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Abstract

Recent research results in formalizing and automating software specification move us closer
to a computer-based specification assistant. In this paper, we review three projects that we
believe are particularly relevant to this goal. For each project we describe first the underlying
model, and second our efforts to study it by construction of a prototype tool based on the
model. Finally, we discuss incorporating the results of our study into a knowledge-based
system that assists in the construction of a formal specification.

1. Specification as a process

A specification phase is a component of almost all modern software development models!.
However, the specification process itself has only recently come under scrutiny. In particular,
relatively little attention has been given to the way a specification evolves from an often
vague set of client descriptions to a formal specification of a problem. Practical techniques
that do exist supply notation and guidelines that can be interpreted by an expert software
analyst. We highlight the word expert to note that the main body of knowledge of specifica-
tion construction remains with the human in these types of methodologies. A portion of this
knowledge includes how to interact with a client to extract the initial requirements, how to

control further acquisition and designz, how to recognize bad designs, how to explain a speci-
fication to a client and thus validate it, and how to talk a client out of a problematic require-
ment, where problematic here could mean a) impossible to satisfy, b) conflicts with a more
important requirement, or c) is something that is really not needed. We are interested in
bringing more of this type of expert analysis knowledge into the machine. While informal
guidelines are useful for many things, we believe that to successfully tackle such traditional
problems of specification as ambiguity and incompleteness, we will have to have the machine

L Our use of the word specification is discussed in section 1.1.

2Sim:e design typically follows specification in most software development models, our use of it here may be
confusing. Unless otherwise qualified, we will use the term design in this paper to refer to the process of
building a formal specification.
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become involved. This in turn must rest on results in two areas, a formal model of the specifi-
cation process itself, and a computer-based representation that will allow it to be automated.
In this paper we argue that a critical mass has been reached in both areas.

Our approach will be to show that a set of connected research results have lead to the follow-
ing characterization of software specification:

The process is evolutionary. It is neither feasible nor desirable to take a massive tran-
scription of a client’s needs. A specification starts with a simple, often naive descrip-
tion of a problem, and gradually evolves, through refinement, case analysis, and even
implementation {43], into a useful document.

The process is one of design. In particular, the specification product is just as much a
designed artifact as the program implementation. While different design techniques
may be needed for each product, there is no technical reason to reserve the term
design for the specification-to-code process. On the contrary, by viewing both specifi-
cation and implementation as a design process, we may be prodded to look more
closely at common design techniques (see discussion of Glitter in section 2).

The process often involves conflicting goals. Almost any complex specification is the
result of compromises and trade-offs between competing concerns, i.e., there is no
perfect specification. Conflicts may arise between different user groups, users and
administrators, performance versus budget, and a host of others.

The process involves collaboration between client and analyst. Stated more strongly,
clients have only a vague notion of what they want, and a narrow view of what is
possible. A good analyst has expertise in pulling out the key points of a client’s prob-
lem, presenting convincing arguments for and against the inclusion of certain compo-
nents, and finally filling in the necessary details. All of this occurs within a rich, inter-
active, problem solving context that includes processes for problem acquisition, dis-
ambiguation, and critiquing.

The process is inherently knowledge-based. This point is actually a summary of those
above it. To design a specification through refinement, to identify the special cases, to
find compromises for conflicting goals, and to argue effectively with a client about
what has been wrought, requires knowledge of the application domain, knowledge of
implementation possibilities, and knowledge of the production environment, among
others.

Attempts have been made, using one or more of these characterizations as a focus, to define
techniques that might automate some portion of the process. In particular, each of the follow-
ing approaches has been argued as a possible basis for a computer-based tool to assist in
building software specifications:

Gradual elaboration.

Design as problem solving,
Parallel development.
Knowledge-based critiquing.
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In sections 2 through 4 of the paper, we will discuss each of these approaches in more detail
and in the broader context in which they were initially defined. Along with each approach, we
will discuss our attempts to view it as a model of design by constructing a specification tool
based on it. The presentation style of each section will be to first introduce the particular
specification model, next describe the tool we constructed for study, and finally discuss the
results of our study.

In the final portion of the paper, we will describe a project that attempts to bring the results
of our study together in a coherent form, and prescribes further research in the area.

1.1 A note on terminology

There is a confusing array of terms used to describe what goes on before one begins to make
"how-to" decisions in developing a software system: requirements analysis, specification,
requirements specification, domain analysis, systems analysis, needs analysis. We will not
attempt to offer any notational unification here. However, we will describe our specific use of
terms in this paper. In particular, our use of the terms 1) analysis, and 2) specification as a
process are synonymous. Further, we will make no distinction in this paper between a
requirements model and a formal specification (in section 7 we do attempt to offer some dis-
tinction between the two general concepts of requirements and specification). Finally, we will
not rule out the following type of information appearing in a specification: a) limits on the
development process itself, e.g., how much time and money is available for implementing the
system, b) the human, machine, and monetary resources available to operate the system
once delivered, and c) the organizational goals and policies in effect as design proceeds.

We will use the terms design and development synonymously, unless otherwise qualified, to
refer to the construction of a formal software specification.

2. Specification design along dimensions

It is obvious that the construction of a complex artifact like a formal specification will follow
an evolutionary process. Instead of springing full-borne from client to paper, the level of
detail will come to light in a gradual and incremental fashion. While this is a fine sounding
proclamation, we are left with the details of carrying it out. Goldman [20] examines at least
some of these details by proposing that the evolutionary steps taken in building a specifica-
tion can be characterized in one of three ways:

1. Steps that increase the structural granularity of the specification. For instance, we
may break a monolithic object into sub-parts, revealing more structure in a state.

2, Steps that increase the temporal granularity of the specification. For instance, we
may break a single action into a set of sub-actions, thus increasing the number of
states modeled.

3. Steps that add new cases to consider. For instance, we may expand or restrict the set

of possible behaviors permitted by a specification.
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Goldman argues that starting with an idealized specification, these three steps can be com-
posed into a sequence of specification changes that produce a final specification meeting a
client’s needs. He also speculates that these steps can by formalized and automated, lead-
ing to a tool that can both aid in building, and later understanding, a formal specification,

To demonstrate his ideas, Goldman uses a simple example of a game of baseball as a specifi-
cation problem. As an initial start, Goldman provides the following specification, paraphrased

here from its Gist? representation in [20]:

There are two teams, HOME and VISITOR. Each team has an associated SCORE
which starts at 0. A GAME consists of 9 PLAY-INNING actions. A PLAY-INNING
consists of a BAT by HOME and a BAT by VISITOR, in no particular order and as an
atomic action (the two BATSs produce only a single state change). A BAT by team T
consists of incrementing T’s score by a non-negative integer.

Figure 1. Initial baseball specification

Goldman argues for the above description as a good starting point along the following mini-
malist lines: 1) the minimal structural description should include the major components of a
game, ie., participants and scoring, 2) the minimal temporal granularity should be a snapshot
after every inning (a true minimalist might argue that innings are details; take a snapshot

before and after a game, producing only a single state change), and 3) start with normal cas-
es initially.

3Gist is described in more detail in [27]. Briefly, it is a domain-independent specification language particularly
suited to the specification of ongoing interacting processes. It models behaviors as sequences of global world
states, where each state is represented in terms of relations among typed objects. Gist’s constructs allow
objects, relations, and behaviors to be expressed in a concise fashion.
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In his paper, Goldman informally describes how the three types of development steps can be
used to fill out the initial specification into a final version that can be described as follows:

There are two teams, HOME and VISITOR. Each team has an associated SCORE
which starts at 0. A GAME consists of PLAY-INNING actions until the INNING is
greater than or equal to 9 and the score is not tied. A PLAY-INNING consists of a
BAT by VISITOR and a BAT by HOME, in that order. A BAT by team T consists of
an arbitrary number of PLAY actions. A PLAY consists of incrementing T’s score by a
non-negative integer between 0 and 4. A GAME has an associated INNING number
that counts the number of PLAY-INNING actions.

Special case 1: if the INNING is 9 and the BAT by VISITOR is complete and the
SCORE of HOME is greater than the SCORE of VISITOR then the game is over.

Special case 2: if the INNING is 9 or greater and a PLAY is completed by the HOME
team and the SCORE of HOME is greater than the SCORE of VISITOR then the
game is over.

Figure 2. Final Baseball Specification

In closing, Goldman notes

““Although we have not done so, it seems plausible that the development steps
stated in English in this paper could be formalized directly in terms of functions map-
ping processes to processes rather than as mappings from specifications to specifi-
cations. In that case, the initial specification and sequence of structured modifica-
tions would present a complete definition of the final process and would arguably be
both easier to produce and easier (for a person) to comprehend.”

The next section describes an effort to both formalize and automate the informal and manual
development description given by Goldman in [20]). From this study, we will look for
answers to the following questions:

1. Is it feasible to formalize and automate Goldman’s model of specification, and hence
support his above conjecture?

2. If so, how much domain specific knowledge will be needed?
3. In what form can it be represented?

4. Is Goldman’s model a sufficient one for realistic specification problems?

CIS Technical Report 87-05, November, 1987.
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2.1 Model implementation

To study Goldman’s specification design model, we decided to formally represent his three
elaboration strategies - temporal elaboration, structural elaboration, and case analysis --
in a problem solving system. The system chosen was Glitter [14]. The original Glitter sys-
tem was constructed to automate the selection and application of transformations to move
from a formal specification to a valid implementation, validity being assured by the use of cor-
rectness-preserving transformations. Glitter was based on an interactive problem solving
approach where the user would supply implementation goals, and Glitter would find methods
to achieve those goals and choose the right transformations to apply. Because more than one
method would often be available for solving a goal, Glitter contained selection rules for
choosing among competing methods. To help manage the development process, Glitter main-
tained a tree of implementation paths, where each node represented a problem solving state,
and each arc one of possible many alternative methods chosen to move to the next
state/node. Attached to each arc was a record of the process that lead to that arc/method
being selected (e.g., the selection rules that chose it).

To apply Glitter to the new problem of specification *‘implementation’’, a Glitter shell was
produced by stripping away the transformational implementation knowledge while leaving
intact the general method and selection rule catalog structures, the problem solving control,
and the implementation tree. To use the shell as an implementation of Goldman’s model, we
filled in the following items:

. A goal language. The highest level goals became Elaborate Structure, Elabo-
rate_Temporal State, Add_Case, corresponding to Goldman’s three dimensions of
design. It was also necessary to fill in the intermediate goals needed to do incremen-
tal problem solving. In some sense, the construction of these goals and the methods
below lead to the major result of this study: domain specific components would be
required to carry out the development in an automated fashion.

. A set of methods. To define methods for achieving our goals, we were forced to formal-
ize the informal descriptions of methods given by Goldman. To do this, we borrowed
what domain independent methods we could from Goldman’s paper and the original
Glitter system, and additionally defined a set of domain specific methods.

. A set of selection rules. Deciding among competing specification strategies must rest
on some decision criteria. In our original Glitter system, we relied on notions of effi-
ciency and feasibility to choose among competing implementation methods. In our
new system, we must decide not on how to solve a problem, but on what problem to
solve. We found that general rules were hard to come by. We were able to identify a
few domain specific rules, but feel we have just scratched the surface of the problem.
In summary, Goldman did not address the problem of strategy selection in his paper,
and we were able to make only a modest dent.

To avoid confusion, we will refer to the new Glitter system, which includes the goals, meth-
ods, and selection rules described above, as Glitter-S.

CIS Technical Report 87-05, November, 1987.
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2.2 Development example

To provide a better understanding of the Glitter-S system, and to better evaluate the feasi-
bility of formalizing and automating Goldman’s model, we will present a portion of the prob-
lem solving transcript taken from the Glitter-S development of a baseball specification
similar to that used by Goldman (see Figures 1 and 2). First we will provide a rather
detailed look at one step of the development, and then talk in more general terms about the
remaining steps.

2.2.1 Detailed description

In this section, we will follow the detailed problem solving process employed by Glitter-S to
handle the initial development step suggested by Goldman in [20]. This step focuses on the
inadequacy of the initial specification to account for tie games. In particular, tie games are not

allowed in baseball®. The initial specification (Figure 1) simply repeats the actions BAT for
HOME and BAT for VISITOR 9 times, allowing final scores to be tied. We need to introduce
a new case to allow tie games to go into extra innings. In Glitter-S we can do this by posting
a goal that will eventually lead to a change to the specification that handles extra innings
games.

(1) Goal: Add_Case "no ties”

The special case "no ties" is a primitive of the Glitter-S systems. In other words, we have
incorporated concepts specific to competitive events into the system. This raises the ques-
tion of the feasibility of using domain independent concepts to develop the baseball specifica-
tion. If this is possible, it would appear that these concepts would be much more general, and
hence useful in many more contexts. In fact our first attempts at defining the components of
Glitter-S (i.e., goals, methods, selection rules) were centered on the originat Glitter model of
domain independent knowledge. However, it became clear that a reliance on domain indepen-
dent knowledge for the specification development process was forcing us to describe our
components 1) at a lower level than was useful, and 2) in an overly verbose and complex
fashion. In particular, our highest level domain-independent goals were similar to the rather
low level editing steps of the current system. In retrospect, it was here that we made a com-
mitment to the use of domain specific knowledge in specification design. While we still
believe that domain independent methods will play an important role in specification, as will
be seen shortly in the example we are following, we no longer rule out the use of domain spe-
cific goals and methods, and this decision is reflected in all of our subsequent efforts.

4There are obscure cases in baseball where tie games may be allowed to stand. Neither Goldman nor we
included these cases.

5Notation: domain specific items (i.c., concepts specific to games in general and baseball in particular) are
placed in quotations.

CIS Technical Report 87-05, November, 1987.



Page 8

Getting back to the goal posted, there exists a Glitter-S method for achieving the "no ties"
case by attempting to weaken the games halting condition, and hence extend the game until a

non-tie score is achieved®. Other approaches are possible, e.g., do not allow an inning to end
with a tie score by weakening the innings halting condition. The extra-innings method was
selected by the following Glitter-S rule, paraphrased here for readability (see [14] for a more
detailed description of the goal, method, and rule language of Glitter):

If the domain is game-playing, and
scores are accumnulated by opponents in discrete increments, and
the goal is to include a "no ties" condition,

then choose a method that extends the game until a winner is found.

This rule attempts to capture the notion that it is typical to avoid ties in a game with discrete
scoring by letting the game continue until a non-tie score is reached. Baseball and tennis are
such games. As always, there are exceptions to the rule, for instance boxing and cricket, and
compromises like football and hockey. We did not attempt to further refine our selection rules
to account for such exceptions (e.g., by representing knowledge of human endurance in vari-
ous physical activities), being content to rely on gross typicality rules.

The selection of the method causes the following goal to be posted:
(1.1) Goal: Weaken_Halting Condition "no ties"

The method we will employ to achieve this goal attempts to extend the game by replacing
the loop repeat-9-times with a do-until loop. Note that this goal and method are part of the
domain independent problem solving knowledge that Glitter-S embodies. In particular, we
find that a contintum from very specific domain methods to very general Gist transformations
is needed to be effective.

The do-until loop will need a halting condition that defines "no-ties". In other words, before
we can do the repeat-to-do-until transformation, we must first define the until-condition.
Borrowing terminology from the original Glitter system, we call this type of sub-goaling
behavior a jittering step, i.e., one that gets things in place for a major step. The jittering goal
posted is as follows:

(1.1.1) Goal: Define_New Condition "no ties"

At this point we must rely on the rules of baseball to define non-tieness. We could include in
Glitter-S a baseball-specific method, or possibly one slightly more general for inning-based
games, that would match on this goal and proceed with the development process automati-
cally. We chose not to define such a method for this example. Instead, the user will be called
on to help unblock the problem solving process by supplying the missing method. This type of
interactive problem solving development is very much in the Glitter tradition, and extends
naturally to Glitter-S.

6This method actally incorporates two separate steps in Goldman's informal development: 1) ruling out tie
games, and 2) extending into extra innings.
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(3.) Goal: Add_Case "inevitable win"

There is another case to consider regarding inevitable wins: during the last half of any inning
after the eighth, if the home team’s score becomes greater than the visitor’s, the home team
should immediately be declared the winner and the game declared complete (of course it is
possible to imagine games where it is legal to “‘pour it on’’ even after a win is assured).

The problem solving necessary to add this case requires that we eliminate unwanted states
within the BAT action, ie., states in which home players are coming up to bat after their
team has an inevitable win, This requires that the BAT action be further refined (using the
Elaborate_Temporal State goal). In essence, to use one of Goldman’s three development
actions we will be required to use at least one of the remaining two as a type of jittering goal.
For this problem, case analysis is driving temporal refinement.

A general method is chosen that breaks an action into sub-actions towards the goal of fur-
ther restricting behavior. The user is called on to supply the sub-actions of a team’s at-bat,
namely players’ at-bats. The BAT action now acts as a generator of player at-bats.

We must also worry about the amount a single player’s at-bat can add to the score. The
range is zero to four, Using interactive problem solving, we use Glitter-S to refine the origi-
nal score-incrementer associated with a team’s at-bat to an incrementer associated with a
player’s at-bat, and we further restrict any single increment to be in the range 0 - 4.

Finally we note that to remain consistent with Goldman’s development, we treated the two
aspects of inevitable wins separately by posting the same high level goal twice (goals 2 and
3), and selecting different methods to achieve each. A more natural strategy would be to post
a single "inevitable win" goal, and define a method that handled the various aspects — forego
team'’s at-bat, forego players’ at-bat — as sub-problems.

This ends the specification development process as carried out by Goldman. One may ask
whether we can view the specification that we (and Goldman) end up with as a "complete"
specification? It clearly depends on the use the specification is going to be put to. If we are
only interested in generating legal baseball scores, then it has only a few minor omissions
having to do with suspended games. If we want something that will generate realistic base-
ball scores, then we have a major task ahead of us in adding the statistical nature of baseball
play. To do this, we will have to better specify the relationship between the runs a single
player can produce and what’s gone on before his at-bat, eventually leading to a specification
of men-on-base, hits, balks, etc. This question of completeness, and its relative nature, is
one we take up in more detail when discussing the Kate system in section 5.

2.3 Discussion

Glitter-S is, in fact, an existence proof of the feasibility of building a specification develop-
ment tool that is 1) based on a specific model of design, and 2) implemented as an interac-
tive, problem solving system that at least partially automates the development process. At
the same time, it became clear to us in constructing our tool that much lies behind Goldman’s
“‘three dimensions’’ as presented in his paper. In particular, while the notions of structural
development, temporal development, and case analysis appear useful guiding principles, the
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nitty gritty process of mapping them to actual specification editing steps is far from straight-
forward. A question that soon became apparent was the amount of domain knowledge specif-
ic to baseball and games that would be needed to usefully document and automate the
baseball development. Unlike the more constrained world of Glitter, where a relatively limit-
ed number of techniques were applicable across domains (see [27] for a description of some
of these techniques), refining and modifying what amounts to problem descriptions has no
such limitations: there is an infinite variety of problems we might want to describe, and no

absolute notion of what is a good or bad problem description7. It appears the best one can do
is capture the inherent constraints on any particular domain, and use these as a guide to
specifying problems in that domain.

Given that domain knowledge appears to be a required component of a specification design
tool, what form should this knowledge take? In Glitter-S, we used problem solving compo-
nents (goals, methods, selection rules) to embody game-design knowledge. Thus, we
attempted to guarantee that the client would be happy with a specification by insuring that
its generation followed game-playing principles. To carry out the generative approach suc-
cessfully requires that we anticipate all possible goals of a client, and build methods that will
achieve them, and selection rules that will choose the best, given the constraints of the
domain. This seems unreasonable for any complex domain. A client may always introduce
some twist on a problem that we have not anticipated. An alternative approach is to allow
relatively unconstrained generation by the client, but provide critical analysis of the slowly
evolving specification along the way. This approach has its benefits: it gives the client a free-
hand, and hence allows the inclusion of any concept expressible in the specification language;
it uses whatever knowledge the system possesses when appropriate, giving critiques on
subjects it knows about, and leaving other parts of the specification as is. The drawback is
one inherent in any analysis approach: we must recognize the concepts we wish to critique in
the artifact we are examining. In Glitter-S, the concepts were compiled into the goals and
methods; once concepts such as GAME and PLAY-INNING and BAT were identified in the
initial specification, they were implicitly tracked through problem solving refinement. Without
this track, we may be left with recognizing domain concepts in specification language terms,
a knotty problem indeed. The punchline is that we have moved towards a compromise
between the generative approach of Glitter-S and the analytic approach discussed above.
This is discussed in more detail in section 5.

Finally, we note that our rhetorical question -- is Goldman’s design model sufficient for
building real specifications -- is slightly unfair. Goldman makes no claims that he is describ-
ing a tool or environment. However, it is clear to us that such an environment will be needed
to support the construction of formal specifications in the real world. The next two models we
look at will add further components to those needed by such an environment.

T There are syntactic-level specification criteria we might employ, e.g., non-redundant constructs, non-super-
fluous constructs. In [29], such goodness criteria are grouped under “‘the seven deadly sins’’ of specification.
Conversely, one might argue that anything that makes a specification easier to understand, e.g., redundani
views of the same thing, should not be considered an error.
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3. Specification design as parallel development

Feather proposes a model of specification construction that is based on an approach he terms
parallel development [13]. As with Goldman’s model, Feather starts with a simple descrip-
tion of a problem. From there, various elaborations are considered in parallel. Thus one elab-
oration might be to refine action A, and another elaboration to add a special case S. Both of
these may be carried out independently, producing two separate elaboration lines, one with
*‘simple + refined A”’, and the other with ‘‘simple + case S’’. At some point , the two sepa-
rate lines must be merged, and inconsistencies and interactions dealt with. Note that this is
not simply a renaming of top-down design; each elaboration leads to a different, more
detailed specification. In particular, there is no notion of fixing interfaces; each elaboration
line is free to change the interface or functionality it inherits in arbitrarily complex ways. Of
course, each line must eventually be merged and hence made consistent with the others,
leaving a single, unified specification as a product.

Feather notes that the merging of elaboration lines may span a range of effort. In some cas-
es, two lines may be independent, and hence it may be possible to take their union as a
merged state. In other cases, components of two lines may interact in complex, possibly con-
flicting ways, often requiring domain knowledge to choose among various options.

Feather argues for the parallel development model on the following grounds:

. Each elaboration line separates development concemns. Thus, during construction, the

specification process is simplified. As one might expect, the same benefit is gained in
later attempts to explain and understand the specification.

. The model promotes a gradual refinement. In some sense, one can view each sepa-
rate elaboration line in Feather’'s model as conforming to a Goldman style develop-
ment, with a finite set of specification operators gradually refining some portion of the
specification. In this view, it is an extension of Goldman’s model, one which address-
¢s more of the complexity of building non-trivial specifications by attempting to better
structure and simplify the process.

. The combining or merging of parallel lines forces one to explicitly consider (and docu-
ment!) the interaction between various components of the specification.

. There is a potential for reuse. Feather argues that it may be possible to introduce
abstract specification components (e.g., from a catalog), and use the refinement and

specification-tailoring tools already present to work the component into the current
problem.

To further illustrate the first three points, he describes a pencil and paper design of a specifi-
cation of a patient monitoring system using the parallel development approach (see [19] for
other work on the same problem). Figure 3 gives a graphical representation of the initial
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problem. The representation used in this figure, and throughout the remainder of this section,

Pvalue

Safe M

MPvalue

% ¥ Notify

Figure 3. Feather’s Initial State

is part of the Oz system discussed in more detail shortly. In words, as interpreted by Feath-
er from the original problem statement [40] and paraphrased from figure 3,

There are one or more patients P. Each has a value Pvalue (a crude approximation of
that patient’s medical status). There is one nurses’s station N. It contains the safe
range for a patient’s value. There is one monitor M. It inputs the Pvalue of each patient
P, and passes this value along as MPvalue to the nurse’s station. The nurse’s station
determines whether MPvalue is within range, and sets the boolean flag Safe accord-
ingly. If the monitor receives an unsafe signal from the nurse’s station (i.e., Safe is

false), it signals the nurse’s station using the boolean flag Notil‘ys.

The monitor M is the component of the problem to be implemented; the other components are
considered as part of the environment, and are included to provide a closed specification (see
[3, 12] for arguments in support of such specifications).

8we are using Feather’s original problem statement as is, even though it seems a bit odd that the nurse’s sta-
tion cannot *“notify itself’’ when it detects an unsafe value.
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The final specification developed by Feather is shown graphically in Figure 4. To paraphrase
it,

There are one or more patients P. Each has a value Pvalue, which in turn is broken out
into a set of factors PFvalue. A device D reads these factors, and passes on the val-
ues in a form acceptable to the monitor M. Because the device may fail, it passes on a
separate flag to the monitor describing its current condition. The monitor samples the
values of D, i.e. Dvalue and Fail, beginning at StartTime and for a length Period, both
stored in a database DB. The value read by M during this period is stored in the DB as
Store. There is one nurses’s station N. It contains the safe range for each factor. The
monitor M passes the LastValue of each factor to N. The nurse’s station determines
whether LastValue is within range, and sets the boolean flag Safe accordingly. If the
monitor receives an unsafe signal from the nurse’s station (i.e., Safe is false), it sig-
nals the nurse’s station using the boolean flag Notify.

Pvalue

alue ClockTime

StartTime
Safe \r;\\‘
Sto
LastV3 DB
S

Y Period

f

Figure 4. Feather’s Final State
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Figure 5 shows the top level elaborations that were used to arrive at this specification. In
particular, the initial specification in Figure 5 was elaborated along 4 separate lines --
devices, factors, clock and safety -- as follows:

. Devices. The monitor cannot read the patients’ value directly, but instead must rely
on an intermediate A-to-D device to read Pvalue. This introduces D into the diagram.

. Factors. A patients’ health can be measured by various vital signs. Thus, Pvalue

should be factored into PFvalue, which represents a vector of values for each patient.
Note that both P and PF are modeling the patient now.

. Clock. It is unrealistic to assume that the monitor can read and react instantaneously

to patient values. Instead, we will have the monitor read values periodically, using a
clock to synchronize.

. Safety. Instead of a single boolean flag Safe, we need a safety flag for each patient. In
Gist terms, we will change Safe to a parameterized relation on P.

Once each of these four top level elaborations have been identified, further refinement can be
carried out along each line, e.g., specify that devices may fail, specify that values will have to
be stored between clock ticks.

The final step is to combine all of the separate elaboration lines back into a single
state/specification. As Feather notes in [13], there are three interesting merge interactions
to consider in the patient monitoring problem:

1. In combining devices and factors, what is the mapping from factors to devices, i.e.,
one-to-one (one device for each different factor), many-to-one (one device per
patient), many-to-many (some combination)?

2. In combining factors and clock, what is the mapping from factors to sampling period,
i.e., one-to-one (a different sampling period for each different factor), many-to-one
(same sampling period for all factors), many-to-many (some combination)?

3. In combining device failure9 and clock, should one worry about moving from a continu-
ous monitoring of a device for failure to a periodic one? In other words, we introduced
the clock because the monitor did not have the processing power to continuously mon-
itor D’s output of patient values. Using this same analysis, shouldn’t we worry about
the monitor’s ability to check D continuously for failure?

Given the apparent advantages of Feather’s model, we looked for support of the model’s
claims through the construction of a tool that would allow us to 1) recreate the example
development in a more formal manner, and 2) explore the details of the model that were
missing in the informal description provided in {13]. The next section describes this effort.

9Device failure introduces the notion that the devices D are imperfect, and that the monitor can determine
when one is malfunctioning. The Notify flag is further parameterized to show what type of problem is detect-
ed by the monitor, i.e., malfunction or patient value unsafe,
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3.1 Model implementation

After studying the hand development provided by Feather, we were interested in three ques-
tions: 1) could a tool be built that would manage the parallel development design process, 2)
could some parts of the process by automated ala Glitter-S, and 3) given that a merge pro-
cess is inherent in the model, what were the issues in combining parallel lines beyond those
brought out in Feather’s paper? A system called OZ was constructed by Robinson to explore
these questions [38]. The OZ system contains five major components:

Component 1. A simple specification language based on a subset of Gist. The patient
monitor figures shown in this section are a diagrammatic view of this
language.

Component 2. An elaboration manager that maintains parallel development lines.

Component 3. A set of editing commands for refining a single elaboration line,

Component 4. A specification maintenance component that attempts to clean up other
parts of the specification affected by an editing command.

Component 5, A ““merge editor’’ for managing the merger of parallel development
lines.

To illustrate these components in more detail, we will look at a portion of the development of
the patient monitoring specification as carried out by OZ. To provide context, Figure 5 is a
snapshot of a set of elaboration lines and states generated during the development of the
patient monitoring system. In this figure we can see the four initial parallel lines suggested
by Feather, along with further line splitting and merging. The diagram in this figure is a para-
phrase of the graphics generated by a component of OZ that helps a user track and maintain
the elaboration graph (see component 2 above).
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Figure 5. Development snapshot

Next, we will look at a subset of the states in figure 5 in a finer grain of detail. Figure 6 is an
enlargement of the root state and two of its siblings, devices and factors, both taken from
Feather’s original development. The diagrammatic view of each state is a pretty-print of
components of the OZ specification language:

. Nodes represent Gist processes (demons or procedures). OZ does not represent the
full functionality of each process, but instead just the data dependencies between
input and output.

. Labeled arcs represent newly inserted database relations. Not shown in the diagram,
but represented by OZ, is further information about the cardinality and argument
types of each relation.

In summary, an OZ representation can be viewed as a type of data-dependency graph of a
Gist specification. While this simplified language captures only a modicum of the full Gist lan-
guage, it nevertheless has been useful in at least two ways: 1) it is understandable by the
user, and 2) it is understandable by the machine. For the latter case in particular, OZ con-
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patient factors

Figure 6. Development-state enlargements
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step 3. This leaves us with the first query to account for. An operator in OZ can be imple-
mented by more primitive operators. In the case of SIP, two primitive operators,
Add_Process and Add_Arc, are called on to implement a part of the operation. Each of these
operators in turn may have a rule-set associated with it. In particular, Add Arc has a rule
that worries about process cardinality, prompting the first question in step 3.

For the right sibling in figure 6, the same basic 4 step process is followed using an operator
similar to SIP called UNPACK. For this elaboration, we note that a patient actually has a
number of factors (i.e., vital signs) that are important to monitor. We model this by using a
patient-factor generator PF to unpack the single patient value (in this view, P and PF are
both components of the patient). As with the application of SIP, attached rules will query the
user for more information. In particular, because UNPACK calls SIP, we will see the same
three queries (in a slightly different form) as in the first elaboration. The UNPACK operation
itself has an attached rule for acquiring the new composite set. Thus, PFvalue in figure 6 rep-
resents a set of arcs.

The last component of OZ that we will look at is the merge editor. We will use the merge of
the devices and patient factors states just constructed as an example. Looking at Figure 7, we
can see that there are three major problems confronting us. First, we must decide which pro-
cesses and arcs in each state are in correspondence. Second, we must identify any conflicts.
Third, we must resolve those conflicts. OZ finesses the first problem by relying on the user
to explicitly select corresponding objects from each state. In this case, the user specifies that
the components P, Pvalue, M, MPvalue, N, Notify and Safe in both the left and right
states in Figure 7 are representations for the same objects.

The second problem is to find conflicts; if none exist then a simple union of the two states
may suffice. In our example, the following problem arises: given that two different processes
have been spliced between P and M, which should go first in the merged state, or should
they go in parallel? Oz provides no help in answering this question; it is up to the user to
explicitly tell OZ how to arrange the splices.

Given the user chooses to splice PF and D as shown in figure 8 (and as done by Feather),
should there be separate device for each patient (as in devices), or a device for each patient’s
factor, or a device for a single factor of all patients, or a device for a subset of factors? Oz
does indeed query the user for this information. It does so through the mechanisms we have
already seen in applying an operator to elaborate a line. In particular, the construction of the
new merged state in figure 8 is carried out by operators SIP, UNPACK, etc.,. The rules asso-
ciated with these operators generate queries about the new state that force attention on two
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key aspects 1) how do the new components in each state interact with one another, and 2)
what are the side-effects of the newly concatenated processes on the remaining processes in
the specification?

¥ Notify

Figure 7. Merge of devices and patient factors
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Figure 8 shows the resulting state.

Figure 8. Merge results

3.2 Discussion

To reiterate, our three questions of interest were 1) could a tool be built that would manage
the parallel development design process, 2) could some parts of the process by automated
ala Glitter-S, and 3) given that a merge process is inherent in the model, what were the
issues in combining parallel lines beyond those brought out in Feather’s paper? The results
of the OZ effort provide useful answers to each, but raise still more questions.

First, the OZ system is an existence proof for question 1. However, our attempts to apply
the parallel development model to a more complex problem, and our careful recording of the
actual design steps carried out, have convinced us that there is a major omission in OZ, that
of realistic design or what we call dirty design. In particular, there is no representation of the
dead-end paths, alternative designs, nor cut-and-paste behavior that seems inherent in any
non-trivial design problem. The Glitter system provided a rudimentary form of an exploration
tree, and it appears to us that something similar will be required here. We discuss this prob-
lem in more detail in section 5.4.

In regards to automation, we would argue that OZ was successful in the application of elabo-
ration operators in the limited context in which it was applied. Robinson was able to define a
simple action-oriented ‘‘goal’’ language (e.g. SIP, UNPACK), and provided simple imple-
mentation of goals in terms of other more primitive operations (e.g., ADD_ARC,
ADD_PROCESS). While he did not provide a jittering component ala Glitter, he did build a
cleanup or maintenance mechanism, in the form of attached rules, for leading the user through
a set of potentially interesting post-elaboration questions.
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Of course, the simplicity of the OZ specification language must be considered. Operating on
and maintaining an extended data-dependency graph is a far cry from dealing with the full
complexity of a language like Gist. On the positive side, not a small amount of useful automa-
tion was gained with this simple representation. This appears to be an encouraging result:
we may be able to gain immediate automation benefits if we are willing to allow our tools to
work with simpler representations of our full languages, leaving the more complex analysis
to the human user.

The automation of the merge operation in the parallel development model remains a key
research problem for our group. In particular, given unlimited splitting of new lines, and
unconstrained divergence of each of those lines, can we hope to bring all lines back into a sin-
gle, coherent, specification? Robinson snoted the three hard problems: finding what is common
in the two states, finding what is in conflict, and finally, resolving the conflict. The OZ system
leaves each of these problems in the user’s hands. Once the user has answered each ques-
tion, the system does use a clever form of post-merge analysis by reusing the same cleanup
rules used in normal elaboration. Our most recent efforts in addressing the merge issue are
discussed in section 5.3.

3.3 Other questions raised

The construction and testing of OZ raised a set of new questions regarding the parallel
development model:

Choice of the initial specification. This remains an open question in the pure elaboration
model. However, it has not been a difficult task, at least in the small number of problems we
have studied, to come up with a minimal description. Thus, while we might later wish to cata-
log a group of root nodes for various application domains, the lack of mechanized support for
choosing the starting specification does not appear a crucial problem at this point.

Choice of elaboration lines. There may be many means of viewing a problem within the elab-
oration model. The patient monitoring problem was simple enough where this was not a par-
ticular difficulty. However, our study of a larger problem, a university library system, made it
clear that choosing the break-out of the problem was important. At the very least, we would
like support for exploring various elaboration options.

Choice of operator. The question here is the degree of automation one expects from a com-
puter-based assistant. In OZ, the user is responsible for stating rather specific elaboration
goals. Hence, it is up to the user to do the more demanding problem solving necessary to
decide how an elaboration line will proceed, and then find the OZ commands that will bring it
about. In the Glitter system, as introduced in section 2, the system was able to make some
of the elaboration/refinement choices automatically, given a general development goal posted
by the user. The question is whether we can expect to come up with a user development lan-
guage such as Glitter’s, ie., one at a high enough level to allow useful problem solving by
the system, in the domain of specification design. For instance, we might like to tell an OZ-
like assistant ‘‘Fill in the details of devices that fail’’, and expect the assistant to choose
what elaborations are necessary to extend the specification, using its knowledge of domains
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that contain imperfect physical devices. While this command can be viewed as residing along
the “‘case analysis’’ dimension suggested by Goldman, the knowledge necessary to carry it
out is clearly moving away from Goldman’s notions of domain-independent refinements.

We also note the issue of elaboration order, i.e., is the model overly sensitive to the order in
which elaborations are carried out. If so, then we may spend all of our time attempting to find
the right elaboration sequence as opposed to the right elaborations. While we cannot offer a
formal proof of Church-Rosser properties here, our experience with the patient monitoring
problem and a library problem suggests that the parallel development model is relative insen-
sitive to elaboration order (this claim was also made by Feather in his paper [13]).

Support of abstraction. Feather’s model is based on the notion of evolutionary development
coupled with parallel, focused views. While both of these ideas give us a powerful type of
complexity management, we have not addressed the more traditional notion of design simpli-
fication based on abstraction coupled with step-wise refinement. It can be argued that the
step-wise refinement approach is founded on having a complete (but abstract) specification
to start with, and thus would naturally follow the design of the specification. Or alternatively,
that abstraction is a language issue (see section 6.1). However, we believe these are glib
dismissals: we have also argued that specification is a design process, and it seems clear
that abstraction is a useful design technique. The question then becomes its role in the paral-
lel development model, or more broadly, its role in an evolutionary model, i.e., a model with
an ever changing specification.

4. Critiquing a specification

The third specification system we will look at in detail is one that attempts to debug or cri-
tique a given specification. It is based on the following three assumptions: 1) the client may
have only a vague idea of what he or she wants, 2) domain knowledge will be a required com-
ponent of the critiquing process, and 3) the system will need some knowledge of the develop-
ment process as a whole, including the design, coding, and maintenance processes, resource
requirements, and constraints on the runtime environment. These three assumptions run
counter to the view of analysis as a process of translating or rephrasing client intent to formal
or semi-formal documents. In the translation view, the human analyst is taken to be expert
in interviewing and model building skills, but ignorant of the domain. Lacking domain knowl-
edge, the analyst focuses on syntactic error detection techniques similar to those one might
find in a good compiler, e.g., missing inputs and outputs (parameters), interface mismatches
(typing errors), unused data (dead variables), disconnected processes (dead code).

In our view, the production of a specification is not so much a translation process as an inter-
active problem solving process with both client and analyst involved in supplying parts to the
final product. This requires our analyst to have a thorough understanding of the application
domain, and the ability to both critique client descriptions, and suggest components of its
own. Part of this process is indeed the type of syntactic analysis discussed above. However,
we are attempting to extend analysis into validation of intent. That is, we expect to take a
perfectly valid (syntactically valid, consistent, unambiguous) description of specification com-
ponents, and attempt to poke holes in it.
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As we will discuss in more detail in section 5, the system we describe here is a limited pro-
totype of a larger project. Our goal is to provide assistance to a software analyst in producing
a formal specification. The project, called Kate [15], focuses on the following 3 components:

Component 1. A model of the domain of interest. This includes the common objects,
operations, and constraints of the domain, as well as information on
how they meet the types of goals or policies one encounters in the

domain.

Component 2. A specification construction component that controls the design of the
client’s emerging specification. The Oz system is one of the tools we
are studying to fill this role.

Component 3. A critic that attempts to poke holes in the client’s problem description

(in the form of the specification being constructed).

In the next section, we describe a system that focuses on the first and third components, the
domain model and the specification critic.

4.1 Model implementation

Our attempt to build a critic has taken us through several iterations. We will discuss the
three major versions that came out of our efforts.

4.1.1 Critic-1

We constructed a tool made up of two pieces, a specification language and a rule-based crit-
ic. The framework of the tool consisted of a model part, an example part, and correspon-

dence links between components in model and examplen. The use of model was as a
representation of a particular application domain D. The use of example was as the repre-
sentation of a particular problem specification in D. Our specification language, used by both
model and example, can be viewed as an augmented Petri-net representation that allows
computable predicates on both arcs and transitions. The language also supports abstraction
through a class hierarchy in a manner similar to Greenspan’s RML language [22]. Initial
versions used NIKL [24] as the basis for implementation; more recent versions use
KEE/SIMKIT [25].

To use the tool, several manual steps had to be employed. First a representation of a particu-
lar domain had to be coded in model. As our initial domain, we chose the domain of resource
management. We justify this choice elsewhere [15, 16], but note here that the domain cov-
ers a wide range of applications including management of human, physical and information
resources, and forces one to deal with human users, staff personnel, resource overflow and
underflow, security, and a host of other ‘‘interesting’’ problems (see, for instance, [9]).

11Be«:ausc an example-model link is often hypothetical, each such link is made in a separate context. In this
way, alternative mappings from example to model can be maintained, reflecting the frequent ambiguity in a
client’s description (for example, see section 5.5.2).
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Second, the specification to be critiqued had to be represented as the example. The specifica-
tion/example we will discuss in this section is that of an automated library system. The
problem has become a standard one in discussing specification research. The particular incar-
nation we will use comes from the problem set handed out prior to the Fourth International
Workshop on Software Specification and Design [19]; it is produced verbatim in Appendix A.

Finally, correspondence links were forged between components in model and those of exam-
ple.

To reiterate, all three of these steps were carried out manually, i.e., by members of our group.
Once model, example, and the correspondence links were in place, a rule-based critic, imple-
mented in the ORBS language [17], was used to find components of model that were not
linked to components in example. Running the tool on the problem description in Appendix A
(after translation into example form), we were able to produce warnings such as the follow-
ing:

. Missing actions: mark-as-lost, add-to-group, remove-from-group

. Missing constraint: borrowing-time-limit
4.1.2 Critic-2

At least one major problem we found with critic-1 was that there may be problematic compo-
nents in example that did not show up in model. Specifically, model was meant to represent
the typical components of a resource management system, and thus give advice such as ‘X
is a good thing to have, and you’re missing it.”* It seemed we needed a representation of the
way systems can also go wrong as well: **X is a bad thing to have, and you’ve got it.”’

Our solution was to divide model into good components (what we had originally) and bad
components, still using correspondence links to tie components of both types into example.
This approach allowed us to produce a new set of warnings:

. Problematic action: who-has-what-query
. Problematic constraint: book-borrowing-limit
. Problematic object: borrowing-history-record

4.1.3 Critic-3

It became clear by talking with expert analysts that there is really no such thing as an inher-
ently “‘bad specification’’, only one that does not conform to policies in force. In particular,
the goodness or badness of a component in example can only be judged relative to the goals

or policies of the client!2, Thus, the two-part partition of model in critic-2 is overly rigid.
What we really need is 1) a broad representation of the basic components of the domain, 2) a

12We will henceforth use goal and policy synonymously. Further, we will include resource constraints, both
on the development of an implementation and on the operational environment, as representable as policy deci-
sions, e.g., ‘‘minimize operational staffing costs’’. See section 5.2 for further discussion.
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representation of the policies of the domain, and 3) a way to show the relationship between
domain components and policies. It is only after we have this third component that we can
point to errors in the specification.

We built a tool that captured all three components listed above. This involved combining the
two parts of model in critic-2 into a more general, single model. Further, a simple, hierarchi-
cal representation of policies was defined based on discussions with domain experts and a
study of the resource management literature. Each policy can be in one of three states: impor-
tant, unimportant, unknown. Finally, model components were linked to policies. Such a link
can take on one of two values: positive (the component supports the policy); negative (the
component thwarts the policy).

The critic’s rules can now be more tightly classified into three types:

Type 1: A policy marked as important or unknown is linked positively to a model com-
ponent. No corresponding component can be found in example.

Type 2: A policy marked as important or unknown is linked negatively to a model com-
ponent. A corresponding component can be found in example.

Type 3: A policy marked as unimportant is linked positively to a model component. A
corresponding component can be found in example.

Type 3 is a weaker type of critique than the first two, and is based on the notion that compo-
nents added to a specification in support of an unimportant policy will tend to add unneces-
sarily both to the complexity of the system, and to the cost of its operation and maintenance.

It is important to note that it is possible, and in fact typical, for the same model component to
have both positive and negative links to some set of policies. That is, it may positively sup-
port policy A and negatively effect policy B. Further, while we would like to think that A and
B are never both simultaneously marked as important, it is again typical for a client to
describe a conflicting set of goals or policies, i.e., ‘‘l want it all.”’ One critical process in spec-
ification design is then coming to grips with conflicting policies through various forms of
trade-off and compromise. We will discuss this further in sections 5.2 and 5.3. Our critic cur-
rently does mot note these conflicts, but simply presents the three types of warnings given
above.

The tool, eventually dubbed Skate (for Small Kate), was run on the library problem; we dis-
cuss the results in the next section.

4.2 Discussion

As an assessment of Skate’s performance, we presented a university library analyst with
the same problem description as in Appendix A, and asked her to critique it outloud. We
recorded this session in both audio and video form; an analysis of the transcript can be found
in [18]. There were three things worth noting about the results. First, much of the session
was taken up with establishing *‘the ground rules”, i.e., the policies in effect. In Skate’s cri-
tique, we left all but one of the policy nodes marked as of unknown importance to reflect the
meagre information given in the text description. In our session with the library analyst, we
felt compelled to fill in at least some of the policy details of the problem. The negative side of
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this is that we are no longer comparing exactly the same problem. However, there is a posi-
tive side as well: the policy questions raised by the analyst were at least superficially equiv-
alent to ones in Skate’s representation. Thus, we find support 1) for the general notion that a
critique of a specification must take into account the overall goals and available resources,
and 2) for the specific use of policies to capture this information in Skate.

The second thing to note from our results is the actual critique given by the analyst. First we
will summarize the major findings of Skate’s critique of the problem description in Appendix
A (henceforth, WS), and then compare them with that of the library analyst. We remind the
reader that Skate’s criticism is given in light of only a single component-policy link; other
links that might be used to counter the criticism are not taken into account.

1. Actions 4 and 5 in WS may cause problems with giving out user-confidential informa-
tion. In general, any action that gives out information about a user’s borrowing record,
whether now or in the past and whether to the same user, or to someone else, is
linked negatively to the policy of maintaining user privacy.

28 The WS constraint that the check out action must be monitored by a staff perscml:”
goes against the policy of minimizing operational staff. This policy was marked as
important by at least one interpretation of small in the first line of the description.

3. The actions of adding and removing a book (see item 2 in WS) can be viewed in finer
grain, e.g., remove-lost, remove-stolen, remove-damaged, replace-lost, replace-
stolen, replace-damaged. These type of actions are linked positively in model to the
policy of accounting for human foibles.

4. A borrowing limit (part of WS) is linked negatively to the policy of giving users a suf-
ficient working set.

S, A borrowing time limit is linked positively to the policy of maintaining an adequate
stock on hand. There is no corresponding component found in the description of WS.

6. The division of users into groups (staff and ordinary borrowers in WS) is without cor-
responding actions to add and remove members from a group. These actions in model
are linked positively to a policy of recognizing the human dynamics of group member-
ship.

The analyst produced criticism similar to 1, 3, and 4 above. Later questioning of the analyst
about the other three warmings produced by Skate (2,5,6), and missing from her critique, can
be summarized as follows:

13'I'hert: is actually another interpretation of the constraint: only staff can check out books. While no human
reader used this interpretation, we did run it through Skate. The outcome was a waming that the policy of giv-
ing library users access to needed materials was unsupporied in the case of non-staff, i.e,, ordinary borrowers.
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. (2) She assumed that no library could be effective without some type of control on
check out and check in. Thus, she was assuming that if we needed to minimize cost, it
would not be through removing staffing from circulation. The message for us was that
we would need some type of prioritization ordering on policies.

. (5) Her assumption was that you must give users both an adequate set of resources
(prompting her criticism akin to Skate’s in 4), and an adequate time to keep them out.
Again, there seemed to be an ordering of policies that placed this above concerns of
keeping adequate stock on hand.

. (6) These seemed so obvious that she assumed that they were omitted just as a mat-
ter of detail, and that any competent designer would include them (!).

In summary, the comparison of Skate’s analysis with that of the human analyst reassures us
that the representation of policies in a specification critic will be a key component. Our find-
ings also point to the need for a more refined view of policies, their interaction, and their con-
nection to domain components. This is discussed in more detail in section 5.2.

Finally we note that critic-3 has no automated means of extending model; this curmrently
must be done by manual editing. While we are interested in a more automated acquisition
process, success here would seem to rest on progress in the learning field in general [10].

5. The Kate project

In the proceeding portions of this paper, we have described three projects that have attempt-
ed to better formalize or automate the specification process. We have taken the results from
each, and are using them in our larger project, Kate, to further formalize and automate soft-
ware analysis. This section discusses the Kate project in more detail.

5.1 Use of the parallel development model

We have chosen the parallel development model as the organizational tool for building

FrameNet!4 specifications. The bases of this decision were the results of the OZ project dis-
cussed in section 3, and the subsequent development of a much more complex specification,
that of a university library system. In the latter development, described in [6], we kept a
careful record, over a three month period, of the paper-and-pencil use of the parallel develop-
ment model for building a FrameNet specification of an automated library system. We can
summarize the positive results of this effort under two headings:

Choice of elaboration lines. We did find at least informal guidelines for breaking out elabora-
tion lines. Initial elaboration of the root could usefully be tied to each of the users’ perspec-
tives. Thus, specifications would be built initially from each user’s selfish viewpoint, e.g., a

14We have settled on a compromise between a process-based and frame-based representation for our specifica-
tion language in the form of a Numerical Petri Net (NPN) [46) extended to include frame-type tokens. This
frame-based NPN language, which we have dubbed FrameNet, has been brought up on top of the
KEE/SIMKIT system [25].
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line for the selfish borrower, a line for the selfish library administrators, a line for the selfish
library staff. Once these lines were brought together, subsequent elaboration lines followed
functional lines, primarily as a means of simplifying the problem.

Design as compromise. The merge of ‘‘selfish lines’’ was clearly where much of the action
was. Virtually all of the library concepts that we could find could be traced to compromises
between various special interests. The merge operation provided two important functions
here: 1) it gave a focal point where conflict became apparent, and various conflict resolution
strategies could be discussed, e.g., what compromises are available, what selection criteria
should be used in choosing among them, and 2) it forced an explicit record to be kept of the
decision process. As an example, when attempting to merge the selfish borrower line and the
selfish library (administrators) line, a conflict arises between the borrower’s wish to keep a
book indefinitely, and the library’s wish to have a needed book instantly available to a poten-
tial customer. The choice of resolution strategy here will give different types of librarics, e.g.,
reference library only if the administration is given priority, department library if the borrow-
er is given priority, university library if a compromise such as recall-on-demand is chosen,
city library if a compromise such as fixed-time loans is chosen.

In summary, we find Feather’s claims are still substantially supported:
. Each elaboration line separates specification concerns.

. The model supports gradual refinement.

. The combining or merging of parallel lines forces one to explicitly consider (and docu-
ment!) the interaction between various components of the specification.

. There is a potential for reuse. We will discuss this further in section 5.4.

However, there were negative results as well. In particular, we saw a lack of support in two
important areas:

Merge assistance. The merge operation must be better formalized and automated. Part of this
problem is necessary progress on the three sub-tasks pointed out by Robinson. Part is also
identifying the various kinds of merge operations that one may want. For instance, in our
design of the library model, functional elaboration lines often required communication
between them, primarily to avoid wildly divergent work, but also to promote sharing of analy-
sis. We dubbed this type of communication crosstalk, and found the need for a special type of
incremental merge that would handle it.

Dirty design. The carefully recorded design steps of the library specification [6] pointed out
the need for a more extended view of design management tools. In particular, the OZ sys-
tem captured all of the elaborations, operators, and merging of a design, but only for a single
solution. The Glitter system, viewing design as a problem solving process, captured the
AND/OR ftree, and thus multiple solutions, but left backtracking to the user and did not sup-
port reuse. Our experience with the library design convinces us that we need the full solution
history kept by OZ, and a means of exploring and recording alternative designs ala Glitter,
and a means of reusing parts of the design when backing out of false paths or constructing
portions of the model that are similar to others.
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Each of these two problems has spawned research efforts within our project. They are dis-
cussed in sections 5.3 and 5.4.

5.2 Representation of Policy

We argued in section 4.2 that our representation of policies seem to capture the type of goal
or context information employed by human analysts, but lacked a notion of policy interaction.
For instance, many components in Skate’s model were linked to conflicting policies. It is
clear from our protocol studies that each analyst had at least a partial ordering on the policies
of the domain, an ordering that was used to choose among various components needed in the
final specification. Our initial approach to handling this problem has been direct; define a par-
tial ordering on policies, and pass this information along both to the critic and to the merge
assistant in Oz. Unfortunately, we suspect that this is rather a naive view of a complex goal
structure, and we will eventually need to look at more sophisticated representations such as
the meta-goal and meta-plan notions proposed by Wilensky [48].

Besides concern with the interaction between policies, we see the need for further study of
our representation of the policies themselves. In particular we believe, in pursuit of generali-
ty, we might be overloading the policy notion. At present, we use policies to represent a) the
various goals of the users and administrators of the system, b) the resource constraints of
the system, and c) a simple model of human behavior in resource management applications.
For the latter in particular, concepts such as borrowers forgetting, borrowers stealing, bor-
rowers gaining and using information illicitly, tend to interact with specification components
in complex ways, sometimes requiring something more akin to a script-like representation.
In fact, we are currently extending Skate to include the notion of a usage scenario to capture
this knowledge. A usage scenario consists of 1) a set of FrameNet components that repre-
sent a particular type of user transaction with the system (TAXIS scripts [4] use a similar
approach), and 2) an optional list of policies that are positively or negatively reinforced by
the scenario. We employ usage scenarios to capture the way users and staff typically use
and misuse a system in a particular domain. Because usage scenarios are tied into the com-
ponents of model, i.e., they are instantiated with the objects, actions, constraints and poli-
cies represented in model, they rest by definition on domain knowledge. Some examples may
be useful here.

The first case involves a user U; who wishes to know the reading material of a user Uj' The
key to this scenario is the condition that U; be in a state of knowing U.’s identification.

]
Reaching such a state can be trivial if personal names are used as id; passwords would

require a more complex impersonation scheme. The objects of the scenario are two users U;
and Uj’ and a resource R. The scenario is linked negatively to the policy of maintaining user
privacy, and can be paraphrased as follows:

*“A user Uj has checked out a resource R; Ui is in a state in which he or she can
identify himself or herself as Uj; U, queries the system for the resources checked out
by Uj; U; moves to a state in which he or she is aware of the identity of R.”’
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The second case involves a user U who has checked out a resource R, but has now lost track
of its identity. The objects of the scenario are a user U and a resource R. The scenario is
linked positively to the policy of allowing for user forgetfulness.

““A user U has checked out a resource R; U moves to a state in which he or she has
forgotten the identity of R; U queries the system for the resources checked out by U;
U moves to a state in which he or she is aware of the identity of R.”’

When extended with this information, Skate is able to offer more complex critiques of a speci-
fication. For instance, the inclusion in Appendix A of a query to allow users to find out what
books they have borrowed, and an assignment of value important (or unknown) to the priva-
cy policy, will now prompt Skate to present the first scenario. If the user decides to remove
the query, the second scenario will be presented.

Skate also issues wamings on partially matched usage scenarios. For instance, if we parse
Action 1 in Appendix A to mean only staff can borrow, scenario 2 above has a partial match:
the query is present for ordinary borrowers (from Action 4), but the check out action is miss-
ing for this group. In other words, ordinary borrowers can find out what they have checked
out, but cannot check anything out! We’d like to claim that the system is being clever here.
However, what is compiled out of such a critique is a representation of why the scenario is
useful, or how its steps necessarily characterize it. Thus, we cannot generate the perhaps
more satisfying explanation

“Useless queries are bad. Any query that returns known information is a useless
query. Any query that returns a known constant is one that returns known informa-
tion. Transaction 4 [query own books] always returns “‘nil’’, and it is known that it
will return nil. Transaction 4 is a useless query.”’

In other words, while we do capture the notion of a partially matched usage scenario repre-
senting a potentially incomplete or inconsistent view of the problem, it is really of a scenario-
syntax nature. Overall, however, this expanded view of component interaction in support of
policies seems to be a useful one, and worth further exploration.

5.3 Formalizing and automating merge

Our study of the library problem reaffirmed our notion that the merge operation in the parallel
development model was of prime concemn. There are three problems in merging specifications
A and B: 1) finding the common components of A and B, 2) finding the conflicts between A
and B, and 3) resolving the conflicts.

The first problem is currently finessed by our system: we rely on the user to provide the reg-
istration between the two specifications. While we can conjecture that the operator history of
each line, along with their common ancestor, may provide help here, we have yet to attempt
to use this information in our system.

For the second problem, we are attempting to extend work in the version control area to con-
flict detection. In particular, Horwitz, et al have devised an algorithm for merging non-conflict-
ing code modules in a version control system [23). As part of this process, they must
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determine if conflict exists. Robinson has found a way to extend this work to identify conflicts
for simple types of merges in the parallel development model. As part of his thesis work, he
is studying means of generalizing his algorithm to handle more complex cases.

For the third problem, there are two questions to consider: 1) what conflict resolution strate-
gies are available, and 2) what criteria can be used to select among them. Given that the
type of conflict has been classified in the previous step, our goal is to have a set of strategies
cataloged in Kate to resolve it. Thus, if a specification A has a process defined for gaining
access to a resource, and specification B has no such process, we might consider the follow-
ing strategies:

1. Prefer A over B, i.e., allow unlimited access.

2. Prefer B over A, i.e., allow no access.

3. Compromise between A and B, e.g., allow limited access.
4

5 Add a new component not found in either A or B that satisfies the concerns of both,
e.g., add new resources as they become depleted.

Clearly the choice among these must depend on the rationale for the existence of an access
function in A and the lack of one in B. In our view, we are back to issues of policy and the
ordering among policies. For instance, the access function in A may be motivated by a policy
of giving users what they need to perform a task. The lack of an access function in B may be
motivated by a policy of maintaining a useful stock on hand, Various types of resource man-
agement schemes can be specified by the choice of a strategy above, each making a commit-
ment to the weight they give to the policies of A and B. Note that while strategies 3 and 4
treat A and B as of equal weight, strategy 4 introduces a new problem of producing new
resources on demand; its selection must depend on yet still other concerns with the ability to
acquire such resources (e.g., buy multiple copies of popular books, find funds to replace lost
or stolen books) when the system is put into operation.

There are two approaches that we are exploring to address the issues above. First, we are
extending Oz to include the representation of policies discussed in the previous section. As
we have argued, we will need this information as the basis for selection among merge strate-
gies.

Second, we are using the Glitter model in representing conflict resolution as a problem solv-
ing process. Thus, an initial Glitter goal might be of the form resolve-conflict(X,Y). Conflict
resolution strategies are stored as Glitter methods. Each strategy/method may post further
goals (e.g., choose(X), choose(Y), choose-compromise(X.Y)), finally leading to actual elabora-
tion operators. Selection criteria, e.g., priority-ordering(X.Y), maintain{X), maintain(Y), find a
home as Glitter selection rules. Finally, Glitter maintains the problem solving history as a
permanent record, thus documenting the design decision that lead to a particular merged
.state being created.

Of course, questions abound here: can merge strategies be defined in domain-independent
terms (our example is tied to resource management problems); given a general strategy,
how are its details implemented (e.g., how is choose-compromise achieved in terms of lower
level methods and goals); are there a tractable number of strategies and a feasible way to
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organize them? In summary, while Glitter appears to provide a useful representation, we still
must decide what to represent. As part of his thesis work, Robinson is looking at these
issues.

5.4 Dirty design

Our careful record of the use of the parallel development model on both the patient-monitor-
ing specification, and an automated library specification carried out later, brought to light the
following types of design processes:

. Generative design. The designer gradually extends the specification by choosing elab-
orations and operators, and generating new states until the specification is sufficient-
ly defined. This is the ideal type of design process implicit in specification develop-
ment systems such as those of Goldman [20] and Feather [13].

’ Alternative design. The designer recognizes that the current specification, as
designed, may be inappropriate (for any number of possible reasons), and an alterna-
tive is spawned.

. Design patching. A design previously thought to be satisfactory is later recognized to
have deficiencies. Instead of starting an alternative design, missing pieces are
patched into the existing design at appropriate places. In his Paddle system [47],
Wile addresses some of the issues involved with patching a transformational imple-
mentation, which is not dissimilar to the elaborations of Goldman and Feather.

. Design reuse. To extend the current state, the designer pulls a piece of design from
another place, and appends it. This other place can include another elaboration line of
the same design or a piece of an alternative design (a type of design salvaging).

. Analogical design. More than once we found ourselves looking at the design of the
patient-monitoring specification for guidance on the library problem. While we did not
explicitly attempt to map pieces from one to the other, we speculate that with the
proper set of support tools, this could have been a powerful form of design.

Most tools support only the notion of generative design. The assumption is that the designer
will make all the correct choices along the way, and that duplication of effort is to be tolerat-
ed. We would like to support a more realistic view that takes into account the other design
processes we have listed above, collectively what we are calling dirty design to contrast it to
the pure, generative model.

As a start, we have extended the Oz system with a representation of alternatives and a
means to move about them. In a related research effort, we are attempting to characterize
and support the type of copy-and-paste and patching processes that were observed so fre-
quently in the design of the library specification. We are currently able to support & very sim-
ple type of copy operation that takes a starting and ending state (and the operations in
between) from one design alternative and attaches it to the leaf state of another (the user
must supply the correspondence between objects in the design being copied and the design
being extended or patched). If conflicts arise after attachment, for example an operation from
the old design does not apply in the new context, the user is asked to manually repair the
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state. Our goal here is to remove the user from the repair process by relying on the system
to ““fix up”’ the current state so that copied or patched designs can be integrated. However,
even a primitive copy operation provides, if nothing else, a more explicit record of the ‘‘real”
design process that we observed taking place in our construction of specifications.

In a longer term view, we have become interested in reusing designs not only within a speci-
fication, but across specifications and eventually across domains. John Anderson is exploring
the concept of analogical mapping of designs as part as his Ph.D. thesis.

5.5 Interactive Design

Our long term goal is to produce an interactive assistant for acquiring a problem from a client
and designing a formal specification. Towards this end, we have begun to integrate our work
on Oz and Skate, giving us a specification tool with the ability to critique an evolving design.
However, there is much to be done to move from what is basically an extended editing
paradigm to a model of active design assistance. Qur preliminary studies have allowed us to
identify three of the processes that we believe will be necessary in such a model: problem
acquisition, disambiguation, and example-based critiquing, . We discuss each briefly below.

5.5.1 Example-based critiquing

The results of the Skate project convinced us that a knowledge-based critic could play an
important role in debugging a specification. The results of studying expert human analysts
provided clues on how a critique might effectively be delivered. In particular, the library ana-
lyst that we studied was able to give a much more detailed analysis of a problem than Skate,
and produce a seemingly unlimited number of examples on demand. In our view, she had 1)a
deep understanding of the ‘‘first principles’’ of library science, 2) a knowledge of specific
libraries and thus specific examples, and 3) the ability to generate hypothetical examples to
illustrate some abstract principle or policy. A student on our project, P. Nagarajan, is
attempting to integrate the Skate work with this finding. Specifically, his interest is in build-
ing a critiquer that is able to present a critique by way of examples. His approach, similar to
Rissland’s in the legal domain [35, 36, 37), is to catalog a set of interesting cases in a gener-
ic form. Attached to each case is the type of bug it represents, and ways of generating an
example that demonstrate the bug to the client. To critique a particular state S in Oz,

Nagarajan’s system first matches FrameNet components of S against cataloged cases!®, If a
case C matches, an example is generated in S that can include either concrete or abstract
frame tokens for execution purposes.

Nagarajan has built a small prototype critic system that can analyze simple resource under-
flow problems. An example may be illustrative here. An underflow case is stored in the Sys-
tem as 1) a FrameNet place that holds a limited number of FrameNet resource fokens (nee
objects)that are checked in, 2) a place that holds one or more borrower tokens, 3) a place

1'sAs with the merge problem, the matching task here is difficult. Currently, the system uses simple name
correspondence when possible, and otherwise, queries the user.
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that holds zero or more resource tokens that are checked out, and 4) a FrameNet process
that takes as input tokens from checked in resources and borrowers, and moves the resource
token to the checked out place. Figure 9 represents the case.

checked in

O
/bor‘raw checked out

borrowers

Figure 9. Resource underflow case

Attached to this case is a scenario for showing its dire consequences, i.e., that available
resources can soon be depleted. The scenario includes the initial placement of tokens to start
the scenario, and a directive to the non-deterministic control mechanism of the net to fire the
borrow process whenever possible, i.e., constantly until no more resource tokens are avail-
able. Along with the execution trace of the scenario (using SIMKIT’s animation tools), the
system also generates a canned text summary of the problem for the user.

Note that Nagarajan’s system is attempting to demonstrate an extreme case here. For
instance, other processes might exist in S for replenishing resources either by checking them
back in or buying new ones (as represented by the elision of an input arc to checked in in Fig-
ure 9), or even removing borrowers from the pool. However, at least in terms of FrameNet’s
non-deterministic control, an unrestricted borrowing process could possibly lead to the case
shown. It is the analyst’s and client’s decision whether it is worth building in further restric-
tions (e.g., by attaching predicates to the borrow process) to prevent the case. Nagarajan is
also looking at the representation of best-case and average-case scenarios, thus extending
the type of examples that can be generated, and coming closer to Rissland’s notion of a con-
tinuum of cases to consider for any specific issue [36].
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5.5.2 Disambiguation

A high Ievel problem description, such as the one in Appendix A, is of mixed benefit. It clear-
ly reduces the amount of detail that must be specified. For instance, there is no need to
define what the words library, check in, check out, add, remove, query, or book mean; they
are all assumed to be obvious to the reader. However, this opens the door to ambiguity and
misunderstanding. Specifically, client and analyst may each maintain a different interpretation
of the problem while under the illusion that they share the same interpretation. For instance,
the following ambiguities from Appendix A lead to different interpretations by various read-
ers of the text:

Ambiguity 1: The word small in the first sentence can be interpreted several ways, e.g.,
the library collection is small, ie., a small-library database, the database will remain
small, i.e., a small library-database (which is at least partially subsumed by meaning 1),
the supporting environment is small, i.e., a small-time operation, or small is synonymous

with simple, i.e., a simple problem involving a library database!S.

Ambiguity 2: When the class users is broken into staff and ordinary borrowers, does staff
refer to library staff or organizational staff? We parsed it to mean library staff; the library
analyst parsed it to mean university staff as a whole (i.e., there are faculty, staff, and stu-
dents at a university).

Ambiguity 3: A constraint on the check in and check out actions states that only staff are
allowed to perform these actions. Does this mean literally that ordinary borrowers cannot
borrow? Or does it mean that a staff member must be in charge of these actions?

Using formal specification languages instead of English text only partially addresses the
ambiguity issue; someone must still interpret the client’s description and map it into formal
terms, e.g., our mapping of Appendix A into a Skate example. Expert human analysts seem
to be aware of this problem. From our protocol studies [18] we have found that they use a
variety of means to insure that a consistent understanding is maintained. Below are three
exemplary samples from our transcripts:

1. | Analyst: [discussing meaning of removal of book] OK, and then removing it would
be, say, it gets old, or it gets torn up or it's missing pages [client agrees with mean-
ing].

16K cmmerer's original description [26], from which the workshop problem was taken, gives no clue since it
reads "The example system considered in this paper is a university library database”, obviously not a small-
library database, nor a small library-database, nor a small-time operation, nor a simple problem. We chose to
take the meaning small-time operation in terms of siaff, i.c., we marked the policy of minimizing staff as

CIS Technical Report 87-05, November, 1987.



Page 38

2. | Client: Everything [related to book ordering] is centralized.

Analyst: OK. So they order things for you,

Client: Um-hmm.

Analyst: and then process them,

Client: Yes.

Analyst: and so you get a book that’s been processed and has got a book card in it,
Client: Um-hmm.

Analyst: a check-out card, and it has the set of cards and you file those.

Client: Right.

3. | Analyst: How many, what’s your patron count? How many people use the library?
Client: 1300.
Analyst: About 1300 in the school. OK. [Goes on to find the actual usage.]

All three examples above show the power of domain expertise within an analyst. The first
two rely on knowing the details of domain terminology, while the third is based on an expect-
ed value range. For the latter in particular, our supposition is that the analyst expanded the
client’s ‘1300’ response because it was a surprising answer taken literally, i.c., that 1300
students of a high school were library users. More likely the client was giving the total num-
ber of potential users.

5.5.3 Problem acquisition

Problem acquisition must be at the heart of any specification design tool. We observed three
types of acquisition techniques that were common across our expert analysts: 1) short-
answer questions, 2) example-based questions, and 3) summarization-based questions.
For the first, typical behavior was to open a session with a set of stock questions. The
‘‘patron count’’ dialog in the third example above exemplifies this behavior,

Example-based questions were also typically of a short-answer variety, but were lead off
with a scenario to set a context. Several examples are given below:
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1. | Analyst: OK, how about on-line, public access, so that a student could come in and
rather than go through the card catalog, could search your holdings on a terminal [do
you want this feature]? ...

2. | Analyst: Since we are in a campus setting, talking about a departmental library, I
would have to ask what ordinary borrowers are we distinguishing between. For
instance, a senior working on a honors thesis may need the same type of borrowing
privileges that a graduate student needs [should we refine the notion of ordinary
borrower1?]. ...

One thing in particular is evident from interactions like those above: the analyst is often driv-
ing the design. To model this behavior, Nagarajan is studying the use of his catalog of cases
as the basis for a synthesis tool. Thus, in a similar way to that proposed by the Program-
mer’s Apprentice project [45], the same cases (or plans) can be used for both analysis and
synthesis. The goal is to use the generic FrameNet cases to generate examples of potential-
ly useful specification components to be confirmed or denied by the client (see both examples
above).

The third acquisition technique, summarization-based questions, was typically directed
towards completeness checks and further refinement, as shown by the following two exam-
ples:

1. | Analyst: And so a student’s file isn’t considered complete until they have all the
things. Are there other things other than letters of recommendation, test scores,

statement of goals, transcript, and application [Swnmarizing file contents discussed
to date.]?

Client: No.

2. | Analyst: OK., Um. I don’t know how far you want us to take this, at this point. I
think I know basically what the process of graduate student admissions and appli-
cation is.

Observer: Would you summarize it?

Analyst: Yeah, Um. Basically the process involves completing a file for each gradu-
ate student. That file contains letters of recommendation, test scores, statement of
goals, transcripts, and the application itself. [continues summary] ... and then you
send the file to . . . well, and you also tell them when it’s going to appear before the
committee, So, is that the same time each term or how does that . ..?

Client: Within a few weeks, yeah.

Analyst: [This begins a whole new round of discussion, one focused on filling in
details that are necessary to complete the summary started above.] ...

There is at least anecdotal support in [41] for the enumeration technique shown in the first
example as being a means of jogging a client’s memory. The second example goes beyond a
simple enumeration or paraphrase of a specification component, and begins to address con-
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trol issues. In particular, while the summarization in this example was prompted by a mem-
ber of our group observing the session, and hence may be viewed as artificial, its ability to
drive problem refinement seems an important one. For instance, we might speculate about a
tool that could do timely sweeps over the current design, summarize it, note missing pieces,
and propose further refinements.

We close this section by noting the large gap between our goals for an interactive design
assistant and our results to date on achieving them. Both our formal and informal observa-
tions of expert analysts have given us enough information to identify important components
of a specification design model, and in some cases, enough information to build tools to test
them. What we are lacking are 1) the details of the majority of these components, and 2) a
clear understanding of how they interact and are effectively controlled.

6. Related work

Related projects, besides those listed in the preceding sections, are discussed below. Note
that the work we list here is directed toward the knowledge-based specification problem; a
discussion of research that addresses broader issues of knowledge-based software develop-
ment can be found in [15, 33].

6.1 Related specification concerns

While relatively little work has been performed in the study of the specification process, this
is not to say that other portions of the specification task have been neglected. For instance, a
growing amount of research can be found in the definition of formal specification languages,
for which a good set of references can be found in the proceedings of the International Work-
shop on Specification and Design, e.g., [19]. Given a formal specification language, we can
analyze it, use it as a document to verify an implementation, and even in some cases, exe-
cute it [8, 44].

Related to execution, the rapid prototyping approach suggests that we build a working imple-
mentation that a client can directly interact with. The argument is that while such an imple-
mentation may only be partial, in some cases only incorporating the interface, it will prove
useful in further validating the client’s requirements. In general, it would appear that exe-
cutable specification languages in tandem with a rapid prototyping approach provide a power-
ful means of validating a specification.

Are these two techniques -- formal specification languages, and validation through execu-
tion -- enough to effectively support the specification process? We argue no on two grounds.
First, a specification language provides a representation for a finished product. While this
representation may provide constructs that ease design, for instance by allowing levels of
abstraction, freedoms of expression or forcing us to attend to certain specification concerns
(initialization, error checks), the design process itself remains outside of its scope.

Second, execution of a specification or implementation seems clearly useful in validating cer-
tain aspects of a system, e.g., the interface, performance, certain functionality. However,
pushed to the extreme, this might be characterized as hackerism versus analysis. Specifical-
ly, what test cases should be run on the prototype to validate intent? What constitutes an
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error? Just as we do not encourage a bang-on-the-keys approach to testing an implementa-
tion for development errors, it seems reasonable to eschew a similar approach when testing
a specification against intent. Our observations tell us that a good analyst knows what key
points to bring up with a client in a particular application domain, e.g., what is typically
required, what are the special cases, how have similar development efforts failed. It is these
points that are used to ‘‘test’’ a client’s specification. In summary, a prototype without a
principled testing plan would give little confidence that anything other than the vanilla func-
tionality of the program would be explored.

Finally we note that our observations of systems analysts working with clients has shown
us an interactive problem solving process as opposed to a transcription process. In particu-
lar, an analyst that is expert in an application domain would not only listen to the client’s
stated requirements, but would also add new ones, force the client to justify others, and
argue for exlusion or modification of still others. In essence, a view of systems analysis
founded on the old saw that the customer is always right would appear to be almost always
wrong,.

In summary, we argue that new languages and execution techniques will give us more pow-
erful tools to work with, but neither provides any magic bullet for representing the knowledge
needed to automate the specification process itself.

6.2 Design goals

In [31], Mostow and Voigt examine the implicit design decisions that go into building soft-
ware. Their approach was to produce a rationalized design that would lead to an existing
piece of code, given design recollections from the original implementors of the code, and a
theory of interacting design goals and methods for combining them into a coherent design.
We believe results from this work can benefit us in two ways: 1) it may provide some guid-
ance on the order in which parallel developments and elaborations should be carried out, and
2) it may suggest various strategies for the merge operation.

6.3 Specification evaluation

It seems clear that some form of ‘‘operationalization’’ is necessary to find intention bugs in
specifications. The rapid prototyping approach provides this by building a source code pro-
gram from the specification, or using the specification itself if it is executable, and running it
against intent. This latter approach often rests on what is commonly known as symbolic eval-
uation. Cohen [8] and Swartout [42] have built a symbolic evaluator and behavior explainer
for Gist that serves as a good reference point. In their system, the user designates a particu-
lar Gist action to test. The system then runs the action on symbolic data, and outputs an exe-
cution trace. Another system sifts through the trace to summarize the results. While this is a
useful approach to the problem of handling the often massive amounts of data produced by a
run, Swartout notes the following [42]:

““The current [Gist] symbolic evaluator is not goal driven. Rather than having a model
of what might be interesting to look for in a specification, the evaluator basically does
forward-chaining reasoning until it reaches some heuristic cutoffs.”’

Swartout goes on to argue that if the Gist symbolic evaluator had some notion of what was
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interesting, it could avoid lengthy and unproductive paths. Qur arguments in this paper 1)
support Swartout’s conjecture, and 2) extend it along several lines. First, interestingness
for a domain-independent language such as Gist must center on features of the language
rather than features of the domain. What we have proposed is to explicitly represent what is
interesting about the domain, again part of the knowledge we see an expert analyst having.
Second, the goal of the Gist symbolic evaluator is to allow the user to test the specification;
all the machinery is set up to explain the results of the test. We foresee a need for an active
critic of the specification. Such a critic would generate its own test cases to try to poke holes
in the current problem description. This distinction between the *‘attitude’ of the two
approaches is important. The work on symbolic evaluation to date is based on a view that
the user knows what he or she wants; the problem is making sure the machine has repre-
sented it properly. In our view, a user has a sketchy idea of what her or she wants, and has
rarely thought out all of the consequences. One of the roles of an expert analyst is to recog-
nize and show the user the ramifications of his or her actions, €.g2., adding a new branch to a
library, extending borrowing limits of certain library users, allowing staff to borrow without
restriction, each of which is likely to have difficult to foresee interactions with the existing
description. We believe all of this must happen in an interactive environment ried to the
development process. Thus, symbolic evaluation is not something you invoke after the fact as
you would a compiler, but instead should be part of the construction process itself, e.g., inte-
grated with the editor or elaboration system. Given this, we see the following roles for opera-
tionalization in a specification system:

. The role of validator, as used by Swartout [42] and Cohen [8]. Here, the user selects
test data and an action or actions to be confirmed; the system executes the action,
and presents the results.

. The role of validator, as used in section 5.5.1. Here, the system selects test data and
an action or actions to be confirmed by the user.

. The role of refinement driver that checks for missing details, e.g., ‘‘Let’s suppose
that X has occurred; how do you want to handle it?’’. This type of testing is initiated
by the system to fill in holes in the current problem description (the DESIGNER sys-
tem plays a similar role in algorithm design [39]), and is discussed in section 5.5.3.

For the first role, while the user can set up and run a specification test in the critic system
discussed in section 5.5.1, we currently do not provide the analogue of Swartout’s explainer;
the user must interpret the results manually.

6.4 Specification as problem solving

The PHI-NIX project at Schlumberger-Doll is an attempt to apply domain dependent knowl-
edge to the software specification and implementation problem [5]. PHI-NIX takes a batch
compilation approach: high level problem descriptions are taken in, and the system first
translates these into a formal specification language, and then maps this specification into
compilable code. During the specification process, the system’s major concern is with map-
ping mathematical, and in some sense, idealized descriptions onto physical equipment and
known approximation techniques. The domain knowledge comes from a set of rules that
describe various definitions, facts, and properties in the oil drilling world. Because the focus
is more on translation than construction, there is no notion of interacting with the user to fur-
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ther refine his or her problem. The relation to our work then is the use of domain knowledge
to fill in the details of a specification. PHI-NIX relies on rule-based heuristics to guide it to a
reasonable formal representation (and later an implementation) of a informally stated prob-
lem. Using the Oz/Glitter system, we are exploring the translation of high level specification
design goals into a set of primitive specification construction operations. Like PHI-NIX, we
too have found the need for domain dependent problem solving knowledge in automating
specification construction.

6.5 Reuse of analysis

The Draco system [1, 32] shares our goal of capturing domain knowledge so it can be used in
specification, but again deals more with translation than with the construction process. To
capture the work of a domain analyst, and hence reuse that work later, Draco defines tools
for building domain dependent specification languages. Using this model, the analyst identi-
fies the objects and operations of the domain, and defines a language for representing them.
Draco supplies a BNF notation, parsers, pretty printers, and a transformation facility for opti-
mizing a program. The semantics of the newly defined language are defined by mapping lan-
guage constructs onto other existing domain languages within Draco.

6.6 Reuse of plans

Several projects have studied the use of pre-stored ‘‘specification plans’” that can be used
to construct a specification by component composition [28, 34]. Our only effort along these
lines is Nagarajan’s catalog of problem cases for critiquing a specification. As discussed in
section 5.5.3, we expect that these may be used as a means of synthesis as well as analy-
sis, but have yet to explore this approach.

6.7 Design in general

There is a growing body of work on formal models of design, both within Computer Science
and without. A general survey is beyond the scope of this paper. However, we do note that
Mostow’s survey [30] of AI design paradigms has proven particularly useful to our work.
We also note that the protocol studies conducted by Dietterich of Mechanical Engineering
designers [10] have given us further insight into the problem acquisition process.

6.8 Knowledge acquisition

Recent work in the Expert System field has concentrated on the problem of extracting the
expertise of a human expert so that it can be incorporated into a computer program (e.g., a
rule-based shell). Portions of this research that focus on interviewing techniques (see for
instance [7]) appear to have some relevance to the work discussed in section 5.5. In particu-
lar, while appearing disparate on the surface, it would seem that problem specification and
knowledge acquisition have an interesting set of common goals.
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7. Summary

We have presented three models of specification design: Goldman’s characterization of grad-
ual elaboration; Feather’s parallel development model; Fickas’ knowledge-based critic. The
central theme of the paper is that the set of research results obtained from 1) these three
models, and 2) attempts to formalize and automate them, point the way towards a useful
computer-based specification assistant. We have argued that the bases for such an assis-
tant must rest on the following views:

*

The specification process is evolutionary.

The specification process is one of design.

The specification process often involves conflicting goals.

The specification process involves collaboration between client and analyst.
The specification process is inherently knowledge-based.

As we discussed in section 5, we are studying these issues along two broad fronts: 1) explo-
ration of the interactive design process that leads to a useful specification, and 2) identifica-
tion and representation of the type of knowledge underlying such a process. The tasks that
we believe important for further research in the area can be outlined as follows:
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Task 1. Produce a model of interactive problem acquisition and specification construc-
tion, one based on a view of cooperative problem solving versus syntactic transcription.
We have discussed some of the components we believe will be necessary in such a
model; much work remains.

Task 2. Characterize the complex ways conflicting goals come into play during specifi-
cation, and means of recognizing them, documenting them, and resolving them. We
have argued that Feather’'s model provides a basis for studying these problems; the
work by Mostow&Voigt [31] clearly fits here as well.

Task 3. Come to grips with “‘requirements’’. There seems to be a growing belief that
the separation of 1) requirements and 2) a formal specification is not a useful one, at
least partially on the lack of a precise definition of either. However, it is clear to us that
what are calling policies are capturing some useful information, information that is typi-
cally extraspecificational. By what ever name they go by, they are turning out to play a
key role in every facet of our study of specification design. In particular, our current
belief is that policies/goals/requirements have much more to do with the construction
process leading to a product than with the product itself, Thus a view that we translate
requirements into a specification seems wrong headed: we use ‘‘requirements’’ to
guide and constrain the design process, a process that must wade through a potentially
infinite number of specifications.

Task 4. Extend the top-down design model currently in practice. Specifically, we have
argued that exploration of alternatives, patching and reuse are all common design tech-
niques employed by humans when building a complex specification. At the least, our
tools should manage these processes for the human designer.

Unlike the rather optimistic estimates in [21], we believe that we are in for a much longer
effort to achieve a ‘‘knowledge based requirements assistant’’, at least for one that meets
the goals above. We hoped to have shown, however, that the problems we face are becoming
clearer, and that even partial solutions can lead to useful tools along the way.
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Appendix A

Consider a small library database with the following transactions:
Check out a copy of a book / Return a copy of a book;
Add a copy of a book to / Remove a copy of a book from the library;

L.

2,

3. Get a list of books by a particular author or in a particular subject area;
4. Find out the list of books currently checked out by a particular borrower:;
5.

Find out what borrower last checked out a particular copy of a book.

There are two types of users: staff and ordinary borrowers. Transactions 1, 2, 4 and 5 are
restricted to staff users, except that ordinary borrowers can perform transaction 4 to find out
the list of books currently borrowed by themselves. The data base must also satisfy the fol-
lowing constraints:

. All copies in the library must be available for checkout or be checked out.

. No copy of the book may be both available and checked out at the same time.

. A borrower may not have more than a predefined number of books checked out at one
time.
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