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Abstract

The Warren Abstract Machine is the state of the art in implemen-
tation technology for Prolog. Its success is based on an instruction
set that supports unification, clause selection, and the management
of variable binding environments. Prolog is a sequential programming
language, and many of the operations of the WAM rely on the standard,
depth-first execution order of Prolog programs. This paper introduces
OM, a virtual processor for parallel logic programs. The processor is
being designed so that a collection of OM processors will be suitable for
a large scale, non-shared memory multiprocessor. Some of the features
of the WAM, such as instructions for unification, are present in OM,
but other aspects, such as control instructions and the management
of binding environments, have been redesigned to support programs of
an abstract paralle] execution model.
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OM: A Virtual Processor
for Parallel Logic Programs

1 Introduction

The idea of a virtual machine is an accepted and useful technique for imple-
menting programming languages. There are many benefits, including porta-
bility to different host machines, ease of implementation, and flexibility for
experimenting with different implementation techniques. Virtual machines
have been designed for a number of languages, from the S-machines of the
Burroughs B1700, to the Pascal P-machine, to virtual machines for more
modern languages such as Smalltalk, Scheme, and Prolog. Another advan-
tage, one that is especially true for languages such as Prolog that require
complex interpreters, is that compilation to a virtual instruction set enables
a much faster execution. A compiler can perform at compile time many of
the operations that would be executed at runtime. The Warren Abstract
Machine, or WAM, is an elegant design that enables compile-time opti-
mizations of control decisions and memory allocation, leading to significant
speed-up in the execution of Prolog programs [19].

Research in parallel execution of logic programming languages is now
entering an interesting new phase, with many research groups studying im-
plementation techniques. There are a number of competing abstract models
for parallel execution of logic: committed choice AND-parallel models, such
as Parlog [4], GHC [18], and Concurrent Prolog [17]; pure OR-parallel mod-
els [3]; and hybrid models that support both AND and OR parallelism, such
as the AND/OR Process Model [7,5]. For each of these models, there are
active research projects studying implementation techniques, and in most
cases the work is centered on defining a virtual machine for programs of the
abstract model.

This paper introduces a virtual processor architecture for programs of
the AND/OR Process Model. The Opal Machine, or OM, is a virtual pro-
cessor based on the implementation techniques used in Opal, a source-level
interpreter for the AND/OR Process Model [12]. OM is a single processor,
designed to work either by itself or in conjunction with other OM processors
in a multiprocessor system. The OM incorporates aspects of the WAM that
are not specific to sequential Prolog programs, along with new instructions
that support variable bindings and control operations in a parallel system.

This paper is organized as follows. A high-level overview of logic pro-



gramming and the support provided by a WAM style machine will be pre-
sented in Section 2. In Section 3 the AND/OR Process Model is briefly
described, and the requirements for runtime support are contrasted with
the sequential Prolog machine. Some problems that arise when standard
Prolog binding environments are adapted for parallel systems, and the so-
lution used in Opal, are outlined in Section 4. OM itself and an example
program are described in the final sections.

2 Machine Support for Logic Programs

The basic operation in a logic programming system is a logical inference.
Typically, the inference step is based on resolution, an inference rule that
has as an integral part a pattern matching operation known as unifica-
tion [10,14]. Procedures of a logic program consist of a set of clauses. In
programming language terms, each inference is a procedure call, where in
order to invoke a procedure the call must match the pattern of the definition
of the procedure. A call is sometimes called a goal, and executing the pro-
cedure is a means of solving the goal. What makes unification so powerful is
the notion of variables in the patterns. The pattern matching operation is
allowed to substitute a value for a variable, effectively binding the variable,
in order to make the pattern match succeed. A key part of any implemen-
tation of a logic programming system is the technique for managing these
variable bindings, since every inference requires access to bindings made in
previous steps, and possibly creates new variables and bindings.

Another important aspect of implementing a logic programming system
is the method for handling nondeterministic goals. In general, there may be
more than one way to solve a goal, with a different solution corresponding
to each different clause with a head that matches the goal. Systems that
support nondeterminism, such as Prolog and Opal, must remember choice
points when necessary, so that if the sequence of logical inferences along
a chosen path lead to failure, an alternative can be tried. In Prolog, the
alternatives are investigated sequentially; in an OR-parallel system, they
are tried in parallel.

Figure 1 shows a simple set of clauses, an example goal, and the binding
environments created in a typical Prolog system as the goal is solved. Space
for variables is allocated from a stack, much the same as local variables
of procedures are allocated in block structured languages. When a clause
is selected as a potential match for a goal, the system allocates a binding



When a clause is called, a binding environment for the variables of the clause
is pushed on the stack (which grows down the page). Environments are not
popped until the clause fails. The symbol @X means the slot is bound to a
pointer to slot X, meaning the two variables are to be considered the same
variable. The first snapshot, on the left, shows the stack just after the call
to 8(D) and before u(B) is attempted. At t2, u(B) has failed and q(A) failed
on retry, and r(C) is about to be called; note X is an unbound variable again.
The right stack is the final stack, after the goal succeeds.

t L tz: ts : Goal: «— p(X).
X|5 X X|s p(d) «— g(A) A u(B).
p(C) « r(C).
q(D) « s(D).
Alox) cox] cC|eox r(E) « t(E).
B s(b).
E |@X t{6).
D |OX

Not shown are the two other stacks that give this binding representation
technique its name, the “three-stack” model. A trail stack is used to hold
backtracking information (this is where the system found the information to
reset X to unbound at tz), and a heap is used to store instances of complex
structures.

Figure 1: Environment Stack for Sequential Prolog

environment, containing room for each variable of the clause, and unification
binds the slots of the environment as necessary to complete the match. In
general, slots from the environment of the call can be modified, as well as
slots from the environment of the called procedure. If a unification fails, the
system backs up to the last choice point, popping any stack frames created
since the choice point.

The figure shows the system at three different points in the computation.
In the first snap shot, the goal for p is being solved by the first clause for p,
which has lead to a call to q, and from q to 8. This example illustrates an
interesting feature of logic programming. When two unbound variables are
unified, the system does not assign either one a value, as such, but represents



the fact that the two variables have been “unified together.,” Operationally,
this means a binding for one variable automatically becomes a binding for
the other variable. This is implemented by binding one variable to a pointer
to the other. In the figure, we see that A was unified with X, and then
when D was unified with A it also became synonymous with X. The call to
8 unifies D with the constant 6, so the slot for X is bound to 5, binding all
three variables simultaneously.

The second snap shot, at time tz, shows the environments after the
system failed to solve u in the first clause for p (when s was successfully
solved, it meant q was solved, but the solution of p depends on both q and
u), and has backed up and started to use the second clause for p. The third
snap shot shows the final state, after the system has succeeded.

The WAM supports this style of computation in three different ways.
First, and perhaps most important, there are instructions that perform the
individual binding and accessing steps of unification. A Prolog compiler can
do the top level decisions of unification at compile time, and generate special
instructions to “finish the job” at runtime. The time savings come from
the fact that the binding and accessing instructions are tailored specifically
to each clause; there is little overhead in testing general cases. Second,
the instructions are defined to work with respect to the style of binding
environment illustrated in Figure 1. Addressing modes, dereferencing of
pointers, and other concepts are defined with respect to the “three stack”
model of binding environments. Third, control decisions are optimized. The
first step in finding a clause to match with a goal is implemented by making
a call to the address that stores the first clause with a head that can possibly
match; in an interpreted system this requires a search or possibly a hash
table operation. Control in nondeterministic programs is enhanced, as well,
by having instructions that build choice points on the stack, such that if
and when a unification fails, the system can quickly find the beginning of
the next alternative in the sequence of logical inferences.

3 The AND/OR Process Model

The overall view of the execution of a Prolog program is of a sequential,
depth-first search of a tree of derived goals. There are many ways to apeed
up the execution through parallel operations. The AND/OR Process Model
provides an abstract framework for exploiting many of these sources of par-
allelism.



In the AND/OR Process Model, logic programs are interpreted by a set
of independent, asynchronous objects that communicate via messages [7,5].
The status of an object is represented by internal state variables that are
updated only when the object receives a message from another object. State
transitions are atomic operations. When implemented at the level of OM
instructions, a state transition will be carried out as an uninterrupted se-
quence of virtual instructions.

The two types of objects in the AND/OR Process Model are known
as AND processes and OR processes. A process is created with an initial
state that represents a portion of a logic program that needs to be solved.
In general, a process creates other processes to solve subgoals, assemble
results from the subgoals, and pass the results back to ita parent. A process
terminates after it has generated all possible solutions to its goal. An AND
process is created to solve a conjunction of goals, such as the user’s initial
goal staternent. An AND process solves each of the individual goals in the
conjunction by creating a separate OR process for each; the OR processes
coordinate solutions based on alternative clauses for their goals, and report
results back to their parent AND process one at a time.

Parallel execution in this model comes from two different sources. AND
parallelism is exploited if the goals in a conjunction are independent and
can be solved in parallel; in this case an AND process creates multiple
OR processes in one step and they execute in parallel. OR parallelism is
exploited if there is more than one clause that can be used to solve a goal.
If these clauses are not simple assertions, an OR process will create AND
processes to work on the bodies of the clauses in parallel. The logic program
of Figure 1 is reproduced in Figure 2 along with a description of the parallel
processes that are created to solve the initial goal.

The AND/OR Process Model has the same theoretical roots as Prolog,
namely resolution proof of statements of clausal logic, and an implementa-
tion of the model has to support efficient unifications. Unification is im-
plemented in the OM the same way it is in the WAM: top level decisions
are made at compile time, and runtime accessing and binding of variables
is done through individual instructions. The first major difference between
WAM and OM stems from the differences in the structure of the binding
environments. Problems that arise when the standard Prolog binding rep-
resentations are employed in parallel systems, and our approach to solving
these problems, are discussed in the next section. The other major difference
between WAM and OM is in control flow. The instructions used to create
and call asynchronous processes will be described in Section 5.



Boxes represent AND process, circles represent OR processes. An AND
process is solved when all its descendant OR processes succeed, but an OR
process succeeds if any of its descendants succeed.

p(X)

q(X) A u(B) r(X)

a8(X) t(X)

In this snapshot, the OR process for p(X) is about to receive a success
message from the process for the second clause for p. The AND process for
the first clause is about to receive a success message from its first subgoal
and start an OR process for its second subgoal, which will fail. If there was
a way to solve u(B), the AND process would succeed and send a success
back to the OR process for p. In the AND/OR Process Model, the OR
process buffers this solution until its parent sends a redo message, signifying
it wants another solution. The binding environments discussed in Section 4

developed for the AND/OR Process Model manage the conflicting bindings
for X.

Figure 2: Parallel Processes



Goal: « p(X).

X p(A) «~ q(A) A u(B).
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In an OR-parallel system, a new process is started at a choice point in the
program, such as the call to p(X) here. If new processes share the existing
stack, each needs its own copy of variables which are unbound at the time
of the fork. In this example the processes share the frame for the original
goal, and eventually generate conflicting bindings for X.

Figure 3: Environment Stack in OR-Parallel System

4 Binding Environments for Parallel Logic Pro-
grams

One way to implement binding environments in an OR-parallel system is
to allow new processes to share information from their common ancestors.
If a process reaches a choice point late in the computation, it can spawn
new proceases, one for each alternative in the choice point, and a significant
savings in space can be realized if each new process shares the bindings made
before the choice point. However, there is a potential problem, as illustrated
in Figure 3. The figure shows our example program and what happens if
parallel processes share the binding environments in existence at the time
the processes split. In this example, the environment of the goal, with the
variable X, is the only existing environment when two processes for p are
started.

The problem is caused by the fact that ancestor slots may be unbound
at the time new parallel processes are spawned, and each new process may
attempt to bind the unbound variable to conflicting values. There are a
number of techniques for avoiding the conflict. Ciepielewski and Haridi were



the first to tackle the problem (3], describing a system that let processes share
fully bound frames but copy frames with unbound slots. This works because
logic languages are single assignment languages, and a descendant can never
change a binding made by one of its ancestors. Related techniques have been
developed by Borgwardt [2], Lindstrom [11], D. S. Warren [20], and others.
All rely on the construction of auxiliary data structures, enabling a process
to keep its own copy of a shared unbound ancestor variable.

When the three stack model is adapted in this way, so that parallel
processes share information, the underlying machine must have a single
address space, either in a shared memory multiprocessor, or maintain a
single address space in physically disjoint memory modules. When a variable
is bound to a pointer to a cell farther back on the stack, the address of the
ancestor may be nonlocal, so a “boudoir” configuration of processors and
memories my be penalized fairly often. When many parallel processes check
the binding status of their common ancestor, the address of the ancestor
may become a “hot spot” of the type investigated by Pfister and Norton [13],
so a “dance hall” configuration of processors and memories may also have
problems.! Empirical evidence for such a pattern of memory references can
be seen in plots produced by Ross and Ramamohanarao [15]. They plotted
the addresses of memory references vs. time in a Prolog interpreter, in order
to measure locality of reference. They found clusters of locality near the top
of the stack and at the base of the stack, where the unbound shared ancestor
variables would be found.

For the implementation of Opal, we developed a new scheme for main-
taining variable bindings. We had two goals: develop a scheme that does
not rely on a shared memory, so that binding environments can be located
and moved anywhere in a non-shared memory system; and develop a scheme
that would be suitable for the requirements of the AND/OR Process Model.
The resulting technique is called closed environments [6]. A closed envi-
ronment is one that has no pointers that lead directly or indirectly to the
environment of any other clause.

After every unification in Opal, an environment closing operation is ap-
plied to the environment of the called procedure, transforming it into closed
form. The newly closed environment is then used in the next round of
unifications. Since a closed environment cannot contain pointers to shared
ancestor variables, conflicts between parallel processes are avoided. After
the subgoal is solved, the environments are closed in the opposite direc-

IMost of the references will be reads, however, so a network that combines references
may handle this problem.



tion, with the parent closed with respect to the descendant. This serves
two purposes: the parent environment i8 now in closed form, ready to be
used when solving siblings of the recently solved goal, and it incorporates
bindings from the solution of the descendant into the parent’s environment,
avoiding the need for a “back unification” step [21]. Virtual instructions to
carry out the steps of the closing operation have been defined as part of the
OM instruction set.

5 The OM Virtual Processor

5.1 Overview

OM is a virtual processor. It has been designed to work either as a single
processor in a von Neumann architecture, or as one of many processors in
a shared memory machine such as the NYU Ultracomputer [9], or as the
processor in a processor-memory pair of a hypercube or similar non-shared
memory machine [16]. Since the closed environment technique does not
rely on a common memory space, and there will be no pointers to ancestor
variables far back in the stack, OM should potentially work well in a large-
scale, non-shared memory multiprocessor.

An OM processor maintains a queue of messages and the states of a set
of AND and OR processes. It continually executes an algorithm where it
removes a message from the queue, activates the corresponding process, and
performs the indicated state transition. Each state transition corresponds
to one atomic step of an AND or OR process, and potentially generates new
messages and processes. In a system with more than one OM processor,
processes and messages will be distributed so that state transitions can be
executed in parallel. The current implementation is for a single processor-
memory pair. At this time, we are concerned mainly with the correctness
of the instruction set, and the efficiency with which it performs unifica-
tions, builds and accesses closed environments, and carries out the control
operations of a parallel logic program.

5.2 OM Registers

Every unification works with two environments. The environment of the
call is known as a top environment, and the environment of the called clause
is known as a bottom environment. The names are based on a graphical
method (known as Ferguson diagrams) for representing unifications in a



Prolog interpreter, where environments are represented as top or bottom
half-circles [8]. A third, temporary, environment, known as X, is sometimes
used by an OR process.

The slots of an environment are referred to by the environment name
and an index; for example, TO is the first slot in the current top environment,
B1 is the second slot in the current bottom environment, and so on. We will
sometimes refer to the slots of an environment as “the T registers” or “the B
registers.” There are many ways to implement these registers. They could
be a fixed set of internal processor registers, or special high-speed memory,
or simply locations in main memory pointed to by registers named TE and
BE. There are many factors that will go into deciding which technique to
use. The granularity of process steps is small to medium, and there will
be overhead in loading environment registers when a process is activated,
so the total overhead from task switches must be taken into account (this
is discussed in more detail in the summary). On the other hand, many
unifications fail. If the bottom environment is in registers, there is no need
to allocate room for it in memory, then abandon it when the unification fails;
an environment will be put in main memory only after unification succeeds
and if the environment must survive across process activations. A third
component of the decision is related to the environment closing operation.
During some steps, an environment must be extended with one or more new
slots. H the environment is in registers or a fixed block of dedicated, fast
memory, it can easily be extended, and when it is saved the old location can
be discarded and a new block allocated for the larger frame. Currently we
are simulating the second solution, dedicated blocks of fast memory for each
active environment.

As in the WAM, a set of argument registers, called A registers, will be
used to hold the parameters passed in a procedure call. The code in an
AND process that sets up a call to an OR process will use a series of put
instruction to place the parameters in the registers. For each argument in
the head of a clause, there will be get instructions to perform the actual
unification steps, binding variables when necessary. The OR process never
modifies the A registers. If a unification step needs to bind a parent variable,
the get instruction will follow a path through the A registers to a slot in
the T registers. Since the A registers are not modified, the unification of
each clause head can use the same A values. The A registers are saved in
the state vector of the OR process, since later steps will need to use them
when passing values back to the parent process.

Other registers used to define the state of the machine will be introduced
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as necessary in the discussion.

5.3 Compilation Schema

A schema for compiled programs is shown in Figure 4. There are two
classes of translations: those for AND processes and those for OR processes.
Each procedure, defined to be a set of clauses that have heads with the same
predicate symbol and same number of arguments, is compiled into an OR
process. Each non-unit clause (a clause with one or more goals in its body) is
compiled into an AND process. The compilation of AND and OR processes,
and the new instructions to support each, will be discussed in the next two
sections.

5.4 Compilation of an OR Process

The code for an OR process is invoked when an AND process creates a
new OR process for a procedure. When the process is started, the A reg-
isters will contain the arguments passed by the parent AND process, and
the parent’s environment will be in the T registers. Each time a new OR
process is started, it tries to unify the arguments in the A registers with
the arguments of every potentially matching clause head in the procedure.
For each matching unit clause (a clause with no subgoals in the body), the
OR process creates a success message. For each matching non-unit clause,
a new AND process is started. After all matching operations are done, the
OR process is suspended until it receives another message.

The control instructions used in the compiled OR process are similar
to the WAM switch and try instructions. switch_on_term examines the
type of the first argument, and branches to a location within the body of
the process where it will find the code for the clause head(s) whose own
first argument(s) have that type. Lv is the address to go to if the passed
argument is a variable; this means the call will match any compiled head, so
all of them must be tried. La, Ls, and Lx are addresses to branch to if the
passed parameter is an atom, structure, or list, respectively. In the schema
for an OR process in the figure, there are three clause heads, starting at
addresses La, Ls, and Lx.

When the input parameter is a variable, or there is more than one clause
for a particular argument type, the OR process executes instructions that
set up a sequence of unifications. In an eager OR process, all unifications
are done as part of its first step, setting up as many parallel AND processes

11



Compilation of an OR process

proc: switch_on term Lv,La,Ls,Lx

Lv: next_alternative_else L1
make_top

La: (get instructions)
succeed

L1: next.alternative_else L2
restore_top

Ls: make_bottom N1

(get instructions)
(close instructions)
succeed

L2: last.alternative
restore_top

Lx: make bottom N2
(get instructions)
allocate_top
start.and c1
(close instructions)
succeed

Compilation of an AND procesa

Cci: start_or
succeed

c2: (put instructions)
start.or Gl
(put instructions)
start_or G2
succeed

Figure 4: Compilation Schema for OR and AND Processes
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as possible. The next_alternative instruction specifies the address where
where execution resumes after the current unification is finished, successful
or not. The operand of this instruction is stored in the Contiruation Regis-
ter, or CR. next_alternative does not build a choice point data structure,
the way the try instructions of the WAM do, since these structures are not
used in the parallel machine.

When there are a number of alternatives to explore, each can potentially
bind slots in the parent’s environment in a different way, so each alternative
needs its own copy of the parent environment. The make_top instruction
copies the T registers to the X registers. At the start of each successive
unification, a restore_top instruction copies the X registers to the T reg-
isters, making a new copy of the parent for that alternative. Note that if
there is only one way to solve a goal, there is no need to copy the parent
environment and set up a continuation: there would be no make_top and
next_alternative instructions, and CR contains a value (set when the pro-
cess starts) that indicates no more choices exist after the current unification
is done.

The actual head of a clause begins with a make_bottom instruction, which
initializes a bottom environment of the correct size in the B registers. The
unification itself begins with the get instructions. If any of these fail, mean-
ing an argument passed in from the parent does not unify with an argument
of the called procedure, a failure occurs, and the machine either branches to
the address stored in the CR register, or, if this is the last or only alterna-
tive, suspends the OR process (what happens when the process is suspended
is discussed below).

If all of the get instructions are executed, the unification succeeds. If
the clause is a unit clause, the OR process executes a a succeed instruction,
without starting an AND process. The heads at addresses La and Le in
Figure 4 are examples of unit clause compilations. A succeed instruction
creates a success message for the parent process. The current top environ-
ment is the argument of the success message. Execution resumes in the OR
process at the address following succeed.

If there is a body for the clause, an AND process must be created to
solve it (see the clause at address Lx in the example). The allocate_top
instruction stores the T registers in the state vector of the OR process, so the
bindings made to the top environment during unification will be available
when the AND process returns a success message. The get instructions are
implemented in such a way that the bottom environment is always in closed
form after a unification, so all we have to do next is execute a start_and.

13



This instruction starts an AND process, using the current bottom environ-
ment as its initial binding environment. The address of the code for the
AND process is the operand of the start_and instruction. Execution of
start._and creates a new process descriptor, inserts it in the process queue,
sends it a start message, and then continues execution in the OR process
at the address currently in CR. The state vector of the OR process is up-
dated to store the address following the start_and instruction; when the
AND process returns a success message, the system restores the A and T
registers, activates the OR process, and branches to this address.

When the head of a clause is ground (it contains only constants, no vari-
ables), nothing has to be done to the top environment before it is returned
to the parent AND process in a success message. However, when there
are unbound variables in the head of the clause, the corresponding get in-
structions may have bound a parent variable in such a way that the top
environment has pointers that dereference to slots in the bottom environ-
ment. These slots have to be closed before the top environment is returned
to the parent. A series of close instructions implement an “open-coded”
environment closing operation, closing the top environment with respect to
the bottom environment, so it can be sent back to the parent AND process
in closed form. In the example, the head for La is ground, but the other two
clauses had variables in the head.

The close instructions are the means for transmitting bindings from
the descendant process back to the parent. If the parent passed an unbound
variable as an argument, and it was unified with a variable X in the head
of the clause, and X was bound by the solution of the descendant AND
process, the corresponding close instruction will bind the parent variable
to the value of X.

When all alternatives have been explored, the OR process is done with
its first step. Before suspending itself, the OR process executes the protocol
described in (7] to see if it should send a message to its parent. If no unifi-
cations succeeded, the OR sends its parent a fail message and terminates. If
one or more success messages were generated by succeed instructions, one
of the messages is sent to the parent, and the OR process suspends itself in
gathering mode. If there are no success messages, but active AND processes,
the OR process is suspended in waiting mode.

When a descendant AND process sends a fail message, the address of
the continuation is removed from the state vector of the OR process. When
all AND descendants have failed, and there are no more results waiting to
be sent to the parent, the OR process sends its parent a fail message and

14



terminates.

5.5 Compilation of AND Processes

Currently we are not exploiting AND parallelism in the OM; control instruc-
tions have been defined for sequential AND processes only. These processes
solve the bodies of their clauses in the same order as Prolog, working from
left to right, and re-solving the most recently solved goal when a goal fails.

The compiled code of the body of a sequential clause consists simply of
instructions to set up the arguments of the procedure call, and then start
an OR process for the goal. The state vector of an AND process contains a
fixed size array of records, one for each subgocal in the body of the clause,
where each entry describes the progress begin made in solving that subgoal.
start_or stores the process ID of the OR process solving a subgoal in the
appropriate record, along with the address of the instruction to execute
when the process sends a success message.

When an OR process sends back a success message, the environment
stored in the message becomes the current environment for the AND process.
Any put instructions that refer to variables of the AND process’ environment
will access slots of the newly returned environment.

If an OR process sends a fail message, the ID of process for the most
recently solved subgoal is found in the state vector, and this process is sent a
redo message. If that process sends another success, the environment passed
in the success message becomes the new current environment for the AND
process. It is interesting to note that each step of an AND process uses
an environment returned by OR processes, and that no environment has to
be stored in the state vector of the AND process.? In this implementation,
an AND process is a control process, determining the order goals should be
solved, while the actual execution steps are carried out in unifications in the
OR processes.

The AND process fails when its leftmost subgoal fails, and it succeeds
after the OR process for its rightmost subgoal sends a success message.

6 Example

Figures 5 and 6 show the compiled code for the program of Figure 1.
Figure 5 contains the code compiled for the heads of the clauses used as

*This may not be true for parallel AND processes.
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p/1:

L1:

P1:

aq/l:

r/i:

s8/1:

t/1:

make_top
next.alternative_else
make_bottom
get_var
alloc_top
start_and

close

succeed
last_alternative
restore_top
make_bottom
get_var
alloc_top
start_and

close

succeed

make_bottom
get_var
alloc.top
start_and
close
succeed

make_bottom
get_var
alloc_top
start.and
close
succeed

get_const
succeed

get_const
succeed

1 % procedure for p
L1

2 hpd) — ...
BO,AD

L2
A0

1 % p(C) — ...
BO, AD

L4
A0

1 % procedure for q
BO,AO

L3

A0

1 % procedure for r
BOIAO

L6

AD

5,40 % procedure for s

6,A0 % procedure for t

Figure 5: OR process code for the program in Figure 1
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goal/0: put_var TO,AO % — p(0).

start_or p/1

geall: end

L2: put_val TO,AO % — q(A) A u(B).
start_or q/1
put_val T1,A0
start_or u/1
succeed

L3: put_val To, A0 % — s(D).
start.or s/1
succeed

L4: put_val T0,A0 % + r(C).
start_or r/1
Bucceed

Lb: put_val TO,AO % «— t(E).
start.or t/1
succeed

Figure 6: AND process code for the program in Figure 1

examples throughout the paper; this code is used to start an OR process.
Figure 6 has the code compiled for the bodies of the clauses, used for AND
processes. OM executes this program as follows: execution begins with the
creation of an AND process for the top level query. This AND process,
Agoat, begins at the label goal/0. First, the argument registers are loaded,
and an OR process, Oy, is created to solve the literal p(X). Since the code in
Figure 6 is compiled for a Sequential-AND/Parallel-OR model, the current
AND process (Ag.q1) is suspended and O, is scheduled to run.

Op begins running at the label p/1. First the top environment is saved
for use by the other alternatives for p/1, which are linked together by
next.-alternative_else instructions. The first alternative represents the
head of the clause p(A) «— q(A) A u(B). The top environment is copied
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to the X registers, since there is another clause for p/1 that will be tried
later, and a new bottom environment with slots for A and B is initialized.
The get instruction results in a link (a relative pointer that dereferences
to a variable [6]) pointing to the variable X in the top environment to BO,
which is the slot for A. This link will participate in later closing operations.
Notice that a copy of the top environment is not made until we are sure
that unification will succeed. After unifying the arguments and saving the
top environment, a new AND process, A,, is created to execute the body
q(A) A u(B). Since our current implementaticn is fully OR parallel, O,
retains control and continues execution at the label L1. O, will eventually
create an AND process A, to solve r/1 and then suspend itself.

In this example A will eventually fail and A, will succeed. If O, re-
ceives a fail message from A, while A, is still active, O, will suspend itself
again after removing A, from its state vector. When Op receives a success
message from A, O, will be scheduled to run, and the environment in the
success message from A, will be installed as the bottom environment. O,
then resumes execution at the label P1, executing the appropriate close
instructions. The resuit of these instructions removes the link from X to
A and binds the slot for X in the top environment to the value of A in the
bottom environment.

Having solved p(A) with the binding A = 6, O, executes a succeed
instruction. Since Op was in waiting mode, it will send a success message
containing the current top environment to its parent, and go into gathering
mode.

Next, Agoqt will be scheduled to run when it receives the success message.
Agoat Will resume execution at the label goali. At this point, OM executes
an end instruction, indicating that the computation has been successfully
completed.

7 Summary and Future Work

The OM is a virtual processor designed to support parallel logic programs
in a non-shared memory architecture. It is similar to the WAM in the
way it performs open-coded unification, based on get and put instructions
compiled explicitly for each different clause of the program. It differs from
the WAM in two significant respects: it manipulates closed form binding
environments, which have been designed to avoid the problems of the three-
stack model in parallel systems, and the control instructions are based on
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an asynchronous, object-oriented control structure.

The instruction set, as outlined here, requires a large degree of support
from what are normally considered operating system functions. start.and,
succeed, and other instructions that manipulate implied data structures
such as the process queue have been presented as macroinstructions. They
are currently implemented in “microcode,” i.e. in the supporting interpreter.
A much more desirable solution is to program these operations in a logic
programming language as well, implementing them as sequences of OM in-
structions activated by traps. We are currently investigating methods for
doing this, either by a special kernel mode language for system routines,
or through techniques for incorporating history sensitive objects into logic
programs.

The steps of the abstract execution model are medium-grain operations,
and they are implemented faithfully in the OM. The step that does the most
work is the step taken by an OR process when it first starts. A new OR
pracess attempts unifications with the head of every clause in the procedure,
starting AND processes for the bodies of each successful nonunit clause.
There are a number of optimizations that are possible if this step, and other
complex steps, of the abstract model are separated into smaller independent
operations. One improvement is to allow an AND process to use a call
instruction instead of start_or when a procedure is defined by a set of unit
clauses. The overhead of an OR process that creates all answer frames in
one step may not be justified in many cases. Another improvement is to
cut down on the amount of OR parallelism. Many OR parallel programs
describe combinatorially explosive search spaces, and to eagerly explore all
branches in this kind of program in parallel would be foolish, since the
number of processes could soon swamp the machine. The code for the head
of a procedure should allow start._and to be implemented in a way that
transfers control to the new AND process, instead of always coming back
to the OR process where additional unifications are performed. Strategies
for deciding when to do an eager OR-parallel search, methods for gradually
switching to less eager search when the machine starts to become overloaded,
and the effect of this implementation of start_and on the other aspects of
OR processes, need to be explored further.

Carrying this idea further, and allowing the AND process to give control
to the first OR process it creates, leads to a depth-first search. When there
is an orderly transition between related processes, the overhead of a task
switch is reduced, because one of the two environments will be in registers
already. An idea we intend to pursue is to have a “track counter” that
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counts down with each inference step; when it is 0, the machine will switch
to another track, but when it is nonzero after a step the next process is the
one that would be chosen in a depth-first search.

A “hardware solution” to the cost of context switches may also be pos-
sible. In the FAIM-1, a switching processor will run in parallel with an
evaluation processor, setting up a parallel set of registers with values to be
used by the next process [1]. Context switches occur in one machine cycle,
by having the evaluation processor switch its attention to the other set of
registers. This scheme would appear to work for OM, as well, since the
environments that would be loaded by the switching processor are guaran-
teed to be independent of the environments that are being modified by the
evaluation processor.
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