Ml 4 2020 4 || 4 2l satisfying properties (1) and (2). The fact that (k4 1)2" < n <
{k +1)27+! is enough to insure that the theorem holds for all values of n sufficiently large.0

6 Comments and Problems

In section 4 we showed that the MB problem was NP-liard. Under the assumption that P # NP
this implies that there does not exist a polynomial time algorithm for computing a minimum bases
of permutation groups specified by generators. There are two common approaches to working on
problems that are NP-hard. First, one can try to determine instances of the problem that are in P
and then develop efficient algorithms for solving those problems. Theorems 4.1 and 4.3 suggest that
the quite strong restrictions may be needed.

The second approach is to settle for approximations to the optimal solution. In section 5 it was
shown that the Greedy Algorithm is a reasonable approximation algorithm. We close the paper with
two problems.

11

Problem 1 Find a polynomial time algorithm that will solve MB for some restricted class of groups.

Problem 2 Find a polynomial time algorithm that computes smaller bases (worst case performance)
than the Greedy Algorithm.

Acknowledgements

I would like to thank William Kantor for his helpful suggestions, and Eugene Luks for his ideas,
interest and encouragement.

References

[1] Brown, C., Finkelstein, L., Purdom, P. Symmetry and Searching, pre-print.

(2] Brown, C., Finkelstein, L., Purdom, P. Efficient Implementation of Jerrum’s Algorithm for
Permutation Groups, pre-print.

[3] Butler G. Fundamental Algorithms for Permulation Groups, Notes from lecture course on Sym-
bolic and Algebraic Computation, 1984, 5/1-5/28.

[4] Cannon, J. Computational Toolkit For Finite Permutation Groups, Proc. of Rutgers Group
Theory, 1983-1984, eds. M. Aschbacher et al., Cambridge Univ. Press, 1984.

(5] Finkelstein, L. Personal correspondence to E.M. Luks.

[6] Furst, M., Hopcroft, J. and Luks, E.M. Polynomial-time algorithms for permutation groups,
Proc. 21st IEEE FOCS, 1980, 36-41.

[7] Garey, M., and Johnson, D. Computers and Intractability: A guide to the theory of NP-
completeness, Freeman, San Francisco, 1979.

(8] Jerrum, M.R. A Compact Representation for Permutation Group, Proc. 23rd IEEE FOCS, 1982,
126-133.

[9] Leon, J. Computing Automorphism Groups of Combinatorial Objects, Computational Group
Theory, ed. M. Atkinson, Academic Press, 1984, 321-336.

[10] Rotman, J. The Theory of Groups, Second Edition, Allyn and Bacon, 1979.

[11] Sims, C.C. Determining the Conjugacy Classes of ¢ Permutation Group, Computers in Algebra

and Number Theory, eds. G. Birkhoff and M. Hall, Jr., SIAM-AMS Proc., Vol. 4, Amer. Math.
Soc., 1970, 191-195.

[12] Sims, C.C. Computational methods in the study of permutation groups, Computational Problems
in Abstract Algebra, ed. J. Leech, Pergamon Press, 1970, 169-183.

[13) Wielandt, H. Finite Permutation Groups, Academic Press. New York-London, 1964,

12

