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Abstract

The specification of a communication network requires both a topological and an
operational aspect. The topological aspect consists of a graph with vertices representing sites
and edges their interconnection by lines. The operational aspect consists of calling
procedures sufficient to complete various communication tasks. In earlier research, we
specified several classes of minimum-time broadcast networks: such networks allow
completion of the one-to-all broadcast task from any site as originator in the minimum

possible time (i.e., rlog2 n| time units for n sites). Here we present extensions to the

operational specifications of one of these classes to realize broadcast networks that are also
immune to single site failures and to isolated site failures. In these networks, broadcast
incurs the minimum possible delay of at most one time unit for each failing component
encountered.

Introduction

Communication networks provide means for the dissemination of information among a
set of sites by the transmission of messages through calls placed over lines interconnecting
the sites. The sites may be processors in a highly parallel computer, computers in a
distributed system, or hosts of a long-distance computer network, Several information
dissemination tasks are of interest within these contexts. The basic task is that of message
transfer between two sites, a sender and a receiver. Here our interest will be on
broadcasting, which is the task of disseminating a message from one site, the originator, to
all other sites as receivers (i.e., a one-to-all process).

The design specification of a communication network consists of two aspects:
topological and operational. A network's topological specification represents the physical,



relatively static elements of the network: sites, lines, and any relevant properties of those
elements (e.g., length, delay, capacity). A network’s operational aspect describes elements
of the dynamic behavior of the network, including routing tables and other features of the
calling protocol and procedures.

We model the topological aspects of a network design by an undirected graph G =
(V,E), where V is a set of vertices representing network sites and E is a set of edges, each
edge connecting a pair of vertices, representing lines of the network. We model the
operational aspects by communication processes, being calling procedures that are
performed by each site during completion of an information dissemination task. The call,
represented by the send procedure, transfers a message between two directly connected sites
and is the primitive operation of a calling procedure. We assume that a call takes one unit of
time and that a site can participate in at most one call during any time unit.

We design networks to satisfy any of several task-dependent properties of interest.
These properties are generally concerned with network effectiveness, efficiency, and
reliability. By effectiveness, we mean the ability of a network to successfully complete
particular information tasks. Here we will be concerned with networks that are effective for
broadcasting. By efficiency, we mean satisfaction of constraints on cost and time; here our
concern will be on time required to complete broadcasting. Finally, reliability refers to a
network's ability to complete an information dissemination task in the presence of failures in
certain site and line components of the network; we say the network is immune to such
failures. Here we will be interested in immunity to single site failures and to certain sets of
multiple site failures.

Broadcast Networks

During message broadcast, a site may be called upon to make zero or more calls,
depending upon the broadcast originator. As such, when specifying the operational aspect of
a broadcast network, we must define a set of call lists for each site. A call list is a sequence
of zero or more sites to be called in the given order by the site during a broadcast from a
specified originator. The sites to be called by a given site depend upon the originator of a
broadcast not the destination, as is the case for message transfer (i.e., the destination is all
sites for any broadcast). Therefore, we define call-list(x,y) to be the ordered list of sites
that are to be called by site x when site y is the originator of a broadcast. A call list may be
empty when site x is not required to further the message originated by y. The list
call-list(x,x) is the sequence of sites to be called by site x when it is the originator of a
broadcast. A broadcast message must carry an indication of its originator so that other sites
can perform the correct calling sequence.



Several list processing primitives must be defined to represent processing of the call
list. We define first(Ist) to be the first element of a non-empty list Ist and rest(Ist) of a
non-empty lst to be Ist with the first element removed. We represent the empty list by the
symbol nil; rest(lst), where Ist consists of a single element, is nil. We can now specify

the following generic broadcast process, to be performed by each site during broadcast of a
message:

process broadcast (x, m):
;  broadcast process for site X, upon receiving or originating
;  message m of the form <originator, content>

set clist to call-list(x, originator)
until clist equals nil do
begin
send (first{clist), m)
set clist to rest(clist)
end

A Class of Minimum-time Broadcast Networks

In results of earlier research, we presented topological specifications of several classes
of minimum-time broadcast networks [1]. A minimum-time broadcast network is a network

in which a message broadcast is completed in the minimum possible time (i.c., logy n time
units in a network of n sites) from any site as broadcast originator. One of our topological
specifications was based upon a class of graphs known as star polygons. A star polygon is
a finite graph formed by numbering n vertices from O to n-1 and connecting each vertex v
(i.e., numbered v) by an edge to each of a finite set of other vertices {v+0y, ..., v+oi}

according to a fixed set of integer offsets {0y, ..., ok}, where all addition is assumed to be

modulon. The topology of one class of minimum-time broadcast networks is determined by
star polygons having offsets {1, 2, ..., 2 U821 } [1]. We will call such graphs log-star
polygons. Figure 1 presents an example of a log-star polygon for the case where n is equal
tol2.

Given the topological specification of a broadcast network, it remains to determine
call-list(x,y) for each pair of sites x and y in order to complete its operational
specification. For our log-star polygon topology, we define the distance dist(x,y) between
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Figure 1. An example of our log-star polygon topology with 12 vertices.

Figure 2. Broadcast network operation indicated by arrows for calls,
with the time each site becomes informed in parentheses.



sites numbered x and y to be x-y when x is greater than or equal to y and to (x+n)-y
otherwise; conceptually, dist(x,y) is the clockwise distance between y and x when the
graph is placed on the plane as a star polygon having sites numbered in increasing clockwise
order around a circle (as in Figure 1). We define time(x,y) to be the least integer t such
that 2t is greater than or equal to dist(x,y) + 1. We let T be the maximum valve of

time(x,y), equal to {log,n] .

For our log-star polygon topology, we specify call-list(x,y) to be the list of integers
determined by the expression x + 2i (mod n), where i varies from time(x,y) to T-1, such
that dist(x,y) + 21 js less than n. In our example from Figure 1, n = 12 and T=4;
time(0,0)=0 and call-list(0,0) is 1, 2, 4, 8; time(1,0)=1 and call-list(1,0) is 3, 5, 9;
time(3,0)=2 and call-list(3,0) is 7,11; and time(4,0)=3 but call-list(4,0) is empty
as its only candidate (i.e., 4 + 23) is equal to n. Figure 2 shows the broadcast process
originated by site 0 in our network of 12 sites; arrows show the calls made during the time
unit associated with the receiving vertices. Every non-redundant broadcast process traces out
a spanning tree of the network topology; we call such trees minimum broadcast trees [6].

Theorem 1: Given a log-star polygon, following the general broadcast process
according to the call-lists defined above, each site y becomes informed of a broadcast
message originated by x during time unit time(x,y).

Proof: [By induction on time(x,y).] Itis obviously true for time(x,y)=0, as the
originator x knows of the message at time 0. Assume it is true for all sites ¥ such that
time(x,y) is less than or equal to t. We must show it is true for all sites z such that
time(x,z)=t+1. All informed sites y call sites y+2¢ (mod n) during time unit t+1. As such,
all sites at (clockwise) distances less than 2t+1 from the originator are informed of the
message at the end of t+1 time units. []

This establishes that our log-star polygon graphs are instances of topologies for
minimum-time broadcast networks (as previously established in [1]).

Broadcast Immunity to Single Site Failures

What we will establish as new results in this paper are that the log-star polygon graphs
described above can be used as topological aspects of minimum-time broadcast networks that
are also immune to single site failures or to sets of isolated site failures. We will do this by
modifying the operational specification of the networks to realize the desired reliability
properties.



If a network is to be immune to failures, sites must know of alternate routings for
messages transfers. When we are considering immunity for the broadcast task, a site may
need to know more than one alternate call when a failure is encountered, as the failing site
may have been responsible for more than one call during a message broadcast from the given
originator. However, to minimize the time delay incurred upon encountering a failure and
the number of line connections that are needed to realize immunity, we will want to distribute
the responsibility for making calls normally made by the failing site among several
operational sites.

We will refer to the calls necessary to overcome a failure as the repair-list and will
append a repair-list field to every message being broadcast. When a site receives a message
that contains a non-empty repair-list field (i.e., one not equal to nil), it will first call the
initial site on the repair-list, forwarding the rest of the repair-list with the message in that call;
the site then will complete its broadcast process by calling the sites it normally would call for
a broadcast from the given originator. This general immune broadcast process can be
described formally as follows:

process immune-broadcast (x, m):

; broadcast process for site X, upon receiving message m;

; where m is of the form <originator, content, repair-list>.
: call-list(x, y) is as defined above for minimum time broadcast.

if repair-list is nil
then
do-call-list (call-list(x, originator), m)
else
send (first(repair-list),
<originator, content, rest(repair-list)>)
do-call-list (call-list(x, originator), m)

What a site does when encountering a failure during broadcast (i.e., during execution
of the do-call-list process) will differ depending upon the class of failures for which
immunity is to be realized and upon the topology of the network (i.e., what lines and sites
are available to overcome the failure). If we consider immunity to single site failures,
2-connected graphs represent a sufficient class of topologies. In a 2-connected graph, there
exists two vertex-disjoint paths between every pair of vertices; thus, since there is an
alternative path between any originator and every other vertex, broadcast can always be
completed when only a single site failure occurs, given an adequate operational



specification. However, graphs that are minimally 2-connected (e.g., single cycles) would
most likely encounter significant delays in the broadcasting process if a failure were to occur,
as rerouting the broadcast message may require use of long forwarding sequences.

We would like to characterize a class of minimum-time broadcast networks that are
immune to single site failures and which incur minimal delay (actually, zero time units) when
completing broadcast in the presence of a single failed site. It turns out that our log-star
polygon topology is sufficient, given an appropriate specification of the do-call-list process.
To understand how a single site failure can be overcome, se¢ Figure 3 where we present the
lines contained in the initial part of a normal broadcast tree below an arbitrary site (here
numbered zero) as solid and show other relevant lines that exist in the network as dotted. If
a descendant site of site 0 has failed, subsequent descendants of 0 are connected to
corresponding descendants of the failed site and thus can call the failed site's descendants.
Due to our definition of the call-lists as given above, there will always be as many
subsequent descendants of site 0 as there are descendants of the failed site. We complete the
formal definition of the operational aspect of the immune networks in the following:

process do-call-list (clist, m):

;  normal broadcast process after initiating or receiving message m,

;  calling each site in c-list (its call-list for the given originator);

;  if encountering a failure, an appropriate repair process is initiated.

; call-list(x, y) is as defined above for minimum-time broadcast.

until clist is nil do
if (site-state(first(clist)) is down
then
do-site-repair (rest(clist), call-list(first(clist)), m)
else ; regular call, no failure encountered
send (first(clist), m)
set clist to rest(clist)

process do-site-repair (clist, rlist, m):

» each element on clist is given one of the elements on rlist to call;
;  this allows repair without time delay as each site on clist receives

; mone time unit earlier than in a normal broadcast.



Figure 3. Broadcast tree with other lines of log-star polygons
that are used to realize immunity to single site failures.
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Figure 4. Broadcast tree with other lines of log-star polygons
that are used to realize immunity to isolated site failures.



until clist is nil
if rlist is nil

then ;110 More repair necessary
send (first(clist), m)
set clist to rest(clist)

else
send (first(clist),

<originator, content, [first(rlist)1>)

set clist to rest(clist)
set rlist to rest(rlist)

Theorem 2: Given a log-star polygon topology, a communication network with the
processes immune-broadcast, do-call-list, and do-site-repair as its operational aspect is a
minimum-time broadcast network that is immune to single site failures and incurs no delay in
repair.

Proof: The network is a minimum-time broadcast network when no failures occur, as
its default operation is equivalent to the minimum-time broadcast networks defined earlier.
When a failure occurs, we know that rest(clist) has the same number of sites as, or one
more site than, call-list(first(clist)), due to our prior definition of call-list(x, y).
Also, the corresponding ith elements of these two lists are connected by a line according to
our definition of the log-star polygon topology. Thus, process do-site-repair performs
correctly and the network is immune to single site failures. Finally, as each element of
rest(clist) recieves message m one time unit early and calls the corresponding element of
call-list(first(clist)) when that site normally would receive m, there is no delay in the
completion of the broadcast process. []

Liestman [5] presents alternative operational specifications for our log-star polygon
topology that realize immunity to one and two failures (either site or line) with delays of one
and two time units, respectively.

Broadcast Immunity to Isolated Site Failures
Immunity to single failures is adequate for networks with highly reliable components.

We have previously studied immunity to certain sets of multiple failures which we have
called isolated failures [2,4]. A set of site failures is an isolated set of site failures if no two



sites that have failed are adjacent to each other (i.e., directly connected by a line of the
network). When site failures are isolated, there is a guarantee that other sites in the
"neighborhood" around any failure have not failed. The separation between pairs of failures
will allow us to define calling procedures that repair the problem by local rerouting of calls.

In the case of immunity to isolated failures for the task of message transfer, each site
needed to know only a preferred and an alternate call for each site as recipient. A message
transfer process whereby a site first called its preferred neighbor, followed by its alternate
neighbor upon failure of the preferred call, was sufficient to guarantee completion of a
message transfer (when the recipient was operating) and thus to provide immunity to isolated
failures in the network. The class of graphs known as 2-trees has been shown to be the class
of topologies having the fewest lines for a given number of sites that could be made immune
to isolated site failures [3].

Because we are assuming that multiple site failures are isolated, we can guarantee that
all sites involved in the calling of repair-list entries are operating if we rely upon neighbors of
the failing site for the repair. When making its normal calls, a site must check to see whether
the site it is about to call has failed; if this is the case, the calling site then can initiate repair
calls to be made by neighbors of the failed site according to an appropriate repair-ist, being
the call-list of the failing site for the given originator. Again, to understand the Tepair
process, consider the enhanced broadcast tree shown in Figure 4; we assume, without loss
of generality, that the failure occurs at a descendant of 0. This time we send the complete
repair-list to the descendant of 0 that would follow the failed site in the broadcast. That site
will initially call the first site normally called by the failed site, with the rest of the repair list
appended. Each descendant of the failed site in the broadcast tree will first call the next site
that the failed site would have called, before turning to its own call-list. Thus the
descendants of the failed site call each other with the broadcast message before forwarding
the message to their descendants in the broadcast tree.

Below we specify the operational aspect of a class broadcast networks immune to
isolated site failures based upon the log-star polygon topology we have defined above. We
assume use of the general immune-broadcast process defined in the previous section, but
redefine the do-call-list process to provide immunity to isolated site failures. Our new
definition is as follows:

process do-call-list' (clist, m):

; normal broadcast process after reception of message m

; calling each site in c-list (its call-list for the given originator);
; when encountering failures it initiates an appropriate repair-list,



until elist equals nil do
if site-state(first(clist)) is up
then ; regular call, no failure encountered
send (first(clist), <originator, content, nil>)
set clist to rest(clist)
else
if rest{clist) is not nil
then
send (first(rest(clist)),
<originator, content,
call-list(first(clist), originator)>)
set clist to rest(rest(clist))

Theorem 3: Given a log-star polygon topology and using the processes
immune-broadcast and do-call-list' as operational specification, we have a minimum-time
broadcast network that is immune to isolated site failures and that incurs a delay of at most
one time unit per failure.

Proof: The default process is as defined for the original minimum-time broadcast
networks, so we have a minimum-time broadcast network. We have immunity to isolated
site failures as each site involved in the repair process is adjacent to the failed site and thus
must be operating when failures are isolated. Our log-star polygon topology provides the
necessary line connections among the sites, as illustrated by Figure 4. If there is no next
descendant of 0 in the broadcast tree (i.e., rest(clist) is nil), then no repair is necessary, as
the failed site can have no descendants in the broadcast tree according to our prior definition
of call-list(x, y). Finally, a delay of one time unit is incurred when repair is necessary,
as the descendants of the failed site, though receiving the broadcast message at the time that
they normally would, are forced to first make a repair call before turning to their own call
responsibilities. []

Conclusion

In this paper we have presented designs for minimum-time broadcast networks that are
immune to single site failures and to isolated sets of site failures. We demonstrate the
importance of separating topological and operational aspects of network design, as only
operational aspects were changed to realize the improved reliability.
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