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Abstract

A network is immune to a set of failures F if message transfer can
be completed in the presence of F. In this paper, we describe net-
works immune to certain classes of templated failures. A templated
failure is characterized by (possibly more than one) connected graph,
a template; elements of a given network that belong to a subgraph
isomorphic with a template can fail together as a dependent failure.
We discuss templates that can be described as graphs induced by a
single node and a subset of its neighbors. We first deal with immu-
nity to single templated failures. We then consider networks immune
to sets of isolated failures, wherein no two adjacent elements of the
network may fail. We describe minimal classes of graphs immune to
sets of isolated failures characterized by a K, template.
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Introduction

Communication networks provide means for dissemination of information
among a set of sites by the transmission of messages through calls placed
over lines interconnecting the sites. The sites may be processors in a paral-
lel computer, computers in a distributed system, or hosts in a long-distance
network. The design specification of a communication network consists of
two aspects, topological and operational. A network’s topological specifica-
tion represents the physical, relatively static elements of the network: sites,
lines, and any relevant properties of those elements (e.g., length, delay, ca-
pacity). A network’s operational aspect describes its dynamic behavior
through routing tables and other features of the calling process.

We will model the topology of communication networks by means of
combinatorial graphs: communication sites and communication lines of a
network will be represented by nodes and edges of the corresponding graph.
The properties of network topology that are of interest include the inter-
relation of the order (number of nodes), the size (number of edges), and
the diameter (i.c., the greatest length of a shortest path between a pair
of nodes) of the graph representing the network. We will consider these
properties while investigating graphs that remain connected when elements
(nodes and edges) of some predefined subgraphs of the graphs are removed.
These graphs represent networks that remain operational in the presence of:
site and line failures, in the sense that message transfer between operational
sites can still be completed.

Failures of single elements, both alone and in isolated sets, have been
treated extensively in the literature ([1,2,3,4,6,7]). In this paper, we initiate
study of subgraph failures and obtain some preliminary results dealing with
both types of subgraph failures: single subgraph failures and sets of isolated
subgraph failures.

We consider templated failures, whereby a single failure is characterized
by the failure of all elements of a subgraph of given network; this subgraph
is isomorphic to one of the set of templates, connected graphs given by a
set of nodes and edges which fail together. A motivation for this model is
provided by dependencies of network failures, as encountered in practice,



can fail in isolated K, failures. We call such pairs of nodes safe pairs. The
twin and safe pairs of nodes can be used in an iterative construction of
graphs immune to isolated K, failures, specified as follows:

Algorithm Safe:
Set G to Cy;
repeat
choose one
add a new node w adjacent to
a twin or to a safe pair of nodes of G,
or add a K;; to a pair of twin nodes of G;
call this new graph G.
end of the algorithm.

The size-to-order ratio of the resulting graphs ranges from 2 (for the
pure Twin graphs), through I for graphs constructed from Twin graphs
by connecting nodes of each twin pair by a path including two new nodes
(K1), to % for graphs using exclusively K} ; in the construction. We con-
jecture that the asymptotic size-to-order ratio of % is the best possible for
networks immune to isolated K ; failures. The algorithm producing graphs
with the conjectured minimum size-to-order ratio is as follows:

Algorithm K12:

Set G to 04;

repeat add a K, ; to a pair of twin nodes of G;
call this new graph G.

end of the algorithm.

Communication Protocols

We model communication in & network of given topology as being attained
by a calling process, whereby a message is forwarded toward its destination
along the network’s links according to some protocol. Since a site that
would be called in an undisturbed network may have failed in the afflicted
network, the protocol for each site must at least have an alternate call for
every possible receiver. We will be able to provide immunity to isolated



due to electrical connections transmitting a disturbance (e.g., power surge)
or the geographical proximity (as in the case of an earthquake). A more
general model of dependency of failures might incorporate the possibility,
but not the necessity, of failure for these elements (¢f. [5]).

Rather than dealing with the problem in all its generality, we will restrict
our attention to templates consisting of a node and its k neighbors (i.e.,
adjacent nodes). Such graphs are called stars and denoted K, 4. The node
and its neighbors are called the center and the tips of the star, respectively.

Immunity to Single Star Failures

When considering failures of star subgraphs, we assume that a failure at a
node causes the removal from service of both the node and its neighbors.
(In other words, rather than talking about failures of lines incident to the
node, we assume failures of lines at a distance not greater than 2.) We now
discuss the relationship of the size of a graph immune to a single failure
(i.e., a graph which is not disconnected by a star removal) to the diameter
and the order of the afflicted graph. We fix the order of the original graph to
be n. We will now consider several classes of graphs that represent different
components of this relationship.

The graph of smallest size for given order which remains connected after
an arbitrary star failure is the cycle C,, (see Figure 1). Such a graph has n
edges and diameter of n/2. After failure, the afflicted graph is a path with
n — 3 nodes and diameter of n — 4.

N,

Figure 1: The cycle C, before and after a star failure



A ‘stretched double star’ consists of two stars K;,n/2-1 with tip nodes
connected in a one-to-one manner (see Figure 2). It has 2n edges and
diameter 3. After failure, the afflicted graph has either n — 3 remaining
nodes and diameter of 4, (when a tip node fails) or n/2 remaining nodes
and diameter d = 2 (when a center fails).

Figure J 2: A stretched double star

These two classes of graphs seem to be at opposite extremes of the trade-
off scale between number of remaining operational sites and diameter of the
remaining network. Somewhere between is the ‘squared double star’, being
two stars K, s with their tips connected through \/n-paths. This graph
has approximately n++/n edges and diameter d = /n (see Figure 3). After
failure, the squared double star will have either n —4/n or n — 3 nodes and
the diameter will be 2,/n.

Figure 3: A squared double star

Of course, a complete graph on n nodes is immune to a single templated
failure, but since all sites fail when one site fails, immunity is rather vac-
uous. In general, failure of a high degree node makes a large number of



Isolated Star Failures

We have introduced the notion of dependent element failure through a set
of templates determining a configuration of elements in a network that will
always fail together. Now we will study the problem of immunity to a set
of isolated templated failures, where any occurrence of a single dependent
failure in a network is separated (in terms of node adjacency) from any
other such failure. A set of templated failures in a network is isolated if no
two instances of failed subgraphs have adjacent nodes.

A network is immune to isolated failures if no set of such failures discon-
nects two operational nodes of the network. The study of such networks was
begun a few years ago by Farley [3] and Farley and Proskurowski {4], where
isolated failures of single elements were considered. The object of those
investigations was to find graphs with the minimum size-to-order ratio over
all classes of graphs immune to such failures. The obtained results iden-
tified the class of minimum-size graphs immune to isolated node and line
failures to be two-trees (having a size-to-order ratio of 2), and provided
an iterative construction algorithm for an infinite class of minimum-size
graphs immune to isolated line failures (having a size-to-order ratio of ).
In this section, we will develop designs for networks immune to isolated
K, failures (having the conjectured minimum size-to-order ratio of %)

In graphs immune to K;; failures, the minimum order of a separator is
two (a separator is a subset of nodes the removal of which would disconnect
the graph). Since we investigate graphs of small size-to-order ratio, we
turn our attention to properties of two-node separators in K,; immune
graphs. If a two-node separator induces an edge then the graph could be
disconnected by the K, failure involving the nodes of the separator. Thus,
we will consider only two-node separators consisting of non-adjacent nodes.

Two nodes with identical neighborhoods are called a pair of ¢wins. A
minimal separator consisting of a pair of twins is immune to isolated K,
failures in the following sense.

Lemma 1 Only one node of a pair of twins can be rendered inoperative by
a set of isolated Ky, failures.



Proof: If one node z of a pair of twins {z,y} fails, then a node z in their
common neighborhood must also fail. Thus y cannot fail in a set of isolated
failures. =

The above lemma provides one idea for the construction of graphs im-
mune to isolated K, failures. To bootstrap the associated construction
algorithm we start with the simplest graph containing a pair of twins (ac-
tually, two pairs), the cycle Cy,. We can then add nodes in a ‘safe’ manner
by connecting each new vertex to 2 pair of twins, as suggested by the lemma
above.

Algorithm Twin:

Set G to Cy;

repeat add a new node w adjacent to a pair of twin nodes of G;
call this new graph G.

end of the algorithm.

We will call all graphs obtained by execution of Algorithm Twin Twin
graphs. Below we present two lemmas about Twin graphs which follow
from induction on the number of iterations performed by Algorithm Twin
(or, equivalently, the order of the graph).

Lemma 2 Every node of a Twin graph has degree £ or is a member of a
pair of twin nodes.

Lemma 3 Any minimal separaior of a Twin graph consists of a pair of
twin nodes.

Theorem 4 No Twin graph can be disconnected by a set of isolated K,
failures.

Proof: By the Lemmas above. =

We have thus succeeded in designing a class of networks immune to
isolated K, failures, the Twin graphs. Their size-to-order ratio tends
asymptotically to 2, since every new node requires two new edges. Actually,



nodes inoperative, thereby eliminating a significant portion of the graph
and trivially simplifying the task of keeping the afflicted graph connected.
This seems to point out that in this model of single templated failures, it
would be useful to bound the maximum node degree. The cycle mentioned
above is a graph with maximum degree 2. It might be of interest to con-
sider star failures in graphs with maximum node degree 3. The standard
operation of replacing every node of degree higher than 3 by a cycle of
degree 3 nodes transforms the graphs above, a ‘stretched double star’ and
‘squared double star’, into ‘cylinder’ graphs having diameter before failure
of approximately n/8 and 3./n, respectively (see Figure 4). The maximum
degree places a bound on the number of nodes made inoperative by a star
failure; in cylinder graphs, at least n — 4 nodes remain operational after
failure. In the cylinder graph derived from a stretched double star, the
diameter is unaffected by a star failure, while in the graph derived from a
squared double star, a star failure causes the diameter to increase by 3@

-ts

Figure :4: Cylinder graphs derived from stretched and squared double star
graphs

Another example of a graph with bounded node degree is the k-dimensio-
nal cube. Both its node degree and diameter are bounded by k, the loga-
rithm of the graph’s order. The diameter is not increased by a single star
failure.



one can say more about two-node separators in a graph immune to isolated
K, failures. (We will denote the set of nodes adjacent to a given node z,
the neighborhood of z, by I'(z).)

Lemma 5 Let {z,y} be separator in o graph G immune to isolated K,
failures. If the sets I'(z) — I'(y) and I'(y) — I'(z) are non-empty, then
their union induces in G a complete bipartite graph K;; with the partitions
coinciding with the two sets.

Proof: Assuming the contrary situ-ation, let v € T'(z) —T(y)and v €
I'(y) — I'(z) be non-adjacent. Then the failure of the four nodes, i.e.,
{u,z,v,y} is an instance of two isolated K, failures that disconnect G. =

It follows from Lemma 5 that given a pair of twin nodes in an isolated
K, failure immune graph G, the node sets of a K;; can be made adjacent
to each of the twins, respectively, resulting in a new graph G + K;; that is
immune to isolated K, failures (see Figure 5).

Figure 5: Adding K2 to a pair of twin nodes.

Notice that adding nodes in K;; clusters becomes ‘size intensive’ for
i > 2 (the size-to-order ratio is at least 2). We will thus restrict the bipartite
graphs to stars, K, ;. We observe that any two of the tips of the K ; in the
construction described above constitute a pair of twin nodes. The nodes
of the original twin pair no longer have identical neighborhoods, but they
preserve the property of both not becoming inoperative in the presence of
isolated K ; failures. The pair consisting of the center of the new K,; and
the other node adjacent to its { tips is also a pair of nodes not both of which



K, ; failures based on two calling lists (routing tables), which for each site
include preferred and alternate call addresses for all other sites as intended
receivers.

Thus, to complete our immune network design, it remains to determine
preferred and alternate calls for each ordered pair of nodes being the current
sender and the ultimate recipient of a message, respectively. We define
preferred(z,y) and alternate(z,y) to denote the preferred and alternate
neighbors for the forwarding of a message by z towards y. These preferred
and alternate routings must guarantee completion of a message transfer
between operating sites in the presence of isolated K ; failures.

The definition of a sufficient communication protocol is straightforward.
Given reception or initiation of a message for site y as receiver, site z will
first attempt to call preferred(z,y). I this cannot be completed, then site
z will call alternate(z,y). We call this calling process protocol P. We as-
sume that the failure of a neighboring site can be determined by lower-level
protocols. An attempt to send a message to a failed node should cause the
calling process to abort. We realize this behavior by setting, for neighbors
z,y, preferred(z and y) to y and leaving alternate(z,y) undefined.

The routing tables of a Twin graph G can be established in the process
of its construction by Algorithm Twin. This happens in two phases. In
the first phase, a number of common neighbors are added to a pair of twin
nodes in the original C;. When a second pair of twin nodes is used to
append a new node, the initial values of routing tables can be established.
The second phase follows in iterations of the construction algorithm'’s loop
after more than one pair of twin nodes has been used in the execution of
the algorithm. The values of preferred(z,y) and alternate(z, y ) for different
pairs of = and y are determined upon the inclusion of each new node w.

In the following, we will assume that all adjacent nodes z,y have unde-
fined values of alternate(z,y) and alternate(y,z), with preferred(z,y) = y
and preferred(y,z) = z.

Let a Twin graph G be the graph produced by the first phase. G consists
of a complete bipartite graph K3; (¢ > 2) and a node w. Let {u,v} be the
smaller independent set of nodes, and w be the new node added to a (twin)



v
Figure |- 6: The initial configuration of a Twin graph.

pair {z,y} from the other independént set (see Figure 6). We specify:
preferred(u, v)=z, and alternate(u,v)=y,
preferred(v, u)=z, and alternate(v, u)=y,
preferred(u, w)=z, and alternate(u,w)=y,
preferred(v, w )=z, and alternate(v,w )=y,
preferred(w, z )=z, and alternate(w, z)=y for all nodes z ¢ {z,y}.

Finally, for all nodes s,{ from the other bipartition (the neighbors of
{u,v}), we set

preferred(s,t) = u and alternate(s,t) = v.

Assume now that a Twin graph G is under construction in the second
phase. Let {z,y} be the pair of twin nodes to which the new node w is
made adjacent. For all nodes z ¢ {z,y} we set

preferred(w, z )=z, and alternate(w, z)=y.

For those nodes z that are not neighbors of z, we set
preferred(z, w )=preferred(z, z), alternate(z,w )=alternate(z, z),
and for all those that are neighbors of z and y), we set

preferred(z,w )=z and alternate(z,w)=y.



Theorem 6 Communication protocol P using the routing tables as defined
above realizes immunity to isolated Ky, failures in Twin graphs.

Proof: For every pair of non-adjacent nodes s and ¢, nodes preferred(s,t)
and alternate(s,t) constitute a twin pair. Thus, by Lemma 1, one of the
two sites must be operational when K] ; failures are isolated. Also for such
nodes, the distance from preferred(s,t) and alternate(s,t) to ¢ is less than
the distance from s to ¢. Thus, there will be no cyclic calling behavior and
the message transfer will eventually succeed if ¢ is operational. =

Similarly, routing tables can be determined during the construction pro-
cess for Safe and K12 graphs. There, however, a list of alternate call ad-
dresses is needed (rather than a single address).

Conclusions

In an attempt to generalize our previous results on immunity to isolated
element failures, we investigated templated failures and defined families of
graphs that remain connected after removal of isolated pairs of adjacent
nodes. We conjectured that one of the presented classes is the class of
extremal graphs with this property.

Our future research in this area will include investigation of other re-
stricted classes of templated failure immune graphs. We will also consider
application of these topologies in reliable completion of other communica-
tion tasks such as broadcasting and gossiping.
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