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Abstract

This report describes the design and implementation of a constraint-
based environment for modeling the structural description of physical sys-
tems in qualitative space. The variables and constraints define the struc-
tural descriplion and the constraint propagation derives the behavioral
descriptions. The constraint propagation finds an interval value for each
variable by shrinking the initial interval values of the variables, such that
all the solutions are captured by the final values of the variables. During
the propagation of constraints, justifications are built for each variable so
to give an ezplanation for a behavior of the system. The constraint sys-

tem is incorporated with an Assumption-based Truth Maintenance System
(ATMS) to avoid recomputation.
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CHAPTER I

INTRODUCTION

The research we shall discuss here is an attempt to build a constraint-based environ-
ment from the ground up that will be useful for modeling the structural description of
physical systems in qualitative space.

An expert system is often a shallow model of its application domain, in the sense that
conclusions are drawn directly from the observable features of the situation presented.
Researchers have long felt that a genuinely expert performance must also rest on the
knowledge of deep models, in which an underlying mechanism, whose state variables may
not be directly observable, accounts for the observable facts [11]. The qualitative simula-
tion utilizes such deep models to derive a system behavior from its structure. The concept
of qualitative simulation derives from the common intuition of simulating a machine in
the mind’s eye.

To build a system for qualitative simulation, one of the steps is to decide on a sim-
ulation language. A constraint language seems to be a natural choice for qualitative
simulation; as the system components can be modeled as maintaining constraints among
their state variables. This calls for a constraint system to interpret the constraint lan-
guage, to propagate constraint implications and to determine constraint solutions. The
computational model of constraints requires solution of constraint satisfaction algorithm
which generally is a NP-complete problem [13].

The variables and constraints define the structural description; and the constraint
propagation derives the behavioral descriptions. Unlike constraint satisfaction, which
finds an assignment to all the variables in the system such that all the constraints are
satisfied; constraint propagation finds an interval value for each variable by shrinking the
initial interval values of the variables, such that all the solutions are captured by the final
values of the variables. The constraint system has an associated Assumption-based Truth
Maintenace System (ATMS) to avoid value recomputation.

The rest of this chapter is an introduction to constraint propagation and satisfac-
tion, qualitative simulation, and assumption-based truth maintenance. The Qualitative
Constraint Satisfaction System is written in Common-Lisp for the Symbolics and Sun
workstations. The object-oriented programming technique (flavor package) is extensively
used in its design and implementation. Finally a brief description of related works and
the scope of the thesis is discussed.



1. Constraints

Any language is basically a means of communicating ideas. Generally a language is
specialized for communicating a class of ideas effectively. For example, most computer
languages are designed for expressing algorithms. They are optimized for communicating
imperative and procedural notions. The theme of a constraint language is declarative [18].
This is well suited for expressing the description of structural relationships and physical
situations.

There are two important aspects of constraints which together make the constraints
unique [15]). First, a constraint is the declarative statement of a relationship. If the sum
of the quantities X, Y and Z is constrained to be zero, then there is a stated relationship
between the three quantities, X +Y + Z = 0. There may be various interpretations of
this constraint for the sake of convenience, such as X = —(Y + 2), X +Y = -Z etc.
Second, a constraint is a computational device for enforcing a relationship. The constraint
does not have any designated input or output associated with it. When the value of any
quantity changes within a constraint, due to an external or global change, the constraint
may demand modification of the values of other quantities in the constraint, to enforce
the relationship defined by it. The enforcement of relationships in a constraint is called
the local propagation of a constraint.

A by-product of constraint propagation, one of particular importance for our purpose,
is that of a network of dependencies that maintains the history of computation. This
history can be used to identify dependency information: what values are derived from
what other values. This dependency information can be used to construct a dependency-
directed graph to provide an explanation of the computation.

2. Qualitative Simulation

We have a natural tendency to try to understand how things work and to explain that
understanding to others. It is possible to derive a qualitative description of a behavior
of a system from the qualitative description of its structure. The structural description
consists of individual variables that characterize the system; their interaction is derived
from the components and connections within the physical device. A behavioral description
describes the potential activilies of the system. The functional description reveals the
intended purpose of a structural component in producing the behavior of a system. Let
us consider a clock. The structural description would include variables and constraints
governing the hands, gears and springs etc. The behavioral description would include the
movement of the hands caused by the rotations of the gears, which is in turn caused by
the unwinding of the spring. The functional description of the clock is the purpose of the
clock: to maintain and show the correct time.

Quantitative simulation is one way of producing behaviors of a system from its struc-
tural description. This is conceptually a simple simulation, computing the values of all
variables only at important points in time. The structural descriptions given as input to
qualitative and quantitative simulations are of different types. Quantitative simulation



requires complete and exact knowledge of structural descriptions of the system, whereas
for qualitative simulation the structure is defined in terms of differential equations which
provide useful but partial knowledge about the system.

Qualitative simulation can be viewed as an inference process for producing behavioral
descriptions from the qualitative structural description of a system [11]. Given a set of
variables, a set of qualitative constraints, and a few assumed variable values; the inference
process tries to satisfy all the constraints by assigning consistent values to unassumed
variables.

3. Assumption-based Truth Maintenance System

A Truth Maintenance System (TMS) {17,6] serves three roles in a reasoning system?!.
First, it caches all the inferences made by the problem solver; this avoids unnecessary
recomputation. Second, it supports non-monotonic inferences, i.e., inferences that cause
previously valid statements to become invalid or vice versa. Third, it ensures that the
database is contradiction-free. De Kleer [3] has proposed an assumption-based TMS
(ATMS) which allows context switching and has a coherent interface between the TMS
and the problem solver without giving up exhaustivity. According to De Kleer [3], unlike
previous truth maintenance systems which primarily manipulated justifications, ATMS
manipulates assumption sets. As a consequence, it is possible to work effectively and ef-
ficiently with inconsistent information; the context switching is computationally (storage
regarded) free, and most of the backtracking is avoided. These capabilities motivate a
different kind of problem-solving architecture in which multiple potential solutions are
explored simultaneously. This architecture is particularly well-suited for tasks where a
reasonable fraction of the potential solutions must be explored.

In this constraint system, an ATMS is used to cache all the inferences made by the
system and to realize context switching, enabling the simultaneous exploration of multiple
solutions.

4. Related Research

The two different research issues considered in this thesis are: Constraint Satisfaction
Systems and Qualitative Simulation. The following are works that involve one of the above
research issues:

Alan Borning’s ThingLab system [1] is a continuation of Sketchpad [19]. It is a draw-
ing and simulation system that allows the definition of arbitrary objects and constraints.
Users sketch a design interactively using graphics and inform ThingLab what the parts
were and how they behaved; where upon ThingLab then performs the simulation. The
constraint satisfaction is in two phases: planning and ezeculion. In the planning phase,
for every change the user makes to any object?, the system constructs Smalitalk routines

1This consists of a problem solver which draws inferences from TMS
20bjects refers to graphical pictures that can be changed by dragging it on the screen.



to satisfy all the constraints incorporating the change. The execution phase invokes all
the constructed routines. ThingLab exploits Smalltalk’s hierarchical structure in defining
hierarchical objects.

Sussman and Steele [18] present a language for the construction of hierarchical con-
straint networks and local propagation techniques for constraint satisfaction. Dependency
analysis is used to spot and track down inconsistent subsets of the constraint set. They
also briefly discuss algebraic manipulations of constraint networks.

Steele’s thesis [15] is an examination of the methods for implementing constraint
systems. His thesis also presents a constraint language and its implementation. This
system can explain its decisions. Conflict resolution in a constraint network is done by
retraction and dependency-directed backtracking. Constructs are introduced for making
assumptions about the values of certain variable. Due to global considerations, guesses
may turn out to be inconsistent, and so nogood sets are introduced to record the forbidden
guesses.

Gosling’s thesis [10] presents a progression of constraint-satisfaction algorithms with
analyses and emphasizes that no universally good satisfaction algorithm can be built.
Hence special properties of the situation at hand must be used when constructing an al-
gorithm. The example constraint system that is presented is for an interactive, graphical
layout system. The algebraic transformation of sets of constraints is described with algo-
rithms for identifying difficult subregions of a constraint graph and replacing them with
transformed and simplified constraints.

5. Scope of the Thesis

The major part of the thesis is concerned with constraint propagation over a qual-
itative space as basis for modeling physical systems. It is my intent to demonstrate a
qualitative constraint system that can be used to model physical systems in restricted
domains.

This thesis provides an environment for modeling physical systems and performing
qualitative simulations of their behaviors. The system’s representation reflects a hierar-
chical approach by dividing the system into components and connectors. Each component
has a set of variables and constraints describing its desired behaviors. The connectors
are used to represent the interconnections among components. If all the constraints of a
component are satisfied by the values of its variables, then the behavior described by the
values of the variables is one of the desired behaviors of the component. During the prop-
agation of constraints, justifications are built for each variable, thus giving ezplanations
for the behavior of the component or system.

Our method of constraint propagation utilizes variables with ranges for values. This is
different from the usual constraint propagation method, which finds an assignment of point
values to variables that is consistent with the constraints. An ATMS is also introduced
in the constraint system, so an inference is never re-computed. The ATMS makes the
system more efficient and suitable for an interactive environment. All the design and



implementation details will be discussed extensively as appropriate,

The thesis is divided into three parts:
Constraint Sysiem: Describes how to build a constraint system and discusses the various
operations that could be performed on the constraint system interactively. It also gives
the limitations of the constraint system.
Constraint Implementation: Deals with the implementation details of the system. All
the major operations are described at the implementation level. The data structures and
algorithms are explicated with lisp code and discussions.
Modeling: Mapping constraint systems to physical systems. Two examples are considered
for modeling: a pipe valve and cardiovascular system.



CHAPTER II
CONSTRAINT SYSTEM

A constraint system consists of a set of constraints and a constraint satisfaction
mechanism. The task of the satisfaction mechanism is to find a set of values that satisfy
the given set of constraints. The general satisfaction problem is NP-complete [13]. To
avoid this computational complexity, one should either take a approximation approach
[1,19], a restricted problem domain approach [10,13], or a combination of the two in
constructing the satisfaction mechanism.

The constraint system introduced here takes the restricted problem domain approach.
It assumes that the solution space of the constraint system in this domain is a convex
gpace. A solution is a set of values with the corresponding variables which satisfies all
the constraints in a constraint system. A conver space is a n-dimensional space in which
for any two points in the given space, all points on the line joining those two points are
also in that space. The dimension of the convex solution space is equal to the number of
variables in the constraint system. From the property of convex space, we derive the fact
that if there are two solutions, S and S3, for a constraint system, and V is a variable with
value X; in S1 and X3 in S3, then for any value between X; and X for the variable V,
there exists a solution. This result for convex solution space is used in constructing the
satisfaction mechanism for this constraint system.

In this chapter, we introduce the constraint system. The presentation is in three
parts - definition language, operation language and limitations of the constraint system.
We assume that the reader is familiar with flavors [8]. As mentioned earlier, the whole
system is built according to an object-oriented paradigm using the flavor package of Zeta-
Lisp.

1. Definition Language

This language provides the basic features to define a constraint system. In order to
define a constraint system, one has to first define the type of qualitative space over which
the values of the variables are defined and then define the constraints over the variables.

1.1. Qualitative Space

The qualitative space defines the type of a data object or value. A qualitative space
is an interval space represented by sequence of symbolic points in ascending order. An



(defqual-space integer-range
itype integer-space  ; integer-space is a pre-defined qualitative space
wvalue-set (-20 -15 -10 -5 0 5 10 15 20))
; It defines a qualitative space, integer-range which inherits the arithmetic
; operations from the qualitative space, integer-space.

(defvariable X :type integer-range)

(defvariable Y :type integer-range)

; It defines two qualitative variables. The type indicates qualitative space
i for the variables.

{defconstraint first-law

thhs (4 X Y)

:comparator >

wrhs 10)
; This represents a constraint: X 4+ Y > 10. This states that sum of the values of X
; and Y must always be greater than value 10 for all behaviors of the system.

Figure 1: Declarations of: Qualitative Space, Variable and Constraint.

instance of a qualitative space may be (a b ¢ d e f), such that a < b < ¢ ... < f. This
allows us to represent any kind of value space symbolically. But it also requires arithmetic
operators to be defined over the symbolic value space for the computational purposes.
This creates restrictions on the qualitative space, as it is not simple to define a + b and
a—b, let alone a*b and a/b. Difficulty arises due to the limited symbols in the qualitative
space. What happens if ¢ + d results in a value that is greater than e and less than f ?
There are two options, either a new symbol, representing the new value, can be inserted
in the qualitative space at the appropriate position or the new value can be represented as
an interval between e and f. There is another problem: representing a value greater than
J. One solution is to treat @ as minus infinity and f as plus infinity, but this introduces
more ambiguities into the system. The approach depends upon the domain.

There are two qualitative spaces pre-defined in the constraint system - integer-space
and +0-space [See definitions in appendix] but users may define their own qualitative
space. Integer-space introduces new symbols into the qualitative space whenever a new
value results from computations during constraint propagation, whereas +0-space uses the
other approach.

Let us consider a qualitative space, integer-range, defined in Figure 1. The type
integer-space is a flavor name which inherits a generic qualitative space, qual-space. All
user-defined qualitative spaces must inherit this generic qualitative space and need at least
two methods defined over the space: :plus, which takes two symbols from the space and
returns the sum as another symbol of the space, and :minus, which similarly takes two
symbols and returns the difference. The value of :value-set in Figure 1 is a list of ordered
symbolic points in ascending order. Inleger-range defines an interval space of integers
between -20 to 20. Figure 2 gives a template for user defined qualitative space.



(defflavor <flavor-name>>
() ; user may define instance variables for :plus and :minus
(qual-space) ; inherits flavor object, qual-space
sinittabel-instance-variables
:settable-instance-variables
:gettable-instance-variables}

iFora+4b
({defmethod (<flavor-name>:plus){a b)
<body>)

iFora—=b
{defmethod {<flavor-name>>:minus){a b)
<body>)

Figure 2: Template for a Qualitative Space definition.

1.2. Variable

In modeling a system, each characteristic value of the system is associated with a
name, which represents a variable. When defining a variable, one has to specify its value
type and the qualitative space from which the variable will take values. The variables are
also called qualitative variables. Figure 1 gives the declaration of variable X.

1.3. Variable Value

The value of a qualitative variable is defined to be an interval; in the degenerate case,
it may be a point. An interval is represented by two values from the qualitative space. For
example a value between point 5 and point 15 that includes point 5 but excludes point
15 is represented as (5 (<15))3. See Figure 3 for examples of values over the qualitative
space defined in Figure 1.

When a value is defined as an interval, the actual value can be any point or sub-
interval from the qualitative space that lies within the interval. This is how ambiguities
in the target system are represented in the constraint system. We expect that when
two ambiguous values are composed into one by an operator, the resulting ambiguity of
the value will be more than the ambiguity of either initial values. This is clear from
the definitions of the two arithmetic operators. Since the values are intervals, the usual
definitions of plus and minus do not hold. Let us consider two variables V; and V; having
values as follows: V3 = (a b) and V2 = (c d), where @, b, c and d are symbols in a
qualitative space.

Following are the definitions*:

Pluss WV +Ve=(ab)+(cd)=(a+cb+d)

3This is NOT an internal representation of the value.
These are plus and minus for variable values - which are evaluated and is different from the :plus and
:minus operators defined by the user while defining a new qualitative space.



-20 -15 -10 -5 0 5 10 15 20

¥ 3
r

. (-15 10)

+  ((>-10) 10)
(-10 (< 10))
((> -15) (< 10))
+ (10 10)

Figure 3: Examples of Value representations.

Minus: Vi - Vo =(ab)-(cd)=(a—db-c)

1.4. Constraint

The constraints are ordinal relationships between expressions over variables whose
values are intervals in a qualitative space. An ordinal relationship is one of >,>=,=,<
or <=. An expression is a simple expression, such as A, or a prefix notational arithmetic
expression, such as (+ A B). The operators allowed are only + and —. These operators can
take more than two arguments, for example A + B + C is expressed as (+ AB C) and A
— B — C is expressed as (— A B C). See Figure 1, for a declaration of a constraint. Each
constraint has a left-hand-side (LHS), right-hand-side (RHS) and a comparator. The
LHS and RHS are prefix arithmetic expressions. The comparator is one of the ordinal
relationship.

2. Operation Language

This language describes various operations that can be performed by the constraint
system. The major operators are set environment, propagaie constraints, setup operating
region and get solution space.

Consider a trivial example of a system, as shown in Figure 4. This system is sim-
ple but allows us to demonstrate the various operations that can be performed by the
constraint system. Let us assume that variables currently have the following values:

X = (-20 20) Y = (-20 20)

To check whether a constraint is satisfied, the LHS and RHS of the constraint are evalu-
ated. Then the system checks whether the ordinal relationship defined by the comparator
can be satisfied for the evaluated values of LHS and RHS. There are three possible out-
comes:
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(defqual-space integer-range
itype integer-space
:value-set (-20 -15 -10 -5 0 4 5 10 15 20))

(defvariable X :type integer-range}
(defvariable Y :type integer-range)

(defconstraint C-ONE
ths {(+ X Y}
:comparator >
:ths 5}

(defconstraint C-TWO
dhs {— X Y)
:comparator >
:rhs 3)

Figure 4: An Example.

1. not satisfied - if there do not exist any sub-intervals in the LHS and RHS, such that
the relationship holds; for example, (5 10} > (15 20) cannot be satisfied.

2. possibly satisfied - if there exist sub-intervals in the LHS and RHS, such that the
relationship holds and there also exist sub-intervals in the LHS and RHS respectively,
such that the relationship does not hold; for example, (5 15) > (10 20) is possibly
satisfied because (15 15) > (10 10) is satisfied and (5 10) > (10 20) is not satisfied.

3. definitely satisfied - if neither of the above; that is, for all possible two sub-intervals
from LHS and RHS respectively, the relationship holds; for example, (5 10) < (15
20) is satisfied for any sub-intervals of the above values.

A constraint is satisfied if the ordinal relationship is possibly satisfied or definitely satisfied.
For the initial values of the variables in our example, constraints C-ONE and C-TWO are
satisfied:

C-ONE C-TWO

(+XY)>A (-XY)>B

(+ (-20 20) (-20 20)) > (5 5) (— (-20 20) (-20 20)) > (3 3)
(-40 40) > (5 5) (-40 40) > (3 3)

For both the constraints, the ordinal relationships is possibly satisfied.

In the rest of the chapter, any variable or constraint refers back to this example, unless
otherwise specified. Now we look at the basic operations.

2.1. Set Environment

An assumption states that a particular variable takes on a given interval value from
its qualitative space. An assumption does not take effect and the value of the variable is



11

(defassumption Y-assumption
:variable Y
low-value 5
:high-value (< 15})
:it states that variable, Y is assumed to be an interval 5 (including) te 15 (excluding).

(defenvironment Y-environment :assumptions (Y-assumption))

Figure 5: Declaration of: Assumption and Environment.

not changed to the given interval value until an environment is selected. See Figure 5 for
a declaration of an assumption.

In qualitative simulation or diagnosis, we are generally interested in a particular set
of behaviors of the system. This can be acheived if we can assume the values of a subset
of the variables in the system, such that the assumptions define only the set of behaviors
we are interested in examining. An environment® is such a set of assumptions. See Figure
5 for a declaration of an environment.

If one is interested in examining the system for different environments, then all the
required environments are declared initially. Through the set environment operator, an
environment can be made current. There are three possible outcome of set environment
operation:

1. If the environment is already present in ATMS, then the variables in the system are
set to the corresponding values contained in the environment.

2. If there are environments in ATMS whose assumption-sets are subsets of the assumption-
set of the environment being set, then the variables in the system are set to the
intersection of the corresponding values contained in all the subset environments.

3. If none of the above, then set the variables in the assumption-set of the environment
to the assumed values and the rest of the variables to the full interval range of its
qualitative space.

At any instant, there is a unique current environment. This allows the dynamic switching
of environments, to study and contrast behaviors.

2.2. Propagate Constraints

Constraint propagation shrinks the interval value of each variable in the constraint
system to a minimum interval value for which all the system constraints in the system
are satisfied. The propagation continues until either one of the constraints is not satisfied
or none of the value of the variables can be shrunk further. The constraint propagation

SEnvironment is same as conlezt used by researchers in fault diagnosis [14]
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applies a pruning® method for shrinking intervals of the variables. It is assumed that
all variables have an initial value before starting constraint propagation. The constraint
propagation fails if any of the constraints are not satisfied during the propagation.

Formally, pruning a variable X is accomplished by rewriting the constraint C-ONE,
solving for X, as X > (— A Y). The LHS is the variable to be pruned and the RHS is
an expression. Then the RHS can be evaluated and compared with X for pruning. For
example:

X > (-AY)
(-2020) > (—(5 5) (-20 20))
(-2020) > (-1525)
New pruned value of X is ((> -15) 20), by intersecting (-20 20) with (-15 25)

The new value or pruned value of variable X is a sub-interval of its original value interval
such that for every point in the new interval there is a corresponding value in the RHS
that maintains the ordinal relationship. During propagation an attempt is made to prune
all variables of each constraint. The order in which the variables are pruned within a
constraint does not affect the final values of the variables after propagation. This agrees
with the multi-directionality of constraints, i.e., there is no input or output to a constraint.
Since we have assumed that the values are continuous, pruning of a variable moves the
lower limit up and/or moves the upper limit down.

After the completion of constraint propagation in the example of Figure 4, the value
of X could be {(> -12) 20) and Y could be ({> -15) (< 17)) (as defined in integer-space,
new points such as -12, -15 and 17 are inserted into the qualitative space). Figure 6 shows
the region after constraint propagation. Let us closely examine this region. Consider the
sub-interval ((> 12) 0) (marked as I) of the value of variable X. For this sub-interval of
the variable X, constraint C-ONE is satisfied for the sub-interval (5 (< 17)) (marked as
I;1) of the variable Y. Similarly, for the same sub-interval of the variable X, the constraint
C-TWO is satisfied for the sub-interval ((> -15) 2) (marked as I;3) of the variable Y. The
intervals I;; and I, are disjoint, therefore there is no region for the simultaneous solution
of C-ONE and C-TWO when X has value I;. This shows the limitation of constraint
propagation: it only considers individual constraints so it provides an over-generalized
region within which all the constraints may be satisfied.

During constraint propagation, when the value of a variable gets modified, it is
recorded along with the constraint that modified the value and the values of the variables
in the constraint at that instant. This justification does not reflect the causal behavior
of the system but provides a history of computation. Constraint propagation is the basic
operation of the constraint satisfaction mechanism in this system.

®Even though pruning and interval shrinking means essentially the same thing, we use pruning for a
particular type of interval shrinking which is described above.
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2.3. Setup Operating Region

Unlike constraint propagation, which only considers the satisfaction of individual
constraints, construction of the operating region considers the satisfaction of composed
constraints. Composed constraint satisfaction insures that if any two constraints can be
satisfied then they can be satisfied for any sub-interval value of any variable in either
constraint. As this operation is more expensive than constraint propagation, setting up
operating regions only uses constraint propagation.

An operating region is defined as a set of interval values associated with the variables
in a system such that if there is a solution, it is in the region defined by the values of the
variables. This region is a subset of the region obtained from constraint propagation. Due
to the limitations of constraint propagation (discussed in previous section), we cannot be
sure that for any variable assumed any point or a sub-interval from its interval value in
the operating region, there exist a solution for the new assumption. To determine the
operating region of any system, each variable is assigned the whole interval value of its
qualitative space. The first phase of pruning is done through constraint propagation. The
second phase pruning mechanism, which is explained in the next chapter, computes the
operating region. Figure 6 shows the operating region for the example being considered.

From Figure 6, it is clear that even though the operating region is a refinement
of the region produced by constraint propagation, there are still sub-regions in which the
constraints are not satisfied. We could say that operating region provides a tight cover with
an easy representation of the cover, which is a set of interval values of all the variables in
the system.

2.4. Get Solution Space

A qualitative behavior of a system is characterized by the set of values of the variables
in the system, where each value is either a point or an indivisible interval. The solution
space is the set of all qualitative behaviors of the system within the current environment.
By qualitative behavior, we do not always mean one actual behavior of the system, because
in an indivisible interval there are many points; and each one of them may define a actual
behavior of the system. The idea we are trying to capture in a qualitative behavior is
a class of actual behaviors; in the degenerate case, it may be one actual behavior. We
assume that the qualitative space is defined such that the value symbols define the various
classes of behaviors. According to Kuipers [12], these values in the qualitative space are
termed landmarks. Even though Kuiper assumes that crossing a landmark may involve
a new set of constraints governing the system, we consider the same set of constraints to
hold true and restrict ourselves to such domains.

The solution space illustrated in Figure 6 is a sub-region of the operating region and
a convex space. Single behaviors that corresponds to an actual behavior (that is, all the
values are points) are indicated by a dark dot, and single behaviors corresponding to a
class of actual behaviors (that is, values are intervals) are represented as dark rectangular
figures.
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2.5. Other Operations

There are other operations such as showing nogood environments, solutions and op-
erating region; creating and listing qualitative spaces, variables, constraints, assumptions
and environments; loading and saving the system; and initializing the system. Among
these operations, we consider only showing nogood environments.

We have shown that to examine a certain set of behaviors an environment could be
defined so that it captures the behaviors. It is possible that an environment does not
capture any behaviors of the system. This implies that at least one constraint could not
be satisfied during constraint propagation in that environment. Since the environment
is a set of assumptions, for this set of initial assumptions there are no behaviors in the
system. Such an environment is called a nogood environment. The nogood environments
capture important information about the system which is not explicitly evident in a qual-
itative model. Qualitative simulation generates all possible behaviors of the system. By
examining the nogood environments, we find conditions for which there is no possible
behavior.

This operator lists all the nogood environments currently identified by the constraint
system. In the example shown in Figure 4, one nogood environment would be the sin-
gle assumption that the value of variable X is {-20 0). The set of all possible nogood
environments for a given set of constraints is the complement of its solution space.

3. Limitations of the Constraint System

The constraints are ordinal relationships of expressions which involve only plus and
minus arithmetic operators. These constraints cannot capture conditional (i.e., if-then-
else) constraints. This is a major limitation for this constraint system. It is possible
to extend this system to incorporate conditional constraints by having various sets of
constraints in the system with each set having an initial set of conditions. All sets of
constraints satisfying the intial set of conditions can be propagated independently by
maintaining multiple images of variables.



CHAPTER III
CONSTRAINT IMPLEMENTATION

This chapter deals with the implementation details of the constraint system. It is
built on top of a Lisp system in the dialect known as Common-Lisp [16]. The flavor
package [8] is used extensively. The system was developed on the Symbolics workstation
and is ported to the Sun workstation. The window package is used to build an interactive
interface for the constraint system. There are popup windows and menus to make the
system user-friendly. In the following implementation description, all of the interface
parts are ignored.

This chapter includes a discussion of the definitions of all the objects used in the
system, the various operations performed on these objects and the implementation details
of the ATMS. To make the implementation description complete, Lisp code for the flavor
definitions and the methods associated with the key operations are shown. In flavors,
functions associated with an object are called methods and are represented by names
prefixed by colons. The names of methods are in slant type style for easy reference.

1. Definition Representation

This section deals with the representation of the important data-structures of the
constraint system. Each data-structure is a flavor definition, each instance is an object.
The flavors described are qual-space, value, variable, constraint, assumption, environment,
justification and constraint-system. The Lisp code definitions of the above objects are
shown in Figures 7, 8 and 9. A brief description of each instance variable accompanies
each flavor definition. In this section, only the non-trivial instance variables are described.

1.1. Qual-Space

value-set: This is a ordered list consisting of symbols representing the points and intervals
of the qualitative space. The symbols are organized in ascending order. Depending upon
the qualitative space definition, new symbols may be added to value-set during computa-
tion.

1.2. Value

type: An instance of a qual-space flavor, which is either integer-space, -0+space (predefined
qualitative spaces) or a user-defined space. This specifies the qualitative space over which
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(defflavor qual-space

{symbol ; user given name for the qualitative space
value-set) ; list of ordered points
0

sinittable-instance-variables
:settable-instance-variables
:gettable-instance-variables)

(defflavor value
(type ; instance of a qualitative space flavor
low-value ; lower value of the interval
high-value ; higher value of the interval
time-stamp) ; time stamp when values assigned
0

sinittable-instance-variables
:gettable-instance-variables
:settable-instance-variables)

(defflavor variable
{symbol ; name of the variable
status ; either assumed, computed, initialized, constant or unknown
assumption ; if status is assumed then it has the assumption instance
value ; instance of value corresponding to the current environment
constraints ; list of all constraints which invalve this variable
Jjustification ; justification for the value

justification-flag) ; indicates whether to add justifications
iinittable-instance-variables

:gettable-instance-variables
:settable-instance-variables)

(defflavor constraint

{symbol ; name of the constraint

status ; either consistent, contradiction or unknown

variables ; list of variables in the constraint

generators ; list of constraints in terms of each variable in the constraint
comparator ; comparision sign of the constraint, i.e., <,=,> etc.

ihs ; left hand side of the constraint

rhs) ; right hand side of the constraint

0

:inittable-instance-variables
:gettable-instance-variables
:settable-instance-variables)

Figure 7: Flavor Definitions: Qual-Space, Value, Variable and Constriant.
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(defflavor assumption

{symbol ; name of the assumption

id ; each assumption is associated with a number
variable ; variable instance

value) ; value instance of the variable that is assumed
0

:inittable-instance-variables
:settable-instance-variables
:gettable-instance-variables)

{defflaver environment

(symbol ; name of the environment

environment ; integer value representing the assumption set
var-val-justfn ; list of variable, value and list of justfication instances
|(:)artial-environments) ; list of environment inst which are subsets of environment

linitable-instance-variables
:gettable-instance-variables
:settable-instance-variables)

(defflavor justification

(value ; justification for this value-inst

constraint ; instance of constraint from which the value was derived
var-value ; list of (var-inst value-inst) for all vars in the above constraint
assumptions  ; set of assumptions, represented by an integer

reason) ; non-nil if value is not due to any computation

0

:initable-instance-variables
:gettable-instance-variables
:settable-instance-variables)

Figure 8: Flavor Definitions: Assumption, Environment and Justification.
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(defflavor constraint-system

{name ; name of the system

window ; window instance assoc with it

system-status ; either unknown, consistent or inconsistent
popup-menu ; instance of popup menu for setting curr. env,
qual-space-symbol-table

variable-symbol-table ; symbol

assumption-symbol-table ; tables
constraint-symbol-table

current-environment ; current environment being considered
nogood-environments ; list of environments which results in contradiction
assumption-map-table ; table with assumption ids and its instance
assumption-index ; counter to give each assumption a index
constraint-queue ; queue used for propogation

system-stack ; used to store intermediate results during computation
system-environments i ATMS

solutions ; list of environments and its solution space
perfect-environment-match ; true, if current environment was found in ATMS
operating-environment)  ; instance of the operating environment for the system
0

:inittable-instance-variables
:gettable-instance-variables
:settable-instance-variables)

Figure 9: Constraint System Definition.

the value will have its interval defined. The purpose of lype is to identify the qualitative
space during computation involving the value.

low-value and high-value: These are the lowest and highest values of the interval being
specified by the value object. The value of these instance variables could either be an
atom, if either end of the interval is a point, or a list, if either end of the interval is not
a point, but greater or lesser than a point. Note, if low-value is a list then it has to be
greater than a point, (i.e., (> point-value)) and if high-value is a list, it has to be less than
a point, (i.e., (< point-value)).

time-stamp: When a new interval value is assigned to a value object, this instance variable
records the time of assignment. This helps explain computations. We do not record the
real time but simulate it with a counter which is incremented everytime the counter is
referenced. This insures that every time-stamp has a unique value.

1.3. Variable

status: The variable object can be catagorized either as a constant or a state variable.
If it is a state variable, the status is one of unknown, assumed, computed or initialized;
otherwise, the status is constant. In case of a state variable the status gives a very brief
justification of why the variable has a certain value. If the value is due to a computational
result, the status is computed. When an environment is set, the status of each variable is

"By state variable, we mean a variable in the constraint system
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either assumed, if an assumption forces the variable to a certain value, or initialized, if the
value is the whole interval range and is not due to an assumption. The unknown status
indicates that the value of the variable has yet to be determined.

constraints: This is a list of instances of constraints in the system that involve a given
variable. When the value of a variable changes during propagation, this gives the list of
suspected constraints which have to be checked for satisfaction.

justification-flag: This boolean indicates when to record all the changes to the value of the
variable to provide justification. The purpose of this will become clear in the next section.

1.4. Constraint

generators: This is a list of constraints determined by re-structuring the lhs and rhs of the
constraint. All these constraints are conceptually the same and have a single variable in
their lhs. For constraint A + B > 5, the generators are A > 5 — B and B > 5 — A, These
generated constraints are used in pruning variables during the constraint propagation.

1.6. Assumption

id: Every assumption has a unique fixed number as its identifier. The number indicates
the position of this assumption in the bit-vector which is used to represent the set of
assumptions in the system. The presence of an assumption in a set is indicated by setting
the bit denoted by its id. A set of assumptions (an environment) is represented as an
integer number corresponding to the value of the bit-vector.

1.8. Environment

environment: This is an integer corresponding to the bit-vector representing the set of
assumptions in the environment.

var-val-justfn: This is a list of variable, value and justification instances for all variables
in the system. As an environment is a basic building block of our ATMS, this instance
variable keeps the history of the computation to avoid re-computation.
partial-environments: This is a list of environment instances whose assumption sets are
subsets of the assumption set of this environment object. This defines the structure of the
data-base for the ATMS. The environment instances in the list are ordered by increasing
size of the assumption set of each environment. This makes the search for an environment
more efficient.

1.7. Justification

value: This is a value instance corresponding to a final or an intermediate value of a
variable, the justification is intended.

constraint: This is an instance of the constraint that pruned the value of a variable to the
new value defined by the above instance variable, value, during constraint propagation.
var-value: This has the list of all variables and their value instances in the constraint at
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the time of justification.

assumptions: This is a set of assumption instances. It indicates the assumptions which
did contributed to the value of the justification.

reason: If the value in the justification is not due to computation, then this answers
the question, why ¢, through a canned english phrase. For example, if the value of the
variables in the system are assigned to the operating region values, the reason would be
operating-region.

1.8. Constraint System

constraint-queue: This contains a list of constraint instances. Before starting constraint
propagation all relevant constraints are pushed onto the constraint queue, and propaga-
tion continues until this queue becomes empty or a constraint fails.
system-environments: This is the data-base of the ATMS in the constraint system. All
the environments are arranged in a partially ordered tree to make search efficient. This
instance variable acts as the root of the tree, and has only the top level nodes (which are
environment instances). These environments are sorted by the cardinality of the set of
assumptions of each environment.

solutions: This represents the solution space of environments for which a solution space
has been computed. It is an associated list of environments and their solution spaces. The
solution space is defined by a list of environment instances.

perfect-environment-maich: This boolean indicates whether the current environment was
in the ATMS. The ATMS decides to add the current environment to the data-base if the
instance variable is false.

2. Operation Implementation

In describing the implementation details of the system, a bottom-up approach is
considered. We initially define the basic operations and show how complex operations
are built on top of them. We start from value, illustrating the methods defined on it,
and go on to constraints to illustrate their satisfaction and the pruning of variables. The
operations on a variable are skipped, because most of them deal with a value.

2.1. Value Object

The value object has three main types of methods: arithmetic operations, ordinal
relation operations and pruning operations.

The arithmetic operations involve the :plus and :minus methods. When a value object
recieves a :plus or :minus message with a list of values as its argument, the arithmetic op-
eration defined by the message is performed on argument. Figure 10 shows the definition
of :plus. In the resulting value instance of the :plus method, the :high-val is the sum of
all the high values of the argument values and the value that received the :plus message.
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{defmethod (value :plus) (y)
{cond ((flavor-typep y 'value) (setq y (list ¥))))
{let ((low low-val) {high high-val}}
(for elem in y do
(setq low (send type :plus low (send elem :low-val) 'low))
(setq high (send type :plus high (send elem :high-val) 'high)))
(send type :add-new-value low)
(send type :add-new-value high)
{make-value type low high)})

(defmethod (value :less) (v2}
(cond ((send type :less high-val {send v2 :low-val}) t)
{(send self :overlap? v2) "ok)))

(defmethod (value :prune-less) (value2)
(let {(high2 (send value2 :high-val)) (result (send self :less v2))
(cond ((send self :paint?) resuilt)
{(and {send type :equal high-val high2} (send type :land-mark high-val})
(setq high-val (send type :next-lesser-of high2)) self)
((send type :greatereq high-val high2) (setq high-val (send type :next-lesser-of high2)) self)
(t result)}})

Figure 10: Value methods: :plus, :less and :prune-less.

Similarly the :low-val is the sum of all the low values.

The ordinal relation operations are :less, :greater, :equal, :lesseq and :greatereq meth-
ods. These methods receive a value as an argument. The message-receiving value object
does the appropriate comparison with its argument value. These methods are three-valued:
true, nil or ok rather than the usual two-valued: true or false semantics. This is because
the values being considered are intervals. These three-valued methods return: irue, if for
all points and sub-intervals in the corresponding value objects the relationship holds; nil,
if for no point or sub-interval in the corresponding value objects does the relationship
hold; and ok, if for some points or sub-intervals in the corresponding value objects the
relationship holds, and for some other points or sub-intervals, the relationship does not
hold. Figure 10 shows the definition of the :less method.

The pruning methods are :prune-less, :prune-lesseq, :prune-greater, :prune-greatereq
and :prune-equal methods. These methods get a value as an argument. The value object
receiving this message may prune its value depending on the argument value and the
message. If the value is not pruned, then these methods act as the corresponding ordinal
relations method. Otherwise, it returns a new value instance reflecting a pruned value.
Figure 10 shows the definition of :prune-less. Let value X receive the :prune-less message
with argument Y. Also, let X;, X3, ¥; and Y, be the low and high values of X and Y
respectively. If X is a point, we know it can not be further pruned, hence simply apply the
:less method; otherwise, if X, is greater than or equal to Y}, then make X, strictly less
than Y}, by setting X}, to the next lower value of Y,. This is done by the :next-lesser-of
method defined on the qualitative space. An exceptional case is if X}, and Y}, are equal,
and both are not points, then X is not pruned; because the next lesser value of (< a-point)
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is itself.

2.2. Constraint Object

The methods associated with constraints are used to evaluate the constraint and, if
possible, prune the variables in the constraint. Figure 11 shows the methods involved in
the evaluation of a constraint and the pruning of variables. The :eval method evaluates
the lhs and rhs of a constraint using the :eval-expr method. The :eval-expr method eval-
uates any prefix notational arithmetic expression involving plus and minus operators and
variables and return a value. Finally the lhs and rhs values are checked for the ordinal
relationship to hold. As described before, :eval is also a three-valued method.

If evaluation of a constraint results in ok, then an attempt is made to prune all the
variables in the constraint through the :propagate-var-changes method. We evaluate the
rhs of each generated constraint in the generators of the constraint. The lhs value, which
corresponds to a variable, is compared with the rhs value depending upon the comparator
of the generated constraint. When a value gets pruned, a justification for the new value
is built.

2.3. Constraint Propagation

Let us consider the constraint-propagation example in Figure 4. Figure 12 shows the
code for constraint propagation. It starts by pushing all the constraints in the system,
that is, constraints C-ONE and C-TWO, onto a queue. First constraint C-ONE is popped
from the queue and analyzed by :analyze method in the constraint. This returns a list
of variables X and Y, which implies that variables X and Y have been pruned. Variable
X gets pruned from (-20 20) to ((> -15) 20) and variable Y gets pruned from (-20 20)
to ((> -15) 20)® This causes all the constraints which contain at least one of the pruned
variable onto the queue. This is performed by the :push-var-constraints method. To insure
that the constraint that pruned the variables does not get pushed back onto the queue,
the constraint is passed as one of the arguments to the :push-var-constraints method. This
method does not push a constraint onto the queue if it is already in the queue. Therefore,
in our example, neither of the constraints, C-ONE or C-TWO is pushed onto the queue.
As explained above, the :analyze method may also result in either contradiction, stopping
the propagation as it has failed; or consistent, popping the next constraint from the queue
and analyzing it. The propagation continues by popping the next constraint in the queue,
C-TWO, and analyzing it. The propagation stops when either a contradiction results
from constraint analysis or the queue becomes empty. The former implies that the set of
constraints can not be satisfied and hence no behavior exists in the current environment;
the latter implies a successful constraint propagation.

The analysis of constraint C-TWO results in the pruning of variable X from ((> -15)

8Note that both variable X and Y are pruned to same value for same initial values. This a supporting
fact that the order in which the variables are pruned within a constraint does not matter.
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(defmethed (constraint :eval-expr) {expr}
{cond ((flavor-typep expr 'variable) (send expr :value})
{(and (listp expr) (null (cdr expr}) (Aavor-typep (car expr) ’variable))
(send (car expr) :value))
(t {let ((evaled-args (for x in (cdr expr)
collect (send self :eval-expr x))})
(send (car evaled-args)

{make-message (send *system® :lookup-symbol (car expr)))
(cdr evaled-args)}))))

{defmethod {constraint :eval) ()
(send (send self :eval-expr Ihs)
(make-message (send *system® :lookup-symbol comparator))
(send self :eval-expr rhs)))

(defmethod {constraint :propagate-var-changes) (}
(let (value (vallist nil))
{for x in variables do
7 (setq vol-list (r:ons ({’Iist x (send (make-instance ‘value) :copy (send x :value})) val-list)))
or gen in generators do
when
(flavor-typep (send (car gen)
(make-message ‘prune
(send *system® :lockup-symbol (caadr gen)))
(send self :eval-expr (caddadr gen)))
'variable)
collect
(progn (setq value (make-instance 'value))
(send (car gen) :set-status "computed)
(send value :copy (send (car gen) :value))
(send value :put-time-stamp)
{send (car gen) :add-justification
{make-justification value self val-list {send self :assumpn-justifn-from-variables)))

{car gen))))))

(defmethod {constraint :analyze) ()
(let ((result (send self :eval))}
(cond ((equal result 'ok) (setq status 'ok) (send self :propagate-var-changes))
(result (setq status 'consistent) t)
(t (setq status ‘contradiction) 'contradiction}}))

Figure 11: Constraint methods: :eval-expr, :eval, :propagate-var-change and :analyze.
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{defmethod (constraint-system :propagate-change-loop) ()
(cond ((send constraint-queue :empty?} nil}
(t (let* ((constraint (send self :pop-constraint))
{result (send constraint :analyze))})
{cond ({equal result "contradiction) "contradiction)
((listp result)
(send self :push-var-constraints result)
(send self :propagate-change-loop))
(t {send self :propagate-change-locp)))))))

(defmethod (constraint-system :propagate-constraints)()
(send self :push-constraints (send self :all-constraint-instances))
(cond
((eq (send self :propagate-change-loop) "contradiction) (setq system-status 'inconsistent})
(t (setg system-status 'consistent)))})

Figure 12: Constraint Propagation.

20) to ((> -12) 20) and variable Y from ((> -15) 20) to ((> -15) (< 17)). Then, C-ONE
is pushed onto the queue. The analysis of constraint C-ONE results in consistent; that is,
no pruning is necessary. The propagation terminates as the queue is empty, resulting a
successful constraint propagation.

In the worst case, the complexity of the constraint propagation algorithm is O(nmp),
where n is number of constraints in the system, m is number of variables in the system
and p is the number of points or landmarks in the variables’ qualitative space over which
the variables are defined. This case is possible when each variable gets finally pruned to a
point or an indivisible interval starting from the full interval range of its qualitative space;
such that a variable gets pruned every time only by a point or an indivisible interval. Of
course, in the best case, complexity is O(n), in the case that no pruning takes place.

2.4. Operating Region

A constraint system has only one operating region. By our definition of operating
region, all behaviors of the system are within the operating region. Therefore, when
interested in examining a set of behaviors in a particular environment and the environment
is not found in the ATMS, then we could consider a region which is the intersection of the
operating region and the given environment®. Let us call this region the interested region.
The possible behaviors in the given environment are in the interested region; therefore, we
could say that these two regions are equivalent. If the interested region is null, this implies
that the given environment is outside the operating region and is a nogood environment.

In computing the operating region (See Figure 13) all the variables in the system are
initialized to the whole interval value of their corresponding qualitative spaces. The first
phase of pruning is done through constraint propagation. This may shrink the intervals

9We know that environment is a sel of assumptions. With these assumptions, if we propagate the
constraints, it would define a region for the environment.
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(defmethod (constraint-system :set-up-operating-region)()
(let (status var-list)
(cond (operating-environment (send selfl :update-variables-from-environment aperating-environment))
(t (send self :update-variables-from-environment current-environment)
{for x in variable-symbol-table do
{send (cdr x) :set-justification-flag nil)}
(send self :propagate-constraints)
(setq var-list (send self :sort-variables-on-value-length))
(for x in var-list
until (eq system-status 'inconsistent)
do
(setq status (send self :find-upper-and-lower-bound x))
(cond ((eq status 'no-bounds)
{msg N "There is no OPERATING REGION." N}
{msg " As variable, " (send x :symbol) " cannot take any values " N)
(msg " in the range ” (send (send x :value) :value-range) N}))
{(eq status 'changed) {send self :propagate-constraints)})))
{for x in variable-symbol-table do
{send (cdr x) :set-justification-flag t))
(cond {{eq system-status 'consistent)
(send self :set-up-nogood-environments)
(send self :update-environment-from-variables current-environment)
(setq operating-environment (make-environment))
(send cperating-environment :copy current-environment)))))))

(defmethod (constraint-system :find-upper-and-lower-bound)(var)
{let* ((value (send var :value))
(value-set (send value :get-value-set))
(initial-limits (list (first value-set) {car (last value-set)}))
min-value final-limits {max-value nil})
(setq min-value {send self :compute-limit var value-set))
(setq value-set (reverse {cdr (member min-value value-set :test 'equal))))
{if (and value-set (eq system-status "consistent}}
(setq max-value (send self :compute-limit var value-set)))
(setq final-limits (if max-value {list min-value max-value) (list min-value min-value}})
{cond ({eq system-status 'consistent)
{cond {(equal initial-limits firal-limits) nil}
(t (send (send var :value) :new-value-set final-limits) 'changed))
(send var :set-justification
{make-justification (send (make-value) :copy (send var :value)) nil nil nil ‘operating-region)}}
(t 'no-bounds})))

{defmethod {constraint-system :compute-limit) {var value-set)
(let (limit-value)
(setq system-status ‘unknown)
(for x in value-set
until {eq system-status 'consistent)
do
(setq limit-value x}
(send self :store-all-variables)
(send (send var :value) :new-value-set x)
(send self :propagate-constraints)
(send self :restore-all-variables))
limit-value))

Figure 13: Setup Operating Region.
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of certain variables. For efficiency, all the variables are sorted by ascending order on
the lengths of their interval values using the :sort-variables-on-value-length method. By
“length of an interval”’, we mean the number of points or the landmarks in the interval
value. For each variable in the sorted variable list, the interval value of the variable is
reduced to 2 minimum interval such that any solution that can exist is within the interval,
based on knowledge determined by the constraint propagation. In this attempt, either
the system would come up with a region, which is the operating region; or there may be
a null region, which implies that there is no operating region for the system.

The method :find-upper-and-lower-bound returns: no-bounds, if the interval value of
the variable becomes null in the process of finding the minimum interval value; changed, if
a new minimum interval is found; finally, nil, if the existing interval itself is the minimum
interval value. Initially turned off, the justification-flag for any variable is turned on at
the end of operating region computation. This is done because we are just interested in
the operating region; having the justification-flag on would not explain how the operating
region was computed.

Let us consider the example in Figure 4 to compute the operating region. Constraint
propagation shrinks the intervals of X to ((> -12) 20) and Y to ((> -15) (< 17)). Sorting
the variables X and Y on their value length by method :sort-variable-on-value-length,
returns ordered list of variables, (Y X). First, an attempt is made to prune the variable
Y by :find-upper-and-lower-bound. The various points and indivisible intervals that the
variable Y can take are ((> -15) (< -10)), (-10 -10), ((> -10) (< -5)), (-5 -5), ((> -5)
(< 0)), (00), (> 0) (< 5)), (5 5), ((> 5) (< 10)), (10 10), (> 10) (< 15)), (15 15) and
((> 15) (< 17)). This list of values is generated by the method :get-value-set defined on
the value object. The :compute-limit method returns the first value from the given list of
values (the above list) such that all the constraints are satisfied when variable Y assumes
that single value. By using the :compute-limit method, it is possible to get both lower
and upper bounds for the value. If the list of values is in ascending (descending) order, we
get the lower (upper) bound; for the variable Y, the lower and upper bounds are ({> -15)
(< -10)) and ((> 15) (< 17)), respectively; Y has not changed. When a similar attempt is
made to shrink variable X, the lower and upper bounds become ((> 4) (< 5)) and ((> 15)
(< 20)) respectively. Therefore, the final operating region is as shown in figure 5.

2.5. Solution Space

A solution space is defined for a set of constraints and an initial environment, under
the assumption that the environment is either the operating region or a sub-region of the
operating region. Initially all the variables are assigned to their value in the environment.
Then, all variables are collected whose values are neither points nor indivisible intervals.
If there are no such variables, then the given environment itself is the solution space.
Otherwise we select a variable from the collection, and for each point or indivisible interval
in the value of the variable, a new environment is created: the old environment with an
additional assumption that the variable has the point or an indivisible interval. Before



(defmethod (constraint-system :solve-for-environment ){env)
{let {(interval-vars nil} var value old-assumptn cld-env)
(send self :update-variables-from-environment env)
(for x in variable-symbol-table do
{if (not (send (send (cdr x) :value) :single-value?))
(setq interval-vars {cons (cdr x) interval-vars))})
{cond ((null interval-vars) (send self :add-to-solutions env))
{t (setq var (car interval-vars))
(setq value (send var :value})
(setq old-assumptn (send env :assumption-of-variable var self))
(setq old-env
{if old-assumptn
(remove-from-set (send env :environment) (send old-assumptn :id))
(send env :environment)})
(send self :solve-for-each-var var value old-env env)})}))

{defmethod (constraint-system :solve-for-each-var)(var value old-env env)
(let (new-value new-env new-assumptn new-env-inst {found nil))
{for x in (send value :get-value-set) do

(send value :new-value-set x)

(setq new-value (send (make-value) :copy value))

(setq new-assumptn (send self :find-assumption var new-value))

(setq new-env (add-to-set old-env (send new-assumptn :id)))

(setq found (send self :present-in-system-environment new-env))

(setq new-env-inst (make-environment))

(cond (found (send new-env-inst :create-copy found)
(send self :solve-for-environment new-env-inst})

(t (send new-env-inst :create-copy env)
(send new-env-inst :set-environment new-env)
(send new-env-inst :set-value-justfn var new-value
(make-justification new-value nil nil (list new-assumptn) ‘set-by-solve-constraints))
(send self :update-variables-from-environment new-env-inst)
send self :propagate-constraints)
%send self :update-environment-from-variables new-env-inst)
(cond ((equal system-status 'consistent)
(send self :add-to-system-environments new-env-inst)
(send self :solve-for-environment new-env-inst))
(t (send self :add-to-nogood-environments new-env-inst))))))))

Figure 14: Solve Environment.
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adding the new assumption to the set of assumptions in the environment, verify that
there does not exist an assumption in the set which involves the same variable as the new
assumption. This is achieved by removing the old assumption from the set of assumptions.
Every new environment is first searched in the ATMS (discussed in the next section). If
there is no perfect match, then propagate constraints for the new environment. For each
such new environment, a solution space is recursively computed. Figure 14 shows code
for computing the solution space. The set of all solutions found in this way constitutes
the solution space associated with the initial environment.

3. ATMS

The ATMS is an integral part of our constraint system. In general, the problem solver
and the ATMS are two seperate modules. The problem solver draws inferences from the
constraints, and the ATMS does its part by examining and saving all the new inferences.
In our system the problem solver and ATMS are together.

The basic element of the ATMS data-base is an environment instance. All the val-
ues and justifications of the variables in an environment, holds valid for the set of as-
sumptions composing the environment. The instance variable partial-environments of the
environment object is a list of environment instances whose assumption sets are sub-
sets of the set of assumptions of the environment which owns the partial-environments.
Since each environment in partial-environments could also have a list of environments in
its partial-environments, an environment represents a tree. An environment whose set
of assumptions is a subset of another environment’s assumption-set need not be in the
partial-environments of the environment or the partial-environments decendents. This
partially orders the tree and reduces the cost of inserting a new environment. The list
of environments in the system-environments instance variable of the constraint system
represents the sub-trees of all the environments in the system.

The operations performed on this partially-ordered tree structure are insertion and
removal of or searching for an environment. Insertion adds the environment to the system-
environments list, it is of O(n), where n is the length of system-environments, the top-level
environment list. Similarly, the removal is of O(n), because it removes only environments
which are in the system-environments list.

Before explaining the search for an environment, we will present an important prop-
erty of the continuous and convex spaces, which is the domain. If there is an environment
whose assumption-set is a subset of another environment’s assumption-set, then the op-
erating region and the solution space of the former environment are supersets of the
operating region and solution space of the later environment, respectively. In other words,
adding assumptions to an environment (a set of assumptions) may shrink its operating
region and solution space. From the above property, if there are three assumption sets (A
B), (B C) and (A B C) corresponding to environments, E;, E; and Ej, then the operating
region and solution space of E3 are subsets of the intersection of the operating regions and
solution spaces of E; and Es.
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(defmethod (environment :search-environment) {env-list & optional (env environment))
(let {{perfect-match nil) (top-partial-match nil) (partial-match nil) (result nil))
(for x in env-list
until perfect-match
do
{cond {(equal (send x :environment) env) (setq perfect-match x))
{(sub-set (send x :environment) env}
(setq top-partial-match (cons x top-partial-match)))
{(and (set-intersect (send x :environment) env)
(send x :partial-environments))
(setq result (send self :search-environment
(send x :partial-environments)
(set-intersect (send x :environment) env)))
(setq partial-match
(cond {{car result) {cons {car result) partial-match))
(t (append (append (cadr resuit) (caddr result))
partial-match})}))))
(setq partial-match {send self :remove-sub-sets top-partial-match (purge partial-match)))
(list perfect-match top-partial-match partial-match))}

{defmethod (environment :set-up-variables) (cs)
(let* {(result (send self :search-environment (send cs :system-environments)))
(perfect-match (car result))
(partial-matches (append (cadr result) (caddr result))))
(send cs :set-perfect-environment-match nil)
(cond {perfect-match
(send self :copy perfect-match)
(send cs :set-perfect-environment-match t))
{partial-matches
(setq partial-environments partial-matches)
{send self :get-var-val-justfn cs)
({send self :set-var-val-justfn (send (car partial-matches) :var-val-justfn))
{send self :intersect-regions (cdr partial-matches)}))
((send cs :operating-environment)
(send self :set-var-val-justfn
(send (send cs :operating-environment) :var-val-justfn}})
(t

(send self :get-var-val-justin cs)
(for x in var-val-justfn do
(send (cadr x) :set-full-range-value)
(send self ;add-justification (car x)
{make-justification (send (make-value) :copy {cadr x}) nil nil nil 'whole-value-range))}))})

(defmethod (environment :intersect-regions){env-list)
(for x in env-list do
{for y in (send x :var-val-justfn)
z in (send self :var-val-justin) do
(send {cadr z) :intersection (cadr y))
(send (cadr z) :put-time-stamp)
(send self :add-justification (car z) (caddr y)})))
(for x in var-val-justfn do
(send self :add-justification (car x)
{make-justification (send (make-value) :copy (cadr x}} nil nil nil "intersection-of-values))})

Figure 15: Environment Methods: :Search-Environment and :Set-All-Variables.
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Consider the situation in which environments E, and E; have operating regions. Now,
if we are interested in the environment FEj3, instead of computing the operating region from
scratch, (i.e., all the variables initialized to the whole qualitative space value) we could
start from the region that is the intersection of environments E; and F;. In Figure 15,
the :search-environment and :set-up-variables methods perform variable initialization in a
new environment.

The search operation is more complex because it involves two kinds of search. First,
we look for an exact environment in the partial-ordered tree. If this fails, we look for all
possible subset environments of the environment being searched. The variable top-partiai-
match of the :search-environment method in Figure 15 has a list of environments that
are subsets of the environment being searched. This list is also a subset of environment
instances listed at the top-level, system-environment. The variable partial-match has a list
of environments which are subsets of the environment being searched, but the environment
instances are below the top-level environments. For the example in Figure 16, if we search
for environment (A B C), then the top-partial-match would be list of (A B) and (B C);
and the partial-match would be (C). Of course there is no perfect match, so perfect-match
is nil.

To maintain the partial ordering in the tree, after identifying the environments which
are subsets of the environment being searched (in the above example F; and E; are subsets
of E3) the subset environments are removed from the top-level of the tree. All the removed
subset environments are put in the partial-environments of the new environment and the
new environment is added to the top-level of the tree in the proper position to maintain
the ordering on the size of the assumption set. Figure 17 shows the tree-structure after
adding the new environment to the environments in Figure 16.



CHAPTER IV

MODELING

Every continuous system has a potentially infinite set of possible actual behaviors. By
defining qualitative behavior (refer to section 2.4), it is possible to capture all the actual
behaviors in a finite set of qualitative behaviors. Each behavior can be defined by a set
of characteristic values for all variables of the system. These behaviors are governed by
a set of axioms and laws, represented as constraints in our system. According to [4], a
robust qualitative simulation is achieved by ensuring that the system’s simulation model
does not presuppose the very mechanism it is trying to describe. This is the well-known
no-function-in-siructure principle [4].

In this chapter we consider two examples to show how the qualitative constraint sys-
tem can be used to model and generate the behaviors of the system. The first example is a
simple system: pipe valve with a single constraint. The second example is a cardiovascular
system. This is relatively a complex system to highlight features of the constraint system.

1. Example: Pipe Valve

A valve controls the flow of fluid in a conduit. The three main characteristic variables
of a valve are the pressure of the incoming fluid, the cross sectional area of the valve and
the quantity of the fluid coming out on the other side of the valve. We are interested
in studying the behavior of the valve in qualitative terms, i.e., not in the real values of
pressure P, area A and quantity Q; but how the changes in these values affect each other.
A valve model has three states: open, working and closed. For each state, a different
set of constraints governs the behavior of the system. In terms of the variables P, Q
and A : open state implies P = 0; working state implies P, Q@ and A > 0; closed state
implies Q = 0. In this example we only model the most interesting state, the working
state. In modeling the valve, the variables in the constraint system would be DP, DA and
DQ representing the changes in pressure, area and quantity, respectively. These variables
are defined over —0+4space qualitative space. The relationship between these variables
is a qualitative differential equation which defines the constraint: DQ = DA + DP. The
qualitative differential equations are called confluences in [5]. The confluence represents
multiple competing tendencies: an increase in area positively influences flow of the quantity
and negatively influences pressure, the decrease in pressure negatively influences the flow
of quantity, etc. As there may be not just one, but a set of constraints describing a
component, variables may appear in many constraints and thus can be influenced in
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different ways.

For this simple example with only one constraint, we derive all the possible behaviors
by computing the solution space. Figure 18 shows the solution space for the valve given
its operating region. Consider solutions in which DQ = 0, this implies that there is no
change in quantity of fiuid coming out of the valve. The corresponding three possible
behaviors are: there has been no change in both pressure and area (DP = DQ = 0), the
system continues to be in the same previous state; the pressure has increased (DP = +)
and it is compensated by a decrease in the area (DA = —), maintaining the same flow of
quantity; the pressure has decreased (DP = —) and it is compensated by an increase in
the area (DA = +4), maintaining the same flow of quantity. In a similar fashion all the
behaviors in the solution space could be described.

The constraint system also allows us to study the relationship between any two vari-
ables with all other variables fixed to certain values. For the valve example, the influences
of DP and DQ on each other is as shown in Figure 19 for DA = 0. A nil entry in the
matrix indicates that such a behavior is not possible and a T indicates a behavior. When
dealing with huge system (say, one with 50 variables), we generally focus on a certain set
of variables to study the influence of these variables among each other. Thus the rela-
tionship matrix gives an explicit relationship between any two variables for the current
environment.

2. Example: Cardiovascular System

The cardiovascular system consists of the heart - which is divided into left and right
pumps, lungs, and body. The left heart pumps oxygen-rich blood through the systemic
arteries to the body’s capillaries. The capillaries are a major source of resistance to the
blood flow; the blood that exited the left heart at a pressure of approximately 100mm Hg
(millimeters of mercury) returns to the right heart via the systemic veins at a pressure
close to 5mm Hg. This carbon-dioxide-laden blood gets pumped by the right heart to the
lungs through the pulmonary arteries. In the lungs, blood gets re-oxygenated and returns
to the left heart through the pulmonary veins. Thus completing a cycle.

In modeling the cardiovascular system, observable parameters are divided into proper-
ties and variables. The properties represent the relatively static values of a real circulatory
system such as vascular resistance to blood flow or heart strength. They are assumed to
be constant over the interval of interest. Variables, such as cardiac blood flow or atrial
pressure, change value either in direct response to property changes or indirectly through
other variable changes.

Using the standard mapping of pressure to voltage and flow to current, Figure 20
abstracts the cardiovascular system into an electrical circuit. The arteries and capillaries
act as resistors to the flow of blood. The highly compliant veins stretches to accomodate
more blood without drastically raising their pressure, functioning like a electrical capac-
itor. The left and right hearts are modeled as having an internal voltage source that is
sensitive to the pressure of the returning blood. The actual pumping of heart is modeled
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Figure 20: Electrical Circuit Equivalent to Cardiovascular System.

as conductance that converts this internal potential to an out-flow. Following are the
definitions of various properties and variables in Figure 20.

Left heart and systemic circulation properties:

R Systemic arterial resistance

R, Systemic venous resistance

E Systemic vascular stiffness

G Internal conductance of left heart

g Factor of maximal pump potential of the left heart
Right heart and pulmonary circulation properties:

R Pulmonary arterial resistance

R, Pulmonary venous resistance

Er Pulmonary vascular stiffness

G Internal conductance of right heart
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al Factor of maximal pump potential of the right heart
Left heart and systemic circulation variables:

Py Mean systemic artery pressure

Q Left cardiac output

LAP Left atrial pressure

P, Left maximum potential pressure

|4 Volume distending veins

Right heart and pulmonary circulation variables:
PAP Mean pulmonary artery pressure

Qr Right cardiac cutput

RAP Right atrial pressure

Pyt Right maximum potential pressure
Vi Volume distending veins

We are trying to model the normal functioning of the circulatory system, therefore
all properties of the system are assumed to be normal, i.e., there is no change in the
values of the properties. The model describes the average behavior of the system and
not its pulsation. With this assumption, the qualitative differential equations defining the
cardiovascular system are shown in Figure 21. According to [2], Figure 22 illustrates the
behavior of the system. Note that the variable names in Figures 21 and 22 are slightly
different from that in the above list of variables, as the subscripts are raised a level higher,
the “/” is expanded to “-dash” and the prefix “D” is added to all the variables to indicate
change in the value.

Before arriving at the solution space shown in Figure 22, initially we started with
only the first eight constraints (See Figure 21). This resulted in 73 solutions and it
implied that the system needed to be further constrained. By adding a constraint for
conservation of mass (blood)} this solution space was reduced to 13 solutions. Again 13
was reduced to 7 solutions by adding the constraint that direction of change in the left
cardiac output (DQ) is the same as right cardiac output (DQ-DASH), another requirement
of equilibrium operation. This indicates that one could develop a system in a stepwise
manner, understanding the system better at every step.

The remaining degrees of freedom within the model are physiologically consistent;
that is if the variable Py and Py’ were changing, then either the flows would rise or the
arterial pressure would rise and the other would fall. Secondarily, volumes would reflect a
shift of blood into or out of the systemic veins. Thus the equilibrium model can be used
to study the behavior of the heart.

From Figure 22, the most trivial behavior of the system, indicated by solution 4, is
no changes in the variable values. This states that the system continues to be in the
same state of behavior. The remaining behaviors can be grouped in to two classes -
before and after the heart pump. The solutions 1, 3 and 6 belong to former class and
the remaining solutions, 2, 5 and 7 belong to later class. In each class, all the variables
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have same values except DV and DV-DASH. As DV and DV-DASH are constrained by
the law of conservation of blood, either there is no change in both or an increase in one
is compensated by a decrease in other. The before-heart-pump class solutions explains
the building up of pressure inside the heart before pumping the blood ocut (DPO and
DPO-DASH are increasing) and the flow of blood out of ventricles decreasing (DQ and
DQ-DASH are decreasing) because the valves of the heart are closed to help build the
pressure. The pressure in the atrials should increase (DLAP and DRAP are increasing)
to cause the blood to flow into the ventricles form the atrails before the heart pumps.
Similarly after-heart-pump class solutions expains the decrease in the internal pressure
of the heart after pumping (DPO and DPO-DASH decreasing). The pumping triggers
the out-flow of blood from the heart (DQ and DQ-DASH increasing) to the systemic and
pulmonary systems.

3. Summary

In modeling the above two examples, we have seen that it is possible to generate the
behavior of a system through constraint propagation. Initially one may start with a few
constraints due to lack of knowledge about the system. This may result as indicated in
our second example in a huge solution space. By examining the solution space one may
learn more about the system to add more constraints whereby reducing the solution space.
Hence we see that qualitative simulation allows one to start with partial knowledge about
the system.



CHAPTER V

CONCLUSION

This chapter gives a summary of the thesis, briefly describing the capabilities of the
constraint system. It suggests a possible extension to the present system to make it more
robust and efficient and finally the contribution of the research will be discussed.

1. Thesis Summary

The qualitative constraint satisfaction system presented here provides a complete
environment with a constraint language to model a system for qualitative simulation
purposes. It allows the users to define their own qualitative space over which all the
values in the system are defined. In addition the users define the operations: plus and
minus for the qualitative space.

The system performs computations on a set of constraints by constraint propagation
to satisfy all of them. After each constraint has been satisfied, then local propagation takes
place to prune the values of the variables in the constraint. The history of the computation
is maintained to indicate which values were derived from which others. This information
can be used to explain the computation. An assumption mechanism is provided to be
able to create environments and study the behaviors of the system in it, and to record
environments whose assumption set is nogood to limit the search and computation time.
To avoid recomputation, there is an ATMS to record all the environments and the values
of the variables in it.

2. Extension: A Hierarchical Approach

The constraint system presented in this thesis is flaf. There is no distinction between
any two variables or constraints; all are treated by the system at the same level. If
we are modeling a small system (that is, one with few variables and constraints) then
the present constraint system is sufficient. But if we want to model a complex system,
then we find that the present system does not provide any features tc help model the
system structurally. As the number of constraints increases in the system, there is no
mechanism provided in the current constraint system to capture the relationship among
the subsets of constraints in the system. By capturing such relationships it would help
in a better representation and understanding of the system. This would also lead to a
better justification of the variables in the system. To achieve this robustness, we could
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decompose the complex system into components and try to model each component as a
seperate constraint system and finally provide connectors to integrate these components.
This reflects a hierarchical approach of modeling a system.

A connector states that the two variables, each in different components are the same,
that is, the values of the variables at either end of the connector must be equal. Thus each
constraint can be treated as a special case of a constraint system or component such that
it has only two variables, Vi and V; belonging to C) and C3, respectively; and a single
constraint, ¥; = V5. In the present system, local propagation in a constraint assures that
if ¥} can be equal to V; (that is, the intersection of the values of ¥} and V; is non-null)
then the values of the variables will be made equal to the intersection of their values.
Otherwise, the system is inconsistent.

FEach component is treated as an independent constraint system with its own set of
variables and constraints. The constraint propagation can be performed on each of the
components in the system and the resulting values can be communicated through the
connector among the components so that the overall system is consistent. To make the
overall system consistent may involve many propagation of constraints in all the compo-
nents. After each propagation, the values of the variables are communicated among the
components which share the variables through connectors.

The advantages of a hierarchical approach are that it provides a natural representation
of a complex system; allows to represent generic components, to avoid repetitions; allows
to examine a component of a system in more details ignoring other components; and is
computationally more efficient than having a single constraint system to represent the
whole complex system. We shall now briefly discuss each of the above advantages.

2.1. Natural Representation

The hierarchical representation is almost a one-to-one mapping of the structural rep-
resentation of the system. Hence it is possible to model the relationships among the
components. A change in the value of a variable in a component may in turn change the
values of the variables in the same and for other components. The justification of these
changes would be closer to the causal reasoning than that of the present system because
of the principle of locality and causality rule [5]. The principle of locality states that the
laws!® for a component cannot specifically refer to any other component. A component
can only act on or be acted on by its immediate neighboring component. Its immediate
neighbor components must be identifiable a priori in the structure. The causality rule
states that a component will not change state!! unless it is acted upon, that is, a set
of values of the variables is modified externally {outside the component), which in turn
triggers constraint propagation for constraint satisfaction within that component.

107, aws are represented as constraints in the present constraint system
1 The state of 2 component is defined by the values of the variables in it.



2.2. Generic Component

When there are more than one similar type of component in a system, instead of
repeatedly defining the same component again and again, one could define a single generic
component. This generic component could be used to make any number of component
instances. Hence we could have a library of generic components to make any system that
could be made out of it.

2.3. Individual Examination

By dividing the system into components, it helps in zooming in a certain component
to study its behavior in isolation. This gives a better understanding of the structure and
behavior of the component. Due to the neighboring components, certain variables in a
component may be forced to have a particular value which may not cause a certain behavior
of the component. Thus studying a component in isolation highlights such behaviors of
the component.

2.4. Efficiency

As stated in the chapter 3, the complexity of constraint propagation is O(nmp),
where n is the number of constraints, m is the number of variables in the system and p
is the number of points or landmarks in the qualitative space over which the variables
are defined. In a hierarchical system the complexity of constraint propagation would be
O(N Mp), where N and M are the number of constraints and variables in a component,
respectively such that N * M is maximum over all the components in the system. This
is a remarkable improvement especially when the variables and constraints are equally
distributed. In such a case the complexity will be reduced by a factor of 1/(C * C), where
C is the number of components in the system.

3. Contribution of this thesis

There has been a considerable research on qualitative reasoning [5,7,9,11,12). This
thesis is also an attempt in this area. Even though the constraint system presented here
is able to generate the behaviors of a physical system in qualitative terms, it is not able to
backup the behaviors with proper causal reasoning. This is due to the fact that constraints
are non-directional and thus need a deeper model to capture the sense of direction of the
causal relationships. After the generation of the behavior by the present system, using a
deeper model of the system one could give a proper causal reasoning for each behavior,
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Figure 23 and 24 shows two qualitative space: Integer-space and -0+4-space.

(defflavor integer-space
0
(qual-space)
:settable-instance-variables
:gettable-instance-variables)

(defmethod (integer-space :plus) (x y type)
{cond {{and (listp x) (listp ¥})
(cond {(eq (car x) (car ¥)) (list {car x) (-+ (cadr x) (cadr y}))}
(t (msg N "Warning: adding” x y “result is ¥ {4 (cadr x) (cadr y)) N)
(# (cadr x) (cadr y)))))

{(listp x) (list (car x) (-+ y (cadr x)})))
((istp y) (it (car y) (+ x (cadr y))))
(t{+x¥))))

{defmethod (integer-space :minus) (x y type)
(cond ((and (listp x) (listp ¥))
{cond ((not (eq (car x) {car y))) (list (car x) (- (cadr x} (cadr y))))
(t (msg N "Warning: subtracting " x ¥ ™ result is " (- {cadr x) {cadr y)} N}
C (eadrx) (cadr )

{(listp x) (list (car x) {- (cadr x} ¥)))
((listp y) (cons (if (eq (car ¥} ">) "< > )list (- x (cadr y))}))
(tC-xy)

(defmethod (integer-space :add-new-value){val)
(if (listp val) (setq val (cadr val)})
{cond ({listp val) nil)
{(memq val val-set) nil}
{t (setq val-set (add-to-qual-space self val val-set)))))

{defun add-to-qual-space (self val val-set})
(cond ((null val-set) (list val}))
({i (car val-set) val) ;;;(send self :less (car val-set) val)
{cons (car val-set) (add-to-qual-space self val {cdr val-set))))
({1 (car val-set) val} ;;;(send self :greater (car val-set) val)
{cons val val-set))))

Figure 23: Definition of Integer-space.
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(defflavor -0+space
((-0+-plus-table *(((0 0) 0) (0 +) +) (0 -) )
{(+0) ;') ((')P ')*') +) ({(+-) ")

: Add table is an assoc list where the car of each pair is a list

; representing the qual. values of the two addends and the associated

: list represents the range on the sum. For instance, the assoc pair

i {(+ -) (- +)) means that the addition of a positive and a negative

; integer yields something within the range (- +) (i.e. the whole space).

{-0+4-minus-table '(((0 0) 0) ((0 +) -}
((0-) +) ((+0) +)
(+H)*{(+-)+)
((-9)-) ()%

(- +)-)

{qual-space)

settable-instance-variables

:gettable-instance-variables)

(defmethod (-O+space :plus) (x y type)
(cond ((and (listp x) (listp ¥)}
{cond ({eq (car x) (car y)) (list (car x) (send self :look-plus-table (cadr x) (cadr y) type)})
(t (msg N "Warmning: adding " x y " result is *
(send self :look-plus-table (cadr x) {cadr y) type) N)
(send self :lock-plus-table {cadr x} (cadr y} type))))
{(listp x) (list (car x) (send self :look-plus-table y (cadr x) type)})
{(listp ¥) (list (car y) (send self :look-plus-table x (cadr y) type)))
(t (send self :lock-plus-table x y type))))

{defmethod (-O+space :minus) (x y type)
(cond ((and (listp x) (listp y))
(cond ((not (eq {car x) (car y))) (list {car x} (send self :look-minus-table (cadr x) (cadr y) type))}
(t {msg N "Warning: subtracting” x y " result is "
{send self :look-minus-table (cadr x) (cadr y) type } N)
{send self :look-minus-table (cadr x) (cadr y) type))))

((listp x) (list (car x) (send self :look-minus-table {cadr x) y type))})

((listp y) (cons (if {eq (car y) ">} '<’>)(list (send self :look-minus-table x (cadr y) type))))

(t (send self :lock-minus-table x y type)}))

{defmethod (-O+space lock-plus-table) (x y type)
! |
S ((::31 val (cadr (assoc {list x y) -0--plus-table :test ‘equal)))
(cond {(not (eq val "*)) val}
((eg type "low) ™)
(t'+))

(defmethod (-O+space Jook-minus-table) (x y type)
(let (val)
(setq val (cadr (assoc (list x y) -O-+-minus-table :test "equal)))
(cond ((not (eq val "*)) val)
((eq type "low) ™)
(t'+)))

(defmethod (-04space :add-new-value)(val)
(if (listp val) (setq val (cadr val}})
(cond ((listp val) nil)
({memq val val-set) nil}
(t (setq val-set {add-to-qual-space seif val val-set)))))

Figure 24: Definition of —04space.
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